Zn-dependent β-amyloid Aggregation and its Reversal by the Tetrapeptide HAEE

Vladimir A. Mitkevich¹, Evgeny P. Barykin¹, Svetlana Eremina¹, Bibhusita Pani², Olga Katkova-Zhukotskaya¹, Vladimir I. Polshakov³, Alexei A. Adzhubei⁴, Sergey A. Kozin¹, Alexander S. Mironov¹, Alexander A. Makarov¹, Evgeny Nudler^{2,5*}

Supplementary Figure 1. A set of sensorgrams obtained by injection of different concentrations of HAEE (150, 300, 500, 1000, 1500 μ M) to immobilized A β_{42} (left panel) and isoD7-A β_{42} (right panel) demonstrating the lack of interaction between peptides and HAEE in the absence of Zn²⁺, pH 6.8.

Supplementary Figure 2. Fragments of 1D NMR spectra of a mixture of $A\beta_{16}$ and HAEE peptides in an equimolar ratio upon its titration with an increasing amount of zinc ions. (The molar ratio of Zn^{2+} ions to the peptides is shown to the right of the spectra.) Concentration of $A\beta_{16}$ and HAEE is 0.3 mM. The regions of amide and aromatic signals, as well as the resonance region of the methyl groups of the V12 residue of the $A\beta_{16}$ peptide are shown. The area of resonance of the signals of V12 methyl groups of the dimeric complex of the $A\beta_{16}$ peptide with the zinc ion is highlighted in pink.

Supplementary Figure 3. Fragments of 1D NMR spectra of a mixture of isoD7-A β_{16} and HAEE peptides in an equimolar ratio upon its titration with an increasing amount of zinc ions. (The molar ratio of Zn^{2+} ions to the peptides is shown to the right of the spectra.) Concentration of isoD7-A β_{16} and HAEE is 0.3 mM. The regions of amide and aromatic signals, as well as the resonance region of the methyl groups of the V12 residue of the isoD7-A β_{16} peptide are shown. The area of resonance of the signals of V12 methyl groups of the dimeric complex of the isoD7-A β_{16} peptide with the zinc ion is highlighted in pink.

Supplementary Figure 4. Fragments of 1D NMR spectra of a solution of the H6R-A β_{16} peptide at a concentration of 1.6 mM, pH 6.8 in the presence of a 0.5 equivalent of ZnCl₂ during titration by HAEE. The molar ratio of HAEE to the H6R-A β_{16} peptide is shown to the right of the spectra. The regions of amide and aromatic signals, as well as the resonance region of the methyl groups of residue V12, are shown. The area of resonance of the signals of the V12 methyl groups of the dimeric complex of the H6R-A β_{16} peptide with the zinc ion is highlighted in pink.

Supplementary Figure 5. Isothermal titration calorimetry titration curves (upper panels) and the binding isotherms (lower panels) for Zn^{2+} interactions with H6R-A β_{1-16} (**A**) and HAEE (**B**). Thermodynamic parameters of Zn^{2+} binding to H6R-A β_{1-16} and HAEE peptides were measured using a MicroCal PEAQ-ITC instrument (Malvern Panalytical, UK), as described previously [Tsvetkov P. O., Kulikova, A. A., Golovin, A. V., Tkachev, Y. V., Archakov, A. I., Kozin, S. A. & Makarov, A. A. (2010) Minimal Zn(2+) binding site of amyloid-beta. *Biophys. J.* 99:L84-6]. Experiments were carried out at 25°C in 50 mM HEPES buffer, pH 6.8. Aliquots of ZnCl₂ solution (2 1) were injected into the 0.2 ml cell containing solution of peptides to achieve a complete binding isotherm. Peptide concentration in the cell was 1-2 mM and the ZnCl₂ concentration in the syringe was 10-15 mM. Heat of dilution was measured by injecting the ligand (ZnCl₂) into the buffer solution; the obtained values were subtracted from the heat of reaction to calculate the effective heat of binding. The resulting titration curves were fitted using MicroCal PEAQ-ITC Analysis Software, assuming one set of binding sites. The dissociation constants (K_D) were determined by a non-linear regression fitting procedure.

