1 Supplementary information to:

2

3 Ultradeep characterisation of translational sequence determinants

4 refutes rare-codon hypothesis and unveils quadruplet base pairing

5 of initiator tRNA and transcript

6 Simon Höllerer¹ and Markus Jeschek^{1,2*}

7

8 ¹Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology – ETH

- 9 Zurich, Basel, CH-4058, Switzerland
- 10 ²Institute of Microbiology, Synthetic Microbiology Group, University of Regensburg, Regensburg,
- 11 D-93053, Germany
- 12
- 13 *To whom correspondence should be addressed: E-mail: markus.jeschek@ur.de

14 Supplementary figures

15

16 All DNA sequences follow the IUPAC nucleotide code; N: A/C/G/T; H: A/C/T; Y: C/T.

17

AAGCTTCACÄTCTGCAGTAÄTCGGCCGGCTTGTCGACGAČGGCGGTCTCČGTCGTCAGGÄTCATCCGGGĞATCGCTTAGTCACCTTTGGĞCCACGGTCCĞCTACCTTACÄGGAAT <u>AGTAČTCGTCCTTTÄATTTGGAATĞAACCATGGCÄGTCAGTTGTĞTTGCGTTTCŤTCGACCTAGŤACTCGCTCCČTTAGGAGAAÄGACAGATAGČTTCTTACCCĞGGGTTTGTAČ</u> <u>CGTACACCAČTGAGACCGCĞGTGGTTGACČAGACAAACCÄCGAA</u>GGTTCŤGTTAAGTAAČTGACCCAŤGTCGTTAGTĞACGCTTACCŤCTTAAGAGGŤCACTGACCTĂACAGG ATCCCACCACAATTCAGCAAATTGTGAACATCATCATCATCATCTTTCCCTGGTTGCCAATGGCCATTTTCCCTGTCAGTAACGAGAAGGTCGCGAATTCAGGCGCCTTTTTAGAC TGGTCGTAATGAAGAGCTCÄATAAATATTTAATTTATCTCAGAAAGGCTÄAGACATGCGÄGCACTGGTTGTTATTCGTCTGAGCCGTGTTACCGATGCAÄCCACTAGTCCGGAAC GTCAĞCTGGAAAGCTGTCAGCAGCTGTGTGCACAĞCGTGGTTGGĞATGTTGTTGĞTGTTGCAGAĞGATCTGGATĞITAGCGGTGGAGTTGATCCĞTTTGATCGTÄAACGTCGTC GAATCTGGCÄCGTTGGCTTGGCATTTGAAGÄACAGCCGTTTGATGTTATTGTTGCCTATCGTGTTGATCGTCGACCCGTÄGCATTCGTCÄTCTGCAACÄGCTGGTTCATTGGCA CCCAAAGATIATTTTGCTCAGCTGCAAGGTCGTGAACCGCAGGGTCGTGAATGGTCTGCAACCGCACTGAAAGGTAGCATGATTAGCGAAGGAATGCTGGGTTATGCAACCCTGA ATGGTAAAACCGTTCGTGATGATGATGGTGCACCGCTGGTTCGTGCAGAACCGATTCTGACACGTGGAACAGCTGGAAGCACTGCGTGCCGAACTGGTTAAAACCAGCCGTGCAGAA ACCEGCAGTTAGCACCCCGAGCCTGCTGCTGCTGCTGCTGTTTTGTGCTGCAACCGGCATACAAATTTGCCGGTGGTGGTGGTAAACATCCGCGTTATCGTTGTCGT AGCATGGGTTTTCCGAAACATTGTGGTAATGGTÄCAGTTGCAATGGCAGATGGGATGCATTTTGCGAAGAACAGGTTCTGGATGCTGGGTGATGCCGAACATCGCTGGAAAAAG TGGCGTGAGCAGGATACCCGCAGCAAAAAATACCTGGCTGCGTAGTATGATGTTCGCCTGACCTTTGATGTTCGCCGGTGGCCTGACCATTGATGTTTGGCGATCTGCAAG AATATGAACAGCATCTGCGTCTGGGTAGCGTTGTTGAACGTCTGCATACCGGCATGCACCGGCGGTGGCCAGCGGCGGCGGCGCGGCTCTGGGTGGCCTCTAGCAAAGGAGAAAGGACTTTTCAC $\frac{2000}{100} = \frac{2100}{100} = \frac{21$ 2,199 2,200 2,200 2,220 2,200 GCTAACTTCÄADATTCGCCACAACGTTGÄÄGATGGTTCCGTTCAACTAGCAGCAGACCATTÄTCAACAADATÄCTCCCAATTGGCGATGGCCCTTTTÄCCAGAGACAACCÄTTACC $\frac{2200}{2700} = \frac{2200}{2700} = \frac{200}{2700} = \frac{200}{2700} = \frac{200}{2700} = \frac{200}{270} = \frac{200}{270} = \frac{200}{2700} = \frac{20$

18

19 Supplementary Figure 1: Graphical representation of pASPIre4. The displayed sequence

22700 227000 227000 22700 22700 22700 22700 22700 22700 22700 2270

- 20 corresponds to the insert between HindIII and Pacl restriction sites (underlined) in pSEVA291. ssrA:
- 21 proteolytic degradation tag. The full sequence is available in text format in **Supplementary Note 2**.

AAGCTTCACATCTGCAGTAATCGGCCGGCTTGTCGACGACGGCGGTCTCCGTCGTCGGCGATCATCCGGGCATCGCTTAGTCACCTTTGGGCCACGGTCCGCTACCTTACAGGAAT CGTACACCACTGAGACCGCGGTGGTTGACCAGACAAACCACGA CATTTGAAGACAGCCGTTTGATGTTATTGTTGCCTATCGTGTTGATCGTCTGACCCGTAGCATTCGTCACCAGCTGGTTCATCGGCCGGACAGCAGCAGCAGCAGCAGAAAAAAACTGGT TGTGÃGCGCAACCGÃAGCACATTTTGATACCACCÃCCCCGTTGCÃGCAGTTGTÃTTGCACTGÃTGGGCACCGTTGCACAGATGGAACTGGAACTGAAAGÃACGTAATCGT 1,270 1,280 1,290 1,300 1,310 1,320 1,330 1,500 1,510 1,500 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.700 1,980 1,980 1,980 1,980 1,980 2,080 $\frac{2}{2}$ $\begin{array}{c} 2.00\\ 1.2$ 2.00 1.00 NAGANGATGGAACATTCTTGGACACAAAACTCGAGTACAACTTTAACTCACAAAGGATGTATACATCACGGGAGACAAAAAAATGGAATCAAAAGCATACTTCAAAAATTGGCAA

Supplementary Figure 2: Graphical representation of pASPIre4_{lib}. The displayed sequence corresponds to the insert between HindIII and PacI restriction sites (underlined) in pASPIre4. ssrA: proteolytic degradation tag. The full sequence is available in text format in Supplementary Note 3.

