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Supp. Fig. 1: Variance decomposition in spatial omics datasets. MERFISH – brain (mean intra cell type 
variance: 47%, mean inter cell type variance: 29%, mean gene variance: 24%) (a), chip cytometry – colon (mean 
intra cell type variance: 33%, mean inter cell type variance: 22%, mean gene variance: 45%) (b), MIBI TOF – 
cancer (mean intra cell type variance: 20%, mean inter cell type variance: 10%, mean gene variance: 70%) (c), 
MELC – tonsils (mean intra cell type variance: 60%, mean inter cell type variance: 29%, mean gene variance: 
11%) (d) and CODEX – cancer dataset (mean intra cell type variance: 43%, mean inter cell type variance: 21%, 
mean gene variance: 36%) with images ordered by tissue microarrays (A, B) (e), MERFISH - wild type fetal liver 
(mean intra cell type variance: 49%, mean inter cell type variance: 11%, mean gene variance: 40%) (f). 



 
Supp. Fig. 2: Linear models for spatial cell state dependencies. Linear models without receiver-sender 
interaction terms (Online Methods) capture neighborhood dependencies in spatially resolved single-cell data. 
Shown are R2 for held-out test data of linear models by resolution in µm with cross validation indicated as point 
shape and line style. The underlying linear models are parameterised with sender cell-type-specific parameters. 
example cell radius (green line): Example length scale of a cell, here chosen as 10 µm; baseline (blue dot): a 
nonspatial linear model of gene expression per cell-type; NCEM: linear NCEM. 



 
Supp. Fig. 3: Length scales of dependencies for different target cell-types. Shown are R2 for held-out test 
data of linear models by resolution in µm for different predicted cell-types for MERFISH – brain data (a), chip 
cytometry – colon data (b), MIBI TOF – cancer (c), MELC – tonsils (d) where each boxplot corresponds to a 
three-fold cross validation (n is the number of cells per data set partition as indicated in the each plot title). For 
each box in (b-d), the centerline defines the median, the height of the box is given by the interquartile range 
(IQR), the whiskers are given by 1.5 * IQR and outliers are given as points beyond the minimum or maximum 
whisker. 



 
Supp. Fig. 4: Modeling cross-niche dependencies in spot transcriptomics data. (a) Cluster labels of a 
clustering of spots measured with spot transcriptomics in mouse brain. (b) Structure of a neighborhood of niches 
(spots) to model with NCEM in spot transcriptomics. (c) Linear models capture spot-to-spot dependencies in 
spot-transcriptomics data. Shown are the R2 values between predicted expression vectors and observed 
expression vectors for held-out test spots of linear models by resolution in µm with cross validation indicated as 
point shape and line style with relative outperformance of NCEM model versus baseline model. (d) Spatial 
dependencies of individual spot clusters. Shown are R2 for held-out test data of linear NCEM model by resolution 
in µm for different spot clusters (n is the number of cells per data set partition as indicated in the each plot title). 
For each box the centerline defines the median, the height of the box is given by the interquartile range (IQR), 
the whiskers are given by 1.5 * IQR and outliers are given as points beyond the minimum or maximum whisker. 



 
Supp. Fig. 5: Cell heterogeneity can be attributed to niche composition (replicate analysis). (a-e) Replicate 
analysis corresponding to results presented in Extended Data Fig. 5 on a second image from the MERFISH – 
brain dataset. (a) UMAPs of molecular embedding of L2/3 IT cells only with molecular sub-clustering 
superimposed (colors as in b). (b) Distribution of cell-wise difference of R2 between spatial model non non-spatial 
baseline model by molecular sub-cluster (L2/3 IT 0: n = 226, L2/3 IT 1: n = 209, L2/3 IT 2: n = 193, L2/3 IT 3: n = 
191, L2/3 IT 4: n = 127). The centerline of the boxplots defines the median, the height of the box is given by the 
interquartile range (IQR), the whiskers are given by 1.5 * IQR and outliers are given as points beyond the 
minimum or maximum whisker. (c) UMAPs of molecular embedding of all L2/3 IT cells in example image (n = 946 
cells) showing if a given cell-type is present in the neighborhood. The underlying neighborhoods were defined at 
the optimal resolution identified in Fig. 1d (100 µm). (d) Heatmap of fold change and false-discovery rate 
corrected p-values of cluster enrichment of binary neighborhood labels, where fold changes are the ratio between 
the relative neighboring source cell-type frequencies per subtype cluster and the overall source cell-type 
frequency in the image. (e) Model performance on L2/3 IT cells in space on slice 162 of mouse brain in the 
MERFISH – brain with L2/3 IT sub-states (first panel), L2/3 IT, L4/5 IT, Sncg, and VLMC (second panel) and the 
difference of R2 between the NCEM at resolution of 100 µm and the best nonspatial baseline model (third panel) 
superimposed. 