Supplementary Figure 6. Two A β_{16} :HAEE complexes with protonated histidines formed transiently during a 50 ns MD simulation. We previously reported that in the systems of A β_{16} (green) with HAEE (magenta) without the zinc ion, the initially formed A β_{16} :HAEE complexes rapidly break apart. However, in the systems where HAEE drifts away from the A β_{16} peptide, we observed that it moved back to the same ¹¹EVHH¹⁴ interaction site (cyan). This was observed in 9 systems of 12.

Supplementary Figure 7. RMSD graphs for the backbone of isoD7-A β_{16} : HAEE (A) and isoD7-A β_{42} : HAEE (B) complexes. Final 100 ns of the 200 ns MD simulation. Calculated as the divergence in the alignment of the structure in every MD frame with the final structure. (A) RMSD values were low throughout the simulation and the concluding convergence to the final structure can be clearly seen starting at 84 ns where the RMSD values decreased markedly. (B) Conformational changes can be seen in the 55 – 65 ns interval, however the final structure remained stable.

Supplementary Figure 8. RMSF graphs for the backbone of isoD7-A β_{16} (A) and isoD7-A β_{42} (B) for the final 100 ns of the 200 ns MD simulation trajectory. RMSF indicates the residue flexibility during MD simulation. For both isoD7-A β_{16} and isoD7-A β_{42} complexes with HAEE coordinated by Zn^{2+} , the region of lower RMSF value corresponds to the ¹¹EVHH¹⁴ region of the peptides, the most stable and rigid part of the complexes. On the contrary, the N- and C-termini of A β peptides were the most flexible.

Supplementary Figure 9. Amyloidogenesis in CL2120 transgenic nematodes. Staining was performed with 1 mM X-34 as described in [36]. Amyloid deposits (white arrows) were observed only in the strain with an overexpression of $A\beta_{42}$ – CL2120. Non-specific diffused green staining was detected in control stain CL2122.

Supplementary Figure 10. Area covered with amyloid aggregates ("plaques") as a percentage of head area, detected by X-34 fluorescence. Worms were treated with 40 μ M A β ₄₂ (A β), HAEE, these two peptides combined (A β +HAEE) or received no treatment (control). After the incubation with peptides on NGM or NGMZn, the animals were stained with X-34 and the amyloid aggregates were visualized with a confocal microscope. Data shown as individual values with a bar at sample mean. N for control, A β , A β +HAEE treated worms equals 8, 11, 9 for NGM group and 11, 10, 10 for NGM/Zn group, respectively.

Supplementary Figure 11. (A) The effects of isoD7-A β_{42} and HAEE on the prevalence of a paralysis phenotype in a *C. elegans* CL2120 of 3 days old (black) and 4 days old (gray). Treatment: 0.2 ml M9 buffer +/- isoD7-A β_{42} (40 μ M) +/- HAEE (4 mM). Strains were grown on an NGM medium. Data shown as the mean of 3 independent experiments \pm SD. (**B**) The effect of A β_{42} on the prevalence of a paralysis phenotype in *C. elegans* CL2120 of 3 days old and 4 days old, grown on a NGM (black) or NGMZn (gray) medium. Treatment: 0.2 ml M9 buffer +/- ZnSO₄ +/- A β 42 (40 μ M). Data shown as the mean of 3 independent experiments \pm SD. Brackets represent statistically significant comparisons according to ANOVA with post-hoc Tukey test. * - p<0.05.

Supplementary Figure 12. The effect of exogenous $A\beta_{42}$ on the lifespan of model animals. The graphs plotting and processing by the method of sigmoidal approximation of the experimental data, were carried out using the SciDAV software package for statistical analysis. All lifespan plots represent the composites of 3 independent experiments tabulated in Supplementary Table 3. Mean lifespans were compared using the Student t test, applying one-tailed distribution and two-sample equal variance. The average change \pm SD of the lifespan (percent) is shown relative to the control on each graph. A and B, Exogenous $A\beta_{42}$ peptide does not affect the lifespan of control animals CL2122 (A) and nematodes with endogenous $A\beta_{42}$ CL2120 (B). Nematodes were grown on NGM until stage L4, treated with $A\beta_{42}$ (40 μ M), then worms were grown on NGM. C and D, Simultaneous treatment with the $A\beta_{42}$ (40 μ M) + ZnSO4 (20 μ M) nematodes were grown on NGMZn.