27 Supplementary Figure 3: Cloning scheme for the generation of combinatorial and full-factorial 28 5'-UTR-CDS libraries. Libraries were generated from 5'-UTR and CDS half-libraries as described in 29 the Methods section. The 5'-UTR (left) half-library was generated by PCR with primers p5 and p7 with 30 pASPIre4 as template. Primer p7 introduces degeneracy in the 5'-UTR and a BbsI site between the randomised 5'-UTR and the Notl site. The CDS half-library (right) was generated by PCR with primers 31 32 p8 and p9 on pASPIre4 as template. Primer p8 introduces degeneracy in the CDS and a BbsI site 33 between the CDS and the Pstl site. The resulting PCR products were then sub-cloned into pASPIre4 34 to retrieve half libraries. In a second step, 5'-UTR and CDS half-libraries were combined to generate full libraries Libcomb1, Libcomb2 and Libfact. To achieve this, plasmid DNA of the 5'-UTR half-library was 35 PCR-amplified with primers p9 and p10, and the product was digested with Bbsl and Pvul and ligated 36 37 into the backbone prepared from the CDS half-library via digestion with Pvul and Bbsl. Note that the

- 38 BbsI type IIS restriction site enables scarless joining of 5'-UTR and CDS half-libraries using ATGC (start
- 39 codon ATG + first downstream base) as sticky ends for ligation.
- 40 41
- 470 NNNNNNNNNNNNNNNNNNNNNNNTGCGAGTCTTCGCGGGCCGC 5-UTR
- 43 Supplementary Figure 4: Graphical representation of 5'-UTR half-libraries. The displayed
- sequence corresponds to the insert between Pstl and Notl restriction sites (underlined) in pASPIre4.
 The introduced Bbsl restriction site (orange) is used for scarless joining of 5'-UTR and CDS half-
- 46 libraries. The full sequence is available in text format in **Supplementary Note 4**.

1 10 10 20 30 40 50 60 70 80 90 100 CTGCAGGAAGACCCATGCGNGCNCTNGTNGTNATHCGNCTNTCNCGNGTNACNGAYGCNACNACTAGTCCGGAACGTCAGCTGGGAAAGCTGTCAGCAGCTGTGTGCACA 120 130 140 150 160 170 180 190 200 210 220 GTGGTTGGGATGTTGGTGGTGGTGGGGAGGATCTGGATGTTAGCGG<u>GGAGGTGGAGGTGGCAGTTGATCCGTAAACGTCGTCGGAATCTGGCACGTTGGCAGTTGAAGAAC</u> 230 240 250 260 270 280 290 300 310 320 330 AGCCGTTTGATGTTATTGTTGCCTATCGTGTTGATCGTCTGACCCGTAGCATTCGTCATCGCAACAGCTGGTTCATTGGGCAGAAGATCATAAAAAACTGGTTGTGACCC 340 350 360 370 380 390 400 410 420 430 440 CAACCGAAGCACATTTTGGATACCACCACCCCGTTTGCAGCAGTTGTTATTGCACTGATGGGCACCGTTGCACAGATGGAACTGGAAGCAATTAAAGAACGTAATCGTAGCG 450 460 470 480 490 500 510 520 530 540 550 CAGCCCATTTTAACATTCGTGCAGGTAAATATCGTGGTAGCCGGCTCCGGGGGGTTATCTGCCGACGCGGTGAATGGTGAATGGCGTCTGGTCCTGACCCGGTTCAGC 560 570 580 590 600 610 620 630 640 650 660 GTGAACGTATTCTGGAAGTATATCATCGTGTGGTGGATAATCATGAACCGCTGCATCTGGTTGCACATGATCGTCGTGGTGTTCTGAGTCCCCAAAGATTATTTTG 670 680 690 700 710 720 730 740 750 760 770 CTCAGCTGCAAGGTCGTGAACCGCAGGGTCGTGAATGGTCGGCTCGCAACCGCAGGAAGGTAGCAATGCTGGGTTATGCAACCCTGAATGGTAAAACCG 780 790 800 810 820 830 840 850 850 850 870 880 TTCGTGATGATGATGATGACCCGCTGGTTCGTGCAGAACCGATTCTGACACGTGAACAGCTGGAAGCACTGCGTGCCGAACTGGTTAAAACCAGCCGTGCAAAACCGGCAG 890 900 910 920 930 940 950 960 970 980 990 TTAGCACCCCGAGCCTGCTGCTGCTGTTTTGTGCAGTTTGTGGTGGACCGGCATACAAATTTGCCGGTGGTGGTCGTAAACATCCGCGTTATCGTTGTCGTAGCA ,000 1,010 1,020 1,030 1,040 1,050 1,060 1,070 1,080 1,090 1,100 1,11 TGGGTTTTCCCAAACATTGTGGTAATGGTACAGTTGCAATGGCAGATGGCATGTTTGCGAAGAACAGGTTCTGGATCTGCTGGTGATGCCGAACGTCTGGAAAAAG 1,120 1,130 1,140 1,150 1,160 1,170 1,180 1,190 1,200 1,210 1,220 1,210 1,220 1,210 1,220 1,210 1,220 1,210 1,220 1,210 1,220 1,210 1,220 1,210 1,220 1,210 1,210 1,220 1,210 1,230 1,240 1,250 1,260 1,270 1,280 1,290 1,300 1,310 1,320 GTGAAGCACTGGATGCACGTATTGCACCACTGGCAGCACGTCCAGGAAGCACGTCGGAAGCACGTCCGGAGCGGTTGGGAATGGCGTGGAAACAGGTCAGCG 1,340 1,350 1,360 1,370 1,380 1,390 1,400 1,410 1,420 1,430 1,440 GTGATTGGTGGCGTGAGCAGGATACCGCAGCAAAAAATACCTGGCTGCGTAGTATGAATGTTCGCCTGACCTTTGATGTTCGCGGTGGCCTGACCCGCACCATTGATTTTC 1,450 1,460 1,470 1,480 1,490 1,500 1,510 1,520 1,530 1,540 1,550 GCGATCTGCAAGAATATGAACAGCATCTGCGTCTGGGTAGCGTTGTGAACGTCTGCATACCGGCATGAGCACCGGCGGTGGCAGCGGCGGTTCTGGTGGCCTCTAGCAAAG 1,560 1,570 1,580 1,590 1,600 1,610 1,620 1,630 1,640 1,650 1,660 GAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCCGTGGAGAGGGTGAAGGTGATGCTACAAACGGAA 1,670 1,680 1,690 1,700 1,710 1,720 1,730 1,740 1,750 1,760 1,770 AACTCACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCGTGGCCAACACTTGTCACTACTCGGCCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCACA 1,780 1,790 1.800 1.810 1.820 1.830 1.840 1.850 1.860 1.870 1.880 TGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGACCTACAAGACGCGTGCTGAAGTCAAGTTTG 1,890 1,900 1,910 1,920 1,930 1,940 1,950 1,960 1,970 1,980 1,990 \AGGTGATACCCTTGTTAATCGTATCGAGTTAAAGGGTATTGATTTTAAAGAAGATGGAAACATTCTTGGACACACATCTGAGTACAACTTTAACTCACACAATGTATACA 100 2,010 2,020 2,030 2,040 2,050 2,050 2,070 2,080 2,090 2,100 CACGGCAGACAAACAAAAGAATGGAATCAAAAGCTAACTTCAACAAATTCGCCACAACGTTGAAGATGGTTCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTG 0 2,120 2,130 2,140 2,150 2,170 2,180 2,190 2,200 2,210 2,22 JGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGTCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTG 2,230 2,240 2,250 2,260 2,270 2,280 2,290 2,300 2,311 CTGCTGGGATTACACATGGCATGGATGAACTCTACAAAAGGCCTGCTGCTGACGACGAAAACTACGCCTCTGGCTGCTTAATAAGCGGCCGCC

Supplementary Figure 5: Graphical representation of CDS half-libraries. The displayed sequence corresponds to the insert between Pstl and Notl restriction sites (underlined) in pASPIre4. The introduced Bbsl restriction site (orange) is used for scarless joining of 5'-UTR and CDS half-libraries. The full sequence in text format is available in Supplementary Note 5.