 

Supp. Fig. 6: Ligand–receptor permutation test. Shown are ligand–receptor gene pairs observed in the study 
and their significant associations across cell-types!"#$!%&'$(!)'*+!&,!-.%'$'/&0!%12&03-!"$#.!4-005+#,-67!&,&08('(!
9!:;<!"#$!=>?@ABC!D!E$&',!F/#.%0-*-!G&*&(-*!HIJ<!AK!,-3$#,(L (a), MERFISH – brain (slice 153 L2/3 IT neurons) 
(b), chip cytometry – colon (c), MIBI TOF – cancer (d), MELC – tonsils (e), and CODEX – cancer (f). The 
barplots in (a, b) correspond to the count over non-corrected p-values below a threshold of 0.05 per L2/3 IT-
source pair. 



 
Supp. Fig. 7: CVAE–NCEMs on MERFISH – brain data. (a) Latent variable models improve reconstructive 
performance. Shown is the R2 of held-out test data based on forward pass model evaluation from MERFISH – 
brain data for linear models, nonlinear models and variational autoencoders for both non-spatial and spatial 
models (n=3 cross-validation splits). baseline: a nonspatial linear model of gene expression per cell-type; NCEM 
interactions: linear model with interaction effects; NL: nonlinear model; IND: the graph kernel is an indicator 
function across cell-types in the neighborhood; GCN: the graph kernel is a graph convolution, a linear embedding 
of the cell-types in the neighborhood (n=3 rcross-validation splits). (b) Neighborhood transfer performance of 
spatial and non-spatial models. Shown are the R2 values of cells in the test set for models trained on predicting 
L2/3 IT cells for both CVAE models CVAE–NCEMs trained on neighborhoods with different radii with optimization 
algorithm as color. Plain: normal CVAE training; aggressive: aggressive encoder training. (c-e) Latent variables of 
CVAE–NCEM are confounded with neighborhood conditions. (c) UMAP of molecular embedding in the CVAE–
NCEM IND latent space of L2/3 IT cells in an example image (n = 1204 cells) with molecular sub-clustering 
superimposed (L2/3 IT 0: n = 323, L2/3 IT 1: n = 315, L2/3 IT 2: n = 250, L2/3 IT 3: n = 170, L2/3 IT 4: n = 146). 
(e) UMAPs of molecular embedding in the CVAE–NCEM IND latent space of all L2/3 IT cells in the same image 
with superimposed binary label of presence of a given cell-type, as defined in the title, in the neighborhood. The 
underlying neighborhoods were defined at a resolution of 100 µm. (f) Heatmap of fold change and false-
discovery rate corrected p-values of cluster enrichment of binary neighborhood labels, where fold changes are 
the ratio between the relative neighboring source cell-type frequencies per subtype cluster and the overall source 
cell-type frequency in the image. 



 
Supp. Fig. 8: Distributional characteristics of gene expression measurements of single cells from spatial 
molecular profiling assays. Shown is the mean variance plot over observed genes for MERFISH – brain data 
(a), chip cytometry – colon data (b), MIBI TOF – cancer data (c), MELC – tonsils data (d), CODEX – cancer data 
(e) and MERFISH – wild type fetal liver (f). 