Supplementary Figure 13. The effect of exogenous isoD7-A β_{42} , Zn²⁺ and HAEE on lifespan of model animals. The graph plotting and processing by the method of sigmoidal approximation of the experimental data, were carried out using the SciDAV software package for statistical analysis. All lifespan plots represent the composites of 3 independent experiments tabulated in Supplementary Table 4. Mean lifespans were compared using the Student t test, applying one-tailed distribution and two-sample equal variance. Mean percentage change ± SD of the lifespan after treatment relative to untreated control is indicated in each graph in the same color as the curve. A and B, The isoD7-A β_{42} peptide and HAEE tetrapetide do not affect the lifespan of control animals CL2122 (A) and nematodes with endogenous A β_{42} CL2120 (B). Nematodes were grown on NGM until stage L4. Treatment: isoD7-A β_{42} (40 μ M) +/- HAEE (4 mM). Then nematodes were grown on NGM. C and D, Simultaneous treatment with the isoD7-A β_{42} peptide and zinc ions does not affect the lifespan of control animals CL2122 (C), but reduces the lifespan of the endogenous A β_{42} nematodes CL2120 (D). The HAEE tetrapeptide removes the negative effect of the simultaneous addition of the isoD7-A β_{42} peptide and zinc ions on the lifespan of CL2120 nematodes (D). Nematodes were grown on NGM until stage L4, treated with ZnSO4 (20 μ M) +/- isoD7-A β_{42} (40 μ M) +/- HAEE (4 mM), the lifespan was determined on NGMZn. **** - p<0.0001

Supplementary Table 1. Affinity and kinetic parameters of interactions between immobilized $A\beta_{42}$ or isoD7- $A\beta_{42}$ and HAEE in the presence of 100 μ M ZnCl₂ at pH 6.8, obtained by SPR^a.

Complex	kon, M ⁻¹ s ^{-1 b}	k _{off} , s ^{-1 b}	K _D , M ^c	$\chi^{2 d}$
Aβ ₄₂ /HAEE	$(1.42\pm0.06)\times10^{3}$	$(5.75\pm0.06) \times 10^{-3}$	$(4.1\pm0.3) \times 10^{-6}$	2.43
isoD7-Aβ ₄₂ /HAEE	$(6.7\pm0.2) \times 10^2$	$(6.94\pm0.07)\times10^{-3}$	$(1.04\pm0.04) \times 10^{-5}$	3.01

^a All the parameters have been calculated using sets of sensorgrams obtained during serial injections of the analytes with different concentrations. Data represent mean \pm SD of three independent experiments.

^b Association (k_{on}) and dissociation (k_{off}) rate constants were calculated using the Langmuir binding model (1:1 complex formation) with fitting of model and experimental curves.

° Equilibrium dissociation (K_D) constants for the complexes were calculated as the ratio: $K_D = k_{off}/k_{on}$.

^dChi-square values were calculated with BIAevaluation v.4.1 software using the obtained sets of sensorgrams.

Supplementary Table 2. Paralysis of *Caenorhabditis elegans* CL2120. Treatment of Aβ₄₂, isoD7- Aβ₄₂, and HAEE.

Rep- eats	Age, days	Age, days Media/treatment		Fraction of paralyzed, %	Mean fraction of paralyzed, %±SD	P-value
1 2 3		NGM	110/115 108/110 110/112	5.3 6.2 5.1	5.5±0.59	
1 2 3		$NGM + A\beta_{42}$	115/117 106/110 118/120	5.6 6.3 6.6	6.2±0.51	0.11590
1 2 3		NGM +isoD7-A β_{42}	112/115 117/120 108/110	6.3 6.9 6.1	6.4±0.42	0.04798
1 2 3		NGM +HAEE	105/110 108/110 106/110	5.5 5.2 5.9	5.5±0.35	0.5
1 2 3		NGM + isoD7- Aβ ₄₂ + HAEE	127/130 110/115 115/117	6.5 5.3 5.9	5.9±0.6	0.24552
1 2 2	A3	NGMZn	110/115 108/110 107/110	5.6 5.3 4.7	5.2±0.46	
1 2 3		$NGMZn + A\beta_{42}$	10//110 112/115 106/115 114/115	5.3 4.8 4.5	4.9±0.4	0.19910
1 2 2		NGMZn + isoD7- Aβ ₄₂	111/115 113/115	10.8 11.5	11.3±0.4	0.00003
3 1 2 2		NGM Zn+ isoD7- Aβ ₄₂ + HAEE	104/110 122/125 115/118 116/120	5.7 5.2	5.4±0.29	0.31113
$\frac{3}{1}$		NGMZn+ isoD7- Aβ ₄₂ + HAEE	110/120 106/110 108/110	3.2 8.2 7.3	7.6±0.49	0.00166
3 1 2 2		NGM	120/125 110/115 108/110 110/112	7.4 11.3 11.7	11.3±0.45	
1 2 2		NGM +Aβ ₄₂	110/112 115/117 106/110 118/120	10.8 11.6 10.3	10.9±0.66	0.23478
1 2 3	A4	NGM +isoD7- Aβ42	110/120 112/115 117/120 108/110	10.3 11.7 10.9	11.2±0.42	0.46479
1 2		NGM +HAEE	105/110 105/110 108/110	9.9 10.9	10.5±0.55	0.07446
3 1 2		NGM + isoD7- Aβ ₄₂ + HAEE	106/110 127/130 110/115	10.8 10.1 11	10.7±0.49	0.09746