52

53 **Supplementary Figure 6: Graphical representation of plasmids for the overexpression of** 54 **tRNA^{fMet} variants**. The displayed sequence corresponds to the native chromosomal locus of *metY* 55 including regulatory sequences. The bold N nucleotide indicates the mutated position 37 (p37) in 56 tRNA^{fMet}. The window between KpnI and SpeI restriction sites (underlined) in pSEVA361 is shown. The 57 full sequence is available in text format in **Supplementary Note 6**.

58

61 Supplementary Figure 7: Correlation between predicted folding energy and rTR for different 62 mRNA windows. Folding energies (mfeT and efeT) of all possible mRNA sequence windows with 63 lengths between 5 and 200 bases were predicted using *RNAfold* of the *Vienna RNA* package and the 64 resulting values were correlated with rTR using Spearman's correlation (**Methods**).

Supplementary Figure 8: Base distribution in Lib_{random}. The base distribution amongst all 198,174 variants of Lib_{random} above high quality read count threshold is displayed for each randomised position. Bases are ordered from the most (top) to the least (bottom) frequent for each position. Note that in codons 7 (IIe) and 14 (Asp) only three (A, C, U) and two (C, U) bases were allowed, respectively, to avoid non-synonymous mutations.

75 measured in this study is plotted over the IFP of the same standard RBSs as determined in a previous

study (1). The black line corresponds to a linear regression with 95% confidence interval (grey area).

78 Supplementary Figure 10: Cumulative impact of randomised positions in 5'-UTR and CDS on the

rtr. Bars are the cumulative contribution of all randomised positions in the mRNA part(s) indicated on

80 the horizontal axis except for "unexplained" which corresponds to the residuals. The contribution of

81 individual positions (Fig. 2a) was determined by ANOVA (Methods).

82

Supplementary Figure 11: Impact of GC-content on rTR. The correlation of rTR and GC-content in all randomised positions (a) as well as in the randomised positions in 5'-UTR (b) and CDS (c) individually was assessed. Variants were binned according to their GC-content in the respective mRNA part, and the rTR distribution of bins is displayed as violin with each bin's mean rTR (black circles).

Supplementary Figure 12: Correlation between predicted 16S rRNA hybridisation energy and
 rTR. The hybridisation energy of the 3'-end of *E. coli*'s 16S rRNA (sequence: 5'-ACCUCCUUA-3') and
 the 5'-UTR between position -18 and -4 was predicted using *RNAduplex* of the *Vienna RNA* package

92 and the resulting energy values were correlated with rTR.

93 94

95

Supplementary Figure 13: Impact of similarity to the SD motif on rTR. The minimum edit distance
 between the canonical SD motif AGGAGGU and all 7-nt windows between 5'-UTR positions -18 and -4

98 was calculated for each variant (**Methods**). Violins are rTR distributions amongst variants grouped by

99 minimum edit distance with group means (black circles).

Supplementary Figure 14: Cross-validation of random forest model (Fig. 3e). Validation R² values
 are shown for 10 independent validation runs as circles. Box represents interquartile range with
 whiskers marking the 1.5-fold interquartile range.

Supplementary Figure 15: Random forest performance. The rTR values predicted by the random forest model trained on Lib_{random} (compare Fig. 3e) are plotted over the experimentally measured rTRs for 19,816 randomly selected test set variants strictly held out during training. The blue line corresponds to a linear regression with corresponding Pearson's R².

112 Supplementary Figure 16: Biological reproducibility within Lib_{fact}. rTR values of two independently

- 113 cultured, biological replicates of Lib_{fact} are shown (112,296 variants). The blue line corresponds to a
- 114 linear regression with corresponding Pearson's R².
- 115
- 116

118 Supplementary Figure 17: Coverage of rTR range upon exchange of 5'-UTR (left) and CDS (right).

- 119 For each CDS (or 5'-UTR) that appeared at least twice in all libraries, the absolute difference in rTR
- 120 between the strongest and weakest 5'-UTR (or CDS) combined with this CDS (or 5'-UTR) is displayed
- 121 (ΔrTR). Violins indicate the distribution of ΔrTR with black circles representing the mean value.

124 Supplementary Figure 18: Correlation between codon indices and the CDS-derived contribution

125 to rTR variance. Pearson's correlation between CAI/tAI and the mean rTR of each CDS (over all 5'-

126 UTRs combined with that CDS) was calculated for each of the ten batches of Lib_{fact} (grey circles) and

127 normalised to the mean effect of the CDS on rTR (Fig. 4c). Boxes represents interquartile range with

128 whiskers marking the 1.5-fold interquartile range and medians as solid black lines. P-values of one

129 sample t-tests are indicated above each box.

131 Supplementary Figure 19: Comparison of rTRs and predicted folding energies (efeC) of variants

132 with low and high CAI/tAI. Different thresholds were tested for CAI and tAI. Black circles within violins

133 are mean rTR/efeC values (compare Fig. 4e).

134

143 Supplementary Figure 21: Contribution of efeC, CAI and tAI to the rTR variance on weakly folding

144 **mRNAs.** An ANOVA with efeC, CAI and tAI as only covariates was performed to assess their impact

on the rTR amongst the 727,570 variants with low tendency for mRNA folding (i.e. efeC \geq -7.5 kcal mol⁻¹,

146 compare **Fig. 4f**).

Supplementary Figure 22: Feature importance of random forest model trained with codon usage and folding metrics. Relative importance of the ten most important features as well as tAI and CAI for the model displayed in Figure 5g (second bar from left) is shown. Ranking of features is indicated to the right. AccC_{1nt, pos +4}: AccC score for position +4 of the CDS.

- 152
- 153

154

156 **variants.** Approximately 50,000 variants of Lib_{random} were co-cultivated in shake flasks (**Methods**) for 157 each of the six combinations of *E. coli* strains (WT or $\Delta metZWV$) and overexpressed tRNA^{fMet} variants

158 (A37, A37G or A37U).

Supplementary Figure 24: Effect of G-U wobbling on rTR. The mean increase of the rTR is shown 160 161 for different combinations of G-U wobbling base pairs between 5'-UTR position -1 and tRNAfMet position 162 37 as indicated on the horizontal axis. The rTR increases of the respective wobbling pair over either all non-wobbling and non-complementary tRNA^{fMet} variants (dark grey) or over all non-wobbling and non-163 164 complementary 5'-UTR variants (light grey) are displayed. In order to facilitate comparison between the different experimental groups (i.e. six combinations of strain and tRNA^{fMet} variant), rTR values were 165 166 normalised to the mean rTR of each group prior to determination of the G-U wobbling-induced increase 167 of rTR.

Supplementary Figure 25: Base- and position-specific change of the rTR upon overexpression 169 of tRNA^{fMet} variants. The change of the effect on rTR compared to the case without tRNA 170 171 overexpression in the WT strain (Fig. 2b) is shown for different combinations of strains (WT vs. Δ*metZWV*) and overexpressed tRNA^{fMet} variants (A37, A37G or A37U). This change of effect was 172 calculated as follows: First, log2-transformed fold changes (log2 FC) of the mean rTR of all variants 173 174 with a given base at the respective position over the mean rTR of all variants with any other base permitted at that position were determined for variants of Lib_{random}. Afterwards, the log2 FCs obtained 175 for the WT strain without tRNA^{fMet} overexpression (**Fig. 2b**) were subtracted (i.e. Δ (log2 FC)). Crossed 176 boxes indicate non-permitted bases. 177

178

Supplementary Figure 26: Impact of overexpression of tRNA^{fMet} variants on endogenous protein expression. Label-free proteomics were performed on strain Δ*metZWV* cells overexpressing tRNA^{fMet} variants with an A, G or U nucleotide at tRNA^{fMet} position 37 (see Methods). Relative protein abundances compared to an empty vector control (EV) are shown as log2 fold-changes (log2 FC) for the 1,098 endogenous proteins detectable in all strains and replicates. Proteins are grouped according to their complementarity or non-complementarity between 5'-UTR position -1 and tRNA^{fMet} position 37.