Supp. Table 1: Models of dependencies between cells in spatial molecular profiling data. Key algorithm 
design choices for each method: NCEM, SpaOTsc, SVCA, Garcia-Alonso et al., GNCG, MISTy, stLearn, and 
neighbourhood enrichment with Giotto and squidpy. We compare if the methods use local spatial constraints, if 
they are predictive, if they are models of cell communication events, if they are strictly  based on ligand-receptor 
interactions and thus not suitable to targeted assays with few genes captures, and if they are evaluated based on 
leave-one-gene-out cross-validation. We considered a model to be predictive if it builds a parametric model for 
spatial dependencies. 

Supp. Table 2: Comparison of model features of NCEM variants. 

method constrained by 
niches observed 
in spatial data

is predictive models cell-cell 
communication 
events in space

works on targeted 
protocols without 
capture of cognate 
ligands and 
receptors

does not use 
potentially limited 
leave-one-gene-out 
cross-validation

NCEM yes yes yes yes yes

SpaOTsc1 yes yes yes

SVCA2 yes yes yes yes

Garcia-Alonso et al.3 yes yes yes

GNCG4 yes yes

MISTy5 yes yes yes yes

stLearn6 yes yes yes

Neighborhood 
enrichment: 
Giotto7 
squidpy8

yes yes yes

method models source-target 
interactions  

models niche motives of 
higher order (>2 
participating cells) 

models intrinsic variation 
alongside extrinsic 
effects from niche 

feature space for 
interaction modeling

linear NCEM yes no no categorical cell types

nonlinear 
NCEM

yes yes no categorical cell types

nonlinear 
NCEM-LR

yes no no ligand and receptor 
gene expression

CVAE-NCEM yes yes yes categorical cell types

https://paperpile.com/c/exIC8M/nimi
https://paperpile.com/c/exIC8M/xJSC


Supp. Table 3: Overview of datasets analyzed in this study. Shown are the spatial molecular profiling 
chemistry, the domain effect accounted for via batch covariates, the transformation used on the expression 
vectors, the inclusion of cell size factors, the number of images given to the models during each update (batch 
size) and the number of nodes evaluated per image per batch (n). 

Supp. Table 4: Overview of model architecture hyper-parameters tested in grid searches for linear 
models. Shown are the model hyperparameters screened for the results shown in Fig. 1c. Refer to Supp. Table 3 
for hyper-parameters related to data format. 

dataset /  

first author
technology domain transform

node size 

scaling
batch size n

MERFISH – fetal 

liver (wild type)
MERFISH image log(x+1) False 140 10

MERFISH – fetal 

liver (Tet2-/-)
MERFISH patient log(x+1) False 195 10

MERFISH – 

brain
MERFISH patient - False 64 10

chip cytometry 

– colon
Chip Cytometry patient log(x+1) False 2 100

MIBI TOF – 

cancer
MIBI-TOF image - True 58 10

MELC – tonsils MELC patient - True 1 200

CODEX – 

cancer
CODEX patient log(x+1) True 140 10

Visium – lymph 

node
10x Visium patient - False 1 10

dataset learning rates L1/L2

MERFISH – fetal liver 0.05 [0., 1., 0.1, 1e-3 ]

MERFISH – brain 0.05 0.

Chip Cytometry – colon 0.05 [0., 1., 0.1]

MIBI-TOF – cancer 0.05 [0., 1., 0.1]

MELC – tonsils 0.05 0.

CODEX – cancer 0.05 0.

Visium – lymph node 0.05 0.



Supp. Table 5: Overview of model architecture hyper-parameters tested in grid searches for nonlinear 
and CVAE models. Shown are the model hyperparameters screened for the results shown in Extended Data Fig 
9, Supp. Fig. 7. Refer to Supp. Table 3 for hyper-parameters related to data format. 
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dataset learning rates L1 L2 Latent dim. dropout hidden layers
Intermediate 

dim.

MERFISH – 

fetal liver
0.05 0. 1e-6 [12, 24, 48] 0.05 [0, 1] [64, 128]

MERFISH – 

brain
0.05 0. 1e-6 [24, 48] 0.05 [0, 1] [64, 128]

Chip 

Cytometry – 

colon

0.05 0. 1e-6 [12, 24] 0.05 [0, 1]
[16, 32, 64, 

128]

MIBI-TOF – 

cancer
0.05 [0., 1., 0.1] [0., 1., 0.1] [8, 16] 0.05 [0, 1] [4, 8, 32]
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