3			115/117	10.9		
1			110/115	10.1		
2		NGMZn	108/110	9.7	9.5 ± 0.72	
3			107/110	8.7		
1			112/115	9.4		
2		$NGMZn + A\beta_{42}$	106/115	10.1	9.6 ± 0.47	0.44996
3			114/115	9.2		
1		NGMZn +	111/115	22.5	21.8±0.7	0.00001
2			113/115	21.8		
3		ISOD /-Ap ₄₂	104/110	21.1		
1			122/125	10.2		
2		NGMZn + HAEE-	115/118	9.5	9.5 ± 0.65	
3			116/120	8.9		
1		NCM7. LineD7 A0	106/110	11.8		0.01508
2		$\begin{array}{c} \text{NGMZn+ 1soD/- A\beta_{42} +} \\ \text{HAEE} \end{array}$	108/110	10.8	11.2±0.53	
3			120/125	11		

The mean fraction of paralyzed animals of 3-days old (A3) or 4 days old (A4). Independent experimental and control analyses, which were performed side-by-side, are indicated by the same number (1, 2 or 3) in the first column. P-values of pairwise comparisons with control groups (NGM or NGMZn in absence of β -amyloid peptides) are shown.

Supplementary Table 3. Experiments performed to study the effect of $A\beta_{42}$ peptide on the lifespan of nematodes.

Rep- eats	C. elegans	Media/ treatment	Number of animals that died/total	50% survival, days	Mean survival, days±SD	P-value, 1 2	Increase/ decrease, %	Mean increase/ decrease, %±SD	
1			120/135	8.6					
2		NGM	125/130	8.9	8.67±0.21				
3			128/140	8.5					
1			135/155	8.9			3.49		
2		$NGM + A\beta_{42}$	123/140	9.0	8.8±0.26	0.26521	1.12	$1.54{\pm}1.78$	
3	CI 2120		122/145	8.5			0		
1	CL2120	NGMZn	135/155	8.3					
2			138/160	8.7	8.7±0.4				
3			125/140	9.1					
1		$\frac{NGMZn +}{A\beta_{42}}$	131/145	8.5	8.57±0.4		2.41		
2			123/145	8.2		0.35271	-5.75	-1.48 ± 4.09	
3			139/155	9.0			-1.10		
1			135/150	9.2					
2		NGM	123/145	9.0	9.07±0.12				
3			139/150	9.0					
1			140/155	9.4			2.17		
2		$NGM + A\beta_{42}$	138/150	8.6	8.93±0.42	0.31065	-4.44	-1.50±3.36	
3	CT 2122		136/150	8.8			-2.22		
1	CL2122		138/155	8.8					
2	-	NGMZn	123/140	9.2	9.03±0.21				
3			134/145	9.1					
1			141/150	9.1			3.41		
2		NGMZn +	132/145	8.8	8.97±0.15	0.33893	-4.35	-0.68 ± 3.9	
3	1		Ap ₄₂	135/150	9.0			-1.10	

Each data set (repeat) is fitted to a Boltzmann sigmoid curve and the mean survival time calculated. The % change in lifespan is with respect to the control in the same repeat. The independent experimental and control analyses, which were performed side-by-side, are indicated by the same number (1, 2 or 3) in the first column. Increase (+) or decrease (-) in the lifespan is indicated. P-values have been calculated with respect to the control animals in the same experiment using Student's t-test (one-tailed distribution and two-sample equal variance).