187 *** denote p-values < 10⁻⁴ in a one-sided Welch two sample t-test.

188 Supplementary tables

189

190 Supplementary Table 1: Primers used in this study. Restriction sites (Bbsl/Notl/Pstl/Spel) are

191 underlined. The introduced BbsI site is marked in orange. Primer binding regions are highlighted in bold.

Name	Sequence (5'-3')	Description
р1	TTTGTTCAAAATCATGCCAAATCCGTGATCGGGGTAAAAAA TGATCGGCAC GTAAGAGGTTCC	Forward primer for the generation of the knockout cassette ΔmetZWV::specR
p2	GAGAAGGGGATGATAAAAAGGCGCTGAATGGCGCTTTTTTA TTATTGGCTG GCACCAAGCAG	Forward primer for the generation of the knockout cassette ΔmetZWV::specR
р3	GCGGCAAGCATTGCCACAACCGTGC	Forward genotyping primer for <i>ΔmetZWV</i>
p4	CGTATTTTGCCGATGGGGCGACGCTGG	Reverse genotyping primer for <i>ΔmetZWV</i>
p5	TCTATCAACAGGAGTCCAAG	Forward primer for the generation of all libraries
p6	TATATAACTAGTNGTNGCRTCNGTNACNCGNGANAGNCGDATNACNACNAG NGCNCGCATNNNNNNNNNNNNNNNNNNNNN TTACGACCAGTCTAAAA AGCGCC	Reverse primer for the generation of Librandom
p7	ATATAT <u>GCGGCCGCGAAGAC</u> TCGCATNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Reverse primer for the generation of 5'-UTR half-library
p8	ATATAT <u>CTGCAGGAAGAC</u> CCATGCGNGCNCTNGTNGTNATHCGNCTNTCNC GNGTNACNGAYGCNACN <u>ACTAGT</u> CCGGAACGTCAGCTGG	Forward primer for the generation of CDS half-library
p9	GCCTTTCGTTTTATTTGATGCC	Reverse primer for the generation of CDS half-library and reverse primer for amplification of 5'-UTR half-library insert
p10	GGTTATCCAGGCTAAAATCG	Forward primer for the amplification of 5'-UTR half-library insert

192

193

194 Supplementary Table 2: Strains used in this study.

Name	Genotype	Description	Source/Reference
E. coli TOP10 ΔrhaA	F mcrA Δ (mrr-hsdRMS-mcrBC) φ 80lacZ Δ M15 Δ lacX74 nupG recA1 araD139 Δ (ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ - Δ rhaA	Rhamnose utilisation- deficient derivative of <i>E.</i> <i>coli</i> TOP10.	Hoellerer <i>et al.</i> (1)
E. coli TOP10 ΔrhaA ΔmetZWV	F ⁻ mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ ⁻ ΔrhaA ΔmetZWV::specR	Derivative of <i>E.</i> coli TOP10 <i>ΔrhaA</i> with deleted <i>metZWV</i> locus.	This study (Methods)

195

197 Supplementary Table 3: Plasmids used in this study.

Name	Description	Source	
DSEV/4201	contains a pBR322 replicon, a kanamycin resistance cassette,	Silva-Rocha	
PSEVAZ91	and a multiple cloning site	et al. (2)	
nSEV/A361	Backbone for ptRNA ^{fMet} plasmids; contains a p15A replicon, a	Silva-Rocha	
POE 171001	chloramphenicol resistance cassette, and a multiple cloning site	et al. (2)	
	Derivative of pSEVA291; contains a <i>bxb1-sfGFP</i> gene	Hoellerer et	
pASPIre3	(translational fusion) under control of <i>P</i> _{rha} and an <i>attB-/attP</i> -	al(1)	
	flanked 150 bp stretch of silent DNA	ai. (1)	
nA SPIro4	Derivative of pASPIre3 with Spel site in the CDS of <i>bxb1</i> . PCR		
pASFIIE4	template and backbone for all 5'-UTR and CDS libraries	This study	
pASPIre4 _{lib}	Derivative of pASPIre4 with randomised 5'-UTR and CDS	This study	
ntDNIA fMet-A37	Derivative of pSEVA361 with expression cassette for tRNA ^{fMet}	This study	
PIRINA	with the native A at position 37		
ptRNA fMet-A37C	Derivative of ptRNA ^{fMet-A37} with A37C substitution	This study	
ptRNA fMet-A37G	Derivative of ptRNA ^{fMet-A37} with A37G substitution	This study	
ptRNA fMet-A37U	Derivative of ptRNA ^{fMet-A37} with A37T/U substitution	This study	

200 Supplementary Table 4: DNA adapters for NGS. Adapters contain Ncol- and Spel-compatible

overhangs (orange) for ligation. Binding regions for Illumina flow cell (blue) and sequencing primers
 (green) are highlighted. Sample-specific indices are shown in red. P: 5'-phosphorylation.

Name		Sequence	
Ncol ₁	5′	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTATCACGC	5′
110011			
	3′	TTACTATGCCGCTGGTGGCTCTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGAATAGTGCGGTAC-P	3′
Ncol ₂	5′	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTA <mark>TCGATGTC</mark>	5′
	3'	TTACTATGCCGCTGGTGGCTCTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGAT <mark>AGCTACAGGTAC-P</mark>	3'
Ncol ₃	5′	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGATCTTGTAC	5′
	3'	TTACTATGCCGCTGGTGGCTCTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGACTAGAACATGGTAC-P	3'
Ncol ₄	5′	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGATGCCAATC	5′
	3'	TTACTATGCCGCTGGTGGCTC TAGA TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA <mark>GCTACGGTTA</mark> GGTAC-P	3'
Ncol ₅	5′	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT TCGATACAGTGC	51
_			
	3'	TTACTATGCCGCTGGTGGCTCTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGAAGCTATGTCACGGTAC-P	3'
Ncol ₆	5′	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTA TCGATACTTGAC	5'
_			
	3'	TTACTATGCCGCTGGTGGCTCTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA TAGCTATGAACTG GTAC-P	3'
Spel₁	5'	P-CTAGAAATAACGTAAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCTCGTATGCCGTCTTCTGCTTG	5'
-	~ .		~ •
	3'	TTTATTGCATTCTAGCCTTCTCGTGTGCAGACTTCAGGTCAGTGTAGAGCATACCGCAGAAGACGAAC	3'
Spel ₂	5'	P-CTAGATTCTTGAAATAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCTCGTATGCCGTCTTCGCTTG	5'
-	21		21
	3'		3'
Spel₃	5,	P-CTAGAGGGAGATCATCAGATCGGAAGAGGCACACGTCTGAACTCCAGTCACATCTCGTATGCCGTCTTCTGCTTG	2.
	21		21
0.1	5/		5/
Spel ₄	J		J
	31		31
Onel	51		51
Spels	J		J
	31		31
Spel	51		51
Spei6	5		5
	31		31
L	5		5

NGS run	SRA number	Library	Sample number	Time point (min)	Forward adapter	Reverse adapter
			1	0	Ncol ₁	Spel₁
			2	95	Ncol ₂	Spel ₂
		Lib	3	225	Ncol ₃	Spel₃
		LIDrandom	4	290	Ncol ₄	Spel ₄
			5	360	Ncol ₅	Spel₅
			6	480	Ncol ₆	Spel ₆
			1	0	Ncol ₁	Spel ₂
			2	95	Ncol ₂	Spel ₃
			3	225	Ncol ₃	Spel ₄
		LIDcomb1	4	290	Ncol ₄	Spel ₅
			5	360	Ncol ₅	Spel ₆
	_		6	480	Ncole	Spel ₁
1	SAMN27867644		1	0		Spel ₃
			2	95		Spel ₄
			2	225		Spel-
		Lib _{comb2}	3	225	Ncol.	
			4	290	NC014	Spel6
			5	360	INCOI5	
			6	480	INCOI ₆	
			1	0	NCOI1	Spel ₄
			2	95	Ncol ₂	Spel₅
		Standard RBSs	3	225	Ncol ₃	Spel ₆
		olandara reboo	4	290	Ncol ₄	Spel1
			5	360	Ncol₅	Spel ₂
			6	480	Ncol ₆	Spel₃
			1	0	Ncol ₁	Spel ₁
			2	95	Ncol ₂	Spel ₂
0		Lib _{fact} (replicate 1)	3	225	Ncol ₃	Spel₃
			4	290	Ncol ₄	Spel ₄
			5	360	Ncol ₅	Spel₅
	SAMN27867645		6	480	Ncol ₆	Spel ₆
2			1	0	Ncol ₁	Spel ₆
			2	95	Ncol ₂	Spel ₅
			3	225	Ncol ₃	Spel ₄
		Lib _{fact} (replicate 2)	4	290	Ncol ₄	Spel ₃
			5	360		Spel ₂
			6	480	Ncole	Spel ₁
			1	0	Ncol ₁	Spel ₁
			2	95		Snel
		Lib in W/T strain	3	225		Snel ₂
		with ptRNA ^{fMet-A37}	4	220	Ncol	Speld
			4	290	Ncol-	
			5	490	Nool.	Spels
	0		0	400		
3	SAMN27867646		1	0	INCOI1	
			2	95		Spel ₃
		LIDrandom IN WI Strain	3	225	INCOI3	Spel4
		with ptRNA	4	290	NCOI ₄	Spel ₅
			5	360	Ncol ₅	Spel ₆
			6	480	Ncol ₆	Spel1
			1	0	Ncol ₁	Spel₃
			2	95	Ncol ₂	Spel ₄
		Librandom in WT strain	3	225	Ncol ₃	Spel₅
		with ptRNA ^{fMet-A37U}	4	290	Ncol ₄	Spel ₆
			5	360	Ncol ₅	Spel ₁
			6	480	Ncol ₆	Spel ₂
			1	0	Ncol ₁	Spel ₄

207 Supplementary Table 5: NGS runs and sample-specific adapter combinations from this study.

			2	95	Ncol ₂	Spel₅
		Lib _{random} in <i>∆metZWV</i>	3	225	Ncol₃	Spel ₆
		strain with ptRNA ^{fMet-}	4	290	Ncol ₄	Spel₁
		A37	5	360	Ncol₅	Spel ₂
3	SAMN27867646		6	480	Ncol ₆	Spel₃
			1	0	Ncol ₁	Spel₅
		Lib _{random} in <i>AmetZWV</i> strain with ptRNA ^{fMet-} A37G	2	95	Ncol ₂	Spel ₆
			3	225	Ncol₃	Spel₁
			4	290	Ncol ₄	Spel ₂
			5	360	Ncol₅	Spel₃
			6	480	Ncol ₆	Spel ₄
			1	0	Ncol ₁	Spel ₆
		Lib _{random} in <i>AmetZWV</i> strain with ptRNA ^{fMet-} A37U	2	95	Ncol ₂	Spel ₁
			3	225	Ncol₃	Spel ₂
			4	290	Ncol ₄	Spel₃
			5	360	Ncol ₅	Spel ₄
			6	480	Ncol ₆	Spel₅

210 Supplementary Table 6: Codon weight and frequencies for calculation of CAI and tAI.

211 w(CAI)/w(tAI): weight for the calculation of CAI (Sharp *et al.* (3))/tAI (dos Reis *et al.* (4)). *E. coli* fraction:

fraction of each triplet amongst all triplets coding for the same amino acid in the *E. coli* genome

213 (according to: https://www.kazusa.or.jp/codon/).

Triplet	Amino acid	w(CAI)	w(tAI)	Rel. codon frequency
GCA	Ala	0.586	0.375	0.270
GCC	Ala	0.122	0.250	0.260
GCG	Ala	0.424	0.120	0.250
GCU	Ala	1.000	0.110	0.220
AGA	Arg	0.004	0.125	0.130
AGG	Arg	0.002	0.165	0.070
CGA	Arg	0.004	0.000	0.090
CGC	Arg	0.356	0.360	0.260
CGG	Arg	0.004	0.125	0.150
CGU	Arg	1.000	0.500	0.300
AAC	Asn	1.000	0.500	0.410
AAU	Asn	0.051	0.220	0.590
GAC	Asp	1.000	0.375	0.350
GAU	Asp	0.434	0.165	0.650
UGC	Cys	1.000	0.125	0.480
UGU	Cys	0.500	0.055	0.520
CAA	Gln	0.124	0.250	0.350
CAG	Gln	1.000	0.330	0.650
GAA	Glu	1.000	0.500	0.640
GAG	Glu	0.259	0.160	0.360
GGA	Gly	0.010	0.125	0.190
GGC	Gly	0.724	0.500	0.290
GGG	Gly	0.019	0.165	0.180
GGU	Gly	1.000	0.220	0.340
CAC	His	1.000	0.125	0.370
CAU	His	0.291	0.055	0.630
AUA	lle	0.003	0.163	0.210
AUC	lle	1.000	0.375	0.310
AUU	lle	0.185	0.165	0.470
CUA	Leu	0.007	0.125	0.060
CUC	Leu	0.037	0.125	0.100

CUG	Leu	1.000	0.540	0.380
CUU	Leu	0.042	0.055	0.150
UUA	Leu	0.020	0.125	0.180
UUG	Leu	0.020	0.165	0.130
AAA	Lys	1.000	0.750	0.710
AAG	Lys	0.253	0.240	0.290
AUG	Met	1.000	1.000	1.000
UUC	Phe	1.000	0.250	0.360
UUU	Phe	0.296	0.110	0.640
CCA	Pro	0.135	0.125	0.230
CCC	Pro	0.012	0.125	0.160
CCG	Pro	1.000	0.165	0.370
CCU	Pro	0.070	0.055	0.240
AGC	Ser	0.410	0.125	0.200
AGU	Ser	0.085	0.055	0.180
UCA	Ser	0.077	0.125	0.180
UCC	Ser	0.744	0.250	0.140
UCG	Ser	0.017	0.165	0.110
UCU	Ser	1.000	0.110	0.180
ACA	Thr	0.076	0.125	0.250
ACC	Thr	1.000	0.250	0.310
ACG	Thr	0.099	0.290	0.220
ACU	Thr	0.965	0.110	0.220
UGG	Trp	1.000	0.165	1.000
UAC	Tyr	1.000	0.375	0.350
UAU	Tyr	0.239	0.165	0.650
GUA	Val	0.495	0.625	0.190
GUC	Val	0.066	0.250	0.190
GUG	Val	0.221	0.200	0.290
GUU	Val	1.000	0.110	0.320

Supplementary Table 7: Optimisation of hybridisation window. Correlation between rTR and the
mean hybridisation energy of different sequence windows with different lengths. The mean of the
hybridisation energy at position -11 and position -10 (rank 1) was denoted hyb_{opt}. The data was ranked
by the sum of R and ρ.