Supplementary Table 4. Experiments performed to study the effect of isoD7-A β_{42} peptide and the HAEE tetrapetide on the lifespan of nematodes.

Rep- eats	C. elegans	Media/treatment	Number of animals that died /total	50% survival, days	Mean survival, days±SD	P-value, 1 2	Increase/ decrease, %	Mean increase/ decrease, %±SD
$\frac{1}{2}$		NGM	121/130 134/145 131/145	8.4 8.8 8.9	8.7±0.26			
1 2 3		NGM + isoD7-Aβ42	121/135 130/140 138/148	9 8.7 9.1	8.93±0.21	0.14809	7.14 -1.14 2.25	2.75±4.16
1 2 3		NGM + HAEE	141/150 139/150 136/145	8.5 8.9 9.1	8.83±0.31	0.29914	1.19 1.14 2.25	1.53±0.63
1 2 3		$NGM + isoD7-A\beta_{42} + HAEE$	126/135 142/150 139/150	8.9 8.8 9.2	8.97±0.21	0.12099	5.95 0 3.37	3.11±2.98
	CL2120	NGMZn	137/150 122/135 139/145 120/135 131/145	9.2 8.8 9.1 9.0 8.9	9±0.16			
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $		NGMZn + isoD7- Aβ ₄₂	128/135 133/140 121/135 130/144	7.7 7.5 7.7 7.6	7.62±0.08	0.0000001	-16.3 -14.77 -15.38 -15.56	-15.32 ±0.68
$\begin{array}{c} 3\\1\\2\\3\end{array}$		NGMZn + HAEE	123/133 141/150 128/135 133/145	9.3 9.3 9.3	9.2±0.7	0.07227	1.09 2.27 2.20	1.85 ±0.66
1 2 3		$\begin{array}{l} NGMZn + isoD7- \\ A\beta_{42} + HAEE \end{array}$	122/135 133/145 135/145	9.3 8.9 9.1	9.1±0.2	0.22965	1.09 1.14 0	0.74 ± 0.64
1 2 3		NGM	129/140 137/150 139/150	8.7 9.2 9.3	9.07±0.32			
1 2 3		NGM + isoD7-A β_{42}	124/135 141/150 142/150	8.8 9.4 9.4	9.2±0.35	0.32533	1.15 2.17 1.08	1.47±0.61
1 2 3	CL2122	NGM + HAEE	131/140 138/150 142/150	8.8 9.3 9.1	9.07±0.25	0.5	1.15 1.09 -2.15	0.03±1.89
1 2 3		$NGM + isoD7-A\beta_{42} + HAEE$	129/140 142/150 141/150	8.8 9.5 9.4	9.23±0.38	0.29613	1.15 3.26 1.08	1.83±1.24
1		NGMZn	122/135	8.7	9.03±0.31			

2			135/145	9.1				
3			144/150	9.3				
1		NCM7n LineD7	142/150	8.7			0	
2		$\Lambda \beta$.	145/150	9.1	9.07±0.35	0.45364	0	$0.36\pm\!\!0.62$
3		Ар42	142/150	9.4			1.08	
1			141/150	8.8			1.15	
2		NGMZn + HAEE	142/150	9.1	8.93±0.15	0.31938	0	-1.05 ± 2.87
3			134/145	8.9			-4.3	
1		$NGM7n \pm icoD7$	143/150	8.7			0	
2		$A\beta_{42}$ + HAEE	131/140	9.2	9±0.26	0.44666	1.10	-0.35 ± 1.65
3			141/150	9.1			-2.15	

Each data set (repeat) was fitted to a Boltzmann sigmoid curve and the mean survival time calculated. The % change in lifespan is with respect to the control in the same repeat. Independent experimental and control analyses, which were performed side-by-side, are indicated by the same number (1, 2, 3, 4 or 5) in the first column. Increase (+) or decrease (-) in lifespan is indicated. P-values have been calculated with respect to the control animals in the same experiment using Student's t-test (one-tailed distribution and two-sample equal variance).