Rank	Window length (nt)	Window start (5'-UTR pos.)	Pearson's R	Spearman's ρ
1	2	-11	-0.298	-0.170
2	3	-11	-0.298	-0.167
3	4	-12	-0.299	-0.166
4	3	-12	-0.294	-0.165
5	5	-12	-0.295	-0.161
6	5	-13	-0.292	-0.160
7	6	-13	-0.293	-0.159
8	2	-10	-0.288	-0.162
9	4	-11	-0.289	-0.159
10	7	-13	-0.287	-0.152
11	2	-12	-0.280	-0.159
12	4	-13	-0.281	-0.156
13	6	-12	-0.285	-0.152
14	7	-14	-0.283	-0.151
15	8	-14	-0.281	-0.148
16	6	-14	-0.278	-0.150
17	3	-10	-0.275	-0.151
18	5	-11	-0.274	-0.147
19	8	-13	-0.274	-0.143
20	9	-14	-0.272	-0.140

221 Supplementary Notes

222

239

223 Supplementary Note 1: Sequence of spectinomycin resistance gene (*specR*) including 224 constitutive promoter used for knockout of *metZWV*. The start and stop codon of *specR* are 225 underlined.

226 TGATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATC 227 GAGATTTTCAGGAGCTAAGGAAGCTACATATGAGTGAAAAAGTGCCCGCCGAGATTTCGGTGCAACTATCACAAG 228 ${\tt CACTCAACGTCATCGGGCGCCACTTGGAGTCGACGTTGCTGGCCGTGCATTTGTACGGCTCCGCACTGGATGGCG}$ 229 GATTGAAACCGTACAGTGATATTGATTTGCTGGTGACTGTAGCTGCACCGCTCAATGATGCCGTGCGGCAAGCCC 230 ${\tt TGCTCGTCGATCTCTTGGAGGTTTCAGCTTCCCCTGGCCAAAACAAGGCACTCCGCGCCTTGGAAGTGACCATCG}$ 231 TCGTGCACAGTGACATCGTACCTTGGCGTTATCCGGCCAGGCGGGAACTGCAGTTCGGAGAGTGGCAGCGCAAAG 232 ACATCCTTGCGGGCATCTTCGAGCCCGCCACAACCGATTCTGACTTGGCGATTCTGCTAACAAAGGCAAAGCAAC 233 ATAGCGTCGTCTTGGCAGGTTCAGCAGCGAAGGATCTCTTCAGCTCAGTCCCAGAAAGCGATCTATTCAAGGCAC 234 235 ${\tt CTCGTATCTGGTACACCGCAGCAACCGGCAAGATCGCGCCAAAGGATGTTGCTGCCACTTGGGCAATGGCACGCT}$ 236 TGCCAGCTCAACATCAGCCCATCCTGTTGAATGCCAAGCGGGCTTATCTTGGGCAAGAAGAAGAATTATTTGCCCG 237 238 AA

240 Supplementary Note 2: Sequence of pASPIre4. The displayed sequence corresponds to the insert

241 between HindIII and PacI restriction sites (underlined) in pSEVA291. A graphical representation of

pASPIre4 is shown in **Supplementary Figure 1**.

243 AAGCTTCACATCTGCAGTAATCGGCCGGCTTGTCGACGACGGCGGTCTCCGTCGTCAGGATCATCCGGGCATCGC 244 TTAGTCACCTTTGGGCCACGGTCCGCTACCTTACAGGAATAGTACTCGTCCTTTAATTTGGAATGAACCATGGCA 245 GTCAGTTGTGTGTGCGTTTCTTCGACCTAGTACTCGCTCCCTTAGGAGAAAGACAGATAGCTTCTTACCCGGGGTT 246 TGTACCGTACACCACTGAGACCGCGGTGGTTGACCAGACAAACCACGAAGGTTCTGTTAAGTAACTGAACCCAAT 247 GTCGTTAGTGACGCTTACCTCTTAAGAGGTCACTGACCTAACAGGATCCCACCAATTCAGCAAATTGTGAACA 248 ${\tt TCATCACGTTCATCTTTCCCTGGTTGCCAATGGCCCATTTTCCTGTCAGTAACGAGAAGGTCGCGAATTCAGGCG}$ 249 CTTTTTAGACTGGTCGTAATGAAGAGCTCAATAAATATTTAATTTAATCTCAGAAAGGCTAAGACATGCGAGCACT 250 GGTTGTTATTCGTCTGAGCCGTGTTACCGATGCAACCACTAGTCCGGAACGTCAGCTGGAAAGCTGTCAGCAGCT 251 GTGTGCACAGCGTGGTTGGGATGTTGTTGGTGTTGCAGAGGATCTGGATGTTAGCGGTGCAGTTGATCCGTTTGA 252 TCGTAAACGTCGTCCGAATCTGGCACGTTGGCTGGCATTTGAAGAACAGCCGTTTGATGTTATTGTTGCCTATCG 253 TGTTGATCGTCTGACCCGTAGCATTCGTCATCTGCAACAGCTGGTTCATTGGGCAGAAGATCATAAAAAACTGGT 254 TGTGAGCGCAACCGAAGCACATTTTGATACCACCACCCCGTTTGCAGCAGTTGTTATTGCACTGATGGGCACCGT 255 TGCACAGATGGAACTGGAAGCAATTAAAGAACGTAATCGTAGCGCAGCCCATTTTAACATTCGTGCAGGTAAATA 256 TCGTGGTAGCCTGCCTCCGTGGGGTTATCTGCCGACGCGTGTAGATGGTGAATGGCGTCTGGTTCCTGACCCGGT 257 TCAGCGTGAACGTATTCTGGAAGTATATCATCGTGTGGTGGATAATCATGAACCGCTGCATCTGGTTGCACATGA 258 TCTGAATCGTCGTGGTGTTCTGAGTCCCAAAGATTATTTTGCTCAGCTGCAAGGTCGTGAACCGCAGGGTCGTGA 259 ATGGTCTGCAACCGCACTGAAACGTAGCATGATTAGCGAAGCAATGCTGGGTTATGCAACCCTGAATGGTAAAAC 260 CGTTCGTGATGATGATGGTGCACCGCTGGTTCGTGCAGAACCGATTCTGACACGTGAACAGCTGGAAGCACTGCG 261 TGCCGAACTGGTTAAAACCAGCCGTGCAAAACCGGCAGTTAGCACCCCGAGCCTGCTGCTGCGTGTTCTGTTTTG 262 TGCAGTTTGTGGTGAACCGGCATACAAATTTGCCGGTGGTGGTCGTAAACATCCGCGTTATCGTTGTCGTAGCAT 263 GGGTTTTCCGAAACATTGTGGTAATGGTACAGTTGCAATGGCAGAATGGGATGCATTTTGCGAAGAACAGGTTCT 264 GGATCTGCTGGGTGATGCCGAACGTCTGGAAAAAGTTTGGGTTGCAGGTAGCGATAGCGCAGTTGAACTGGCCGA 265 AGTTAATGCGGAACTGGTCGATCTCACCAGTCTGATTGGAAGTCCCGCATATCGTGCGGGTAGTCCTCAGCGTGA 266 AGCACTGGATGCACGTATTGCAGCACTGGCAGCACGTCAAGAAGAACTGGAAGGTCTGGAAGCACGTCCGAGCGG 267 TTGGGAATGGCGTGAAACAGGTCAGCGTTTTGGTGATTGGTGGCGTGAGCAGGATACCGCAGCAAAAAATACCTG 268 ${\tt GCTGCGTAGTATGAATGTTCGCCTGACCTTTGATGTTCGCCGGTGGCCTGACCCGCACCATTGATTTTGGCGATCT}$ 269 GCAAGAATATGAACAGCATCTGCGTCTGGGTAGCGTTGTTGAACGTCTGCATACCGGCATGAGCACCGGCGGTGG 270 ${\tt CAGCGGCGGTTCTGGTGGCTCTAGCAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGA$ 271 TGGTGATGTTAATGGGCACAAATTTTCTGTCCGTGGAGAGGGTGAAGGTGATGCTACAAACGGAAAACTCACCCT 272 TAAATTTATTTGCACTACTGGAAAACTACCTGTTCCGTGGCCAACACTTGTCACTACTCTGACCTATGGTGTTCA 273 ATGCTTTTCCCGTTATCCGGATCACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACA 274 GGAACGCACTATATCTTTCAAAGATGACGGGACCTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCT 275 TGTTAATCGTATCGAGTTAAAGGGTATTGATTTTAAAGAAGATGGAAACATTCTTGGACACAAACTCGAGTACAA 276 277 CAACGTTGAAGATGGTTCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCT
 278 TTTACCAGACAACCATTACCTGTCGACACAATCTGTCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGT
 279 CCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAACTCTACAAAAGGCCTGCTGCTAACGA
 280 CGAAAACTACGCTCTGGCTGCTTAATAAGCGGCCGCGGCCTAGGCGGCCTCCTGTGTGAAATTGTTATCCGCT<u>T</u>
 281 AATTAA

282

Supplementary Note 3: Sequence of pASPIre4_{lib}. The displayed sequence corresponds to the insert
 between Pstl and Notl restriction sites (underlined) in pASPIre4. A graphical representation of

285 pASPIre4_{lib} is shown in **Supplementary Figure 2**.

286 ${\tt CTGCAGTAATCGGCCGGCTTGTCGACGACGGCGGTCTCCGTCGTCAGGATCATCCGGGCATCGCTTAGTCACCTT}$ 287 288 TGCGTTTCTTCGACCTAGTACTCGCTCCCTTAGGAGAAAGACAGATAGCTTCTTACCCGGGGTTTGTACCGTACA 289 ${\tt CCACTGAGACCGCGGTGGTTGACCAGACAAACCACGAAGGTTCTGTTAAGTAACTGAACCCAATGTCGTTAGTGA$ 290 ${\tt CGCTTACCTCTTAAGAGGTCACTGACCTAACAGGATCCCACCACAATTCAGCAAATTGTGAACATCATCACGTTC$ 291 ATCTTTCCCTGGTTGCCAATGGCCCATTTTCCTGTCAGTAACGAGAAGGTCGCGAATTCAGGCGCTTTTTAGACT 292 GGTCGTAANNNNNNNNNNNNNNNNNNATGCGNGCNCTNGTNATHCGNCTNTCNCGNGTNACNGAY 293 GCNACNACTAGTCCGGAACGTCAGCTGGAAAGCTGTCAGCAGCTGTGTGCACAGCGTGGTTGGGATGTTGTTGGT 294 GTTGCAGAGGATCTGGATGTTAGCGGTGCAGTTGATCCGTTTGATCGTAAACGTCGTCCGAATCTGGCACGTTGG 295 ${\tt CTGGCATTTGAAGAACAGCCGTTTGATGTTATTGTTGCCTATCGTGTTGATCGTCTGACCCGTAGCATTCGTCAT}$ 296 CTGCAACAGCTGGTTCATTGGGCAGAAGATCATAAAAAACTGGTTGTGAGCGCAACCGAAGCACATTTTGATACC 297 ACCACCCCGTTTGCAGCAGTTGTTATTGCACTGATGGGCACCGTTGCACAGATGGAACTGGAAGCAATTAAAGAA 298 299 ${\tt CCGACGCGTGTAGATGGTGAATGGCGTCTGGTTCCTGACCCGGTTCAGCGTGAACGTATTCTGGAAGTATATCAT}$ 300 CGTGTGGTGGATAATCATGAACCGCTGCATCTGGTTGCACATGATCTGAATCGTCGTGGTGTTCTGAGTCCCAAA 301 GATTATTTTGCTCAGCTGCAAGGTCGTGAACCGCAGGGTCGTGAATGGTCTGCAACCGCACTGAAACGTAGCATG 302 ATTAGCGAAGCAATGCTGGGTTATGCAACCCTGAATGGTAAAACCGTTCGTGATGATGATGGTGCACCGCTGGTT 303 CGTGCAGAACCGATTCTGACACGTGAACAGCTGGAAGCACTGCGTGCCGAACTGGTTAAAACCAGCCGTGCAAAA 304 CCGGCAGTTAGCACCCCGAGCCTGCTGCTGCGTGTTCTGTTTTGTGCAGTTTGTGGTGAACCGGCATACAAATTT 305 GCCGGTGGTGGTCGTAAACATCCGCGTTATCGTTGTCGTAGCATGGGTTTTCCGAAACATTGTGGTAATGGTACA 306 GTTGCAATGGCAGAATGGGATGCATTTTGCGAAGAACAGGTTCTGGATCTGCTGGGTGATGCCGAACGTCTGGAA 307 AAAGTTTGGGTTGCAGGTAGCGATAGCGCAGTTGAACTGGCCGAAGTTAATGCGGAACTGGTCGATCTCACCAGT 308 CTGATTGGAAGTCCCGCATATCGTGCGGGTAGTCCTCAGCGTGAAGCACTGGATGCACGTATTGCAGCACTGGCA 309 GCACGTCAAGAAGAACTGGAAGGTCTGGAAGCACGTCCGAGCGGTTGGGAATGGCGTGAAACAGGTCAGCGTTTT 310 GGTGATTGGTGGCGTGAGCAGGATACCGCAGCAAAAAATACCTGGCTGCGTAGTATGAATGTTCGCCTGACCTTT 311 GATGTTCGCGGTGGCCTGACCCGCACCATTGATTTTGGCGATCTGCAAGAATATGAACAGCATCTGCGTCTGGGT 312 AGCGTTGTTGAACGTCTGCATACCGGCATGAGCACCGGCGGTGGCAGCGGCGGTTCTGGTGGCTCTAGCAAAGGA 313 GAAGAACTTTTCACTGGAGTTGTCCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTC 314 315 GTTCCGTGGCCAACACTTGTCACTACTCTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCACATGAAA 316 CGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGG 317 ACCTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAGGGTATTGAT 318 TTTAAAGAAGATGGAAACATTCTTGGACACAAACTCGAGTACAACTTTAACTCACAAATGTATACATCACGGCA 319 GACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACGTTGAAGATGGTTCCGTTCAACTAGCA 320 GACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAA 321 TCTGTCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATT 322 ACACATGGCATGGATGAACTCTACAAAAGGCCTGCTGCTAACGACGAAAACTACGCTCTGGCTGCTTAATAAGCG 323 GCCGC

324

325 **Supplementary Note 4: Sequence of 5'-UTR half-library.** The displayed sequence corresponds to 326 the insert between Pstl and Notl restriction sites (underlined) in pASPIre4. The Bbsl restriction site for 327 scarless cloning of 5'-UTR-CDS combinations is marked in orange. A graphical representation is 328 available in **Supplementary Figure 4**.

333 CGCTTACCTCTTAAGAGGTCACTGACCTAACAGGATCCCACCACAATTCAGCAAATTGTGAACATCATCACGTTC
 334 ATCTTTCCCTGGTTGCCAATGGCCCATTTTCCTGTCAGTAACGAGAAGGTCGCGAATTCAGGCGCTTTTTAGACT
 335 GGTCGTAANNNNNNNNNNNNNNNNNNNNNNTGCGAGTCTTCGCGGCCGC

336

337 **Supplementary Note 5: Sequence of CDS half-library.** The displayed sequence corresponds to the 338 insert between Pstl and Notl restriction sites (underlined) in pASPIre4. The Bbsl restriction site for 339 scarless cloning of 5'-UTR-CDS combinations is marked in orange. A graphical representation is

340 available in **Supplementary Figure 5**.

341 ${\tt CTGCAG}{\tt GAAGAC}{\tt CCATGCGNGCNCTNGTNGTNATHCGNCTNTCNCGNGTNACNGAYGCNACNACTAGTCCGGAAC}$ 342 ${\tt GTCAGCTGGAAAGCTGTCAGCAGCTGTGTGCACAGCGTGGTTGGGATGTTGGTGTTGCAGAGGATCTGGATG}$ 343 344 ${\tt CGTTTGATGTTATTGTTGCCTATCGTGTTGATCGTCTGACCCGTAGCATTCGTCATCTGCAACAGCTGGTTCATT}$ 345 GGGCAGAAGATCATAAAAAACTGGTTGTGAGCGCAACCGAAGCACATTTTGATACCACCACCCCGTTTGCAGCAG 346 TTGTTATTGCACTGATGGGCACCGTTGCACAGATGGAACTGGAAGCAATTAAAGAACGTAATCGTAGCGCAGCCC 347 348 AATGGCGTCTGGTTCCTGACCCGGTTCAGCGTGAACGTATTCTGGAAGTATATCATCGTGTGGTGGATAATCATG 349 AACCGCTGCATCTGGTTGCACATGATCTGAATCGTCGTGGTGTTCTGAGTCCCAAAGATTATTTTGCTCAGCTGC 350 AAGGTCGTGAACCGCAGGGTCGTGAATGGTCTGCAACCGCACTGAAACGTAGCATGATTAGCGAAGCAATGCTGG 351 GTTATGCAACCCTGAATGGTAAAACCGTTCGTGATGATGATGGTGCACCGCTGGTTCGTGCAGAACCGATTCTGA 352 CACGTGAACAGCTGGAAGCACTGCGTGCCGAACTGGTTAAAAACCAGCCGTGCAAAACCGGCAGTTAGCACCCCGA 353 GCCTGCTGCTGCGTGTTCTGTTTTGTGCAGTTTGTGGTGAACCGGCATACAAATTTGCCGGTGGTGGTCGTAAAC 354 ATCCGCGTTATCGTTGTCGTAGCATGGGTTTTCCGAAACATTGTGGTAATGGTACAGTTGCAATGGCAGAATGGG 355 ATGCATTTTGCGAAGAACAGGTTCTGGATCTGCTGGGTGATGCCGAACGTCTGGAAAAAGTTTGGGTTGCAGGTA 356 GCGATAGCGCAGTTGAACTGGCCGAAGTTAATGCGGAACTGGTCGATCTCACCAGTCTGATTGGAAGTCCCGCAT 357 ATCGTGCGGGTAGTCCTCAGCGTGAAGCACTGGATGCACGTATTGCAGCACTGGCAGCACGTCAAGAAGAACTGG 358 AAGGTCTGGAAGCACGTCCGAGCGGTTGGGAATGGCGTGAAACAGGTCAGCGTTTTGGTGATTGGTGGCGTGAGC 359 AGGATACCGCAGCAAAAAATACCTGGCTGCGTAGTATGAATGTTCGCCTGACCTTTGATGTTCGCCGGTGGCCTGA 360 CCCGCACCATTGATTTTGGCGATCTGCAAGAATATGAACAGCATCTGCGTCTGGGTAGCGTTGTTGAACGTCTGC 361 ATACCGGCATGAGCACCGGCGGTGGCAGCGGCGGTTCTGGTGGCTCTAGCAAAGGAGAAGAACTTTTCACTGGAG 362 TTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCCGTGGAGAGGGTGAAGGTG 363 ATGCTACAAACGGAAAACTCACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCGTGGCCAACACTTG 364 TCACTACTCTGACCTATGGTGTTCAATGCTTTTCCCGGTTATCCGGATCACATGAAACGGCATGACTTTTTCAAGA 365 GTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGACCTACAAGACGCGTGCTG 366 AAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAGGGTATTGATTTTAAAGAAGATGGAAACA 367 368 TCAAAGCTAACTTCAAAAATTCGCCACAACGTTGAAGATGGTTCCGTTCAACTAGCAGACCATTATCAACAAAATA 369 ${\tt CTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGTCCTTTCGAAAGATC}$ 370 ${\tt CCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAAC}$ 371 TCTACAAAAGGCCTGCTGCTAACGACGAAAACTACGCTCTGGCTGCTTAATAAGCGGCCGC 372

Supplementary Note 6: Sequence of ptRNA^{fMet} variants. The displayed sequence corresponds to
 the insert between KpnI and SpeI restriction sites (underlined) in pSEVA361. The mutated position 37
 in tRNA^{fMet} is highlighted in bold. A graphical representation is available in Supplementary Figure 6.

376 GGTACCAAAATAACACCCTGCTTAATTAAAGCGGATAACAATTTCACACAGGAGGCCGCCTAGGCCGCGGCCGCG 377 378 ATTTTTATGCAAAATAAATGAGTTTTCATTTAATCATCTTTTATCGGAGACAGGAAGAGTTTAGTGTGTTTTTTG 379 380 ACATGATTAGCAATAAACGTTGACAAAATGTGGCGTGGATCACTATAATGCCTGCAGATTTTACGTCCCGTCTCG 381 GTACACCAAAATCCCAGCAGTATTTGCATTTTTTACCCAAAACGAGTAGAATTTGCCACGTTTCAGGCGCGGGGTG 382 GAGCAGCCTGGTAGCTCGTCGGGCTCATNACCCGAAGGTCGTCGGTTCAAATCCGGCCCCCGCAACCACTTTCCC 383 TTAGAGTCCTTTTTCAAATATACTGTGAAGACTTCGGCCTTCGTAGTGGGATTTGAAAAAATCCTTCTGGAAAGT 384 GCTCCAGACCGCAGTTGCGGTTATAGGGTTCAGTTATATAAAGCCCCCGATTTATCGGGGTTTTTTGTTATCTGAC 385 386

388 References (Supplementary Information)

- Hollerer, S., Papaxanthos, L., Gumpinger, A.C., Fischer, K., Beisel, C., Borgwardt, K.,
 Benenson, Y. and Jeschek, M. (2020) Large-scale DNA-based phenotypic recording and deep
 learning enable highly accurate sequence-function mapping. *Nat Commun*, **11**, 3551.
- Silva-Rocha, R., Martinez-Garcia, E., Calles, B., Chavarria, M., Arce-Rodriguez, A., de Las Heras, A., Paez-Espino, A.D., Durante-Rodriguez, G., Kim, J., Nikel, P.I. *et al.* (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. *Nucleic Acids Res*, **41**, D666-675.
- Sharp, P.M. and Li, W.H. (1987) The codon Adaptation Index--a measure of directional
 synonymous codon usage bias, and its potential applications. *Nucleic Acids Res*, **15**, 1281 1295.
- dos Reis, M., Wernisch, L. and Savva, R. (2003) Unexpected correlations between gene
 expression and codon usage bias from microarray data for the whole Escherichia coli K-12
 genome. *Nucleic Acids Res*, **31**, 6976-6985.