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Low-cost sensor descriptions and specifications 8 

All three sensors utilize light-scattering to estimate aerosol concentrations, including a focused laser diode to 9 

illuminate particles that pass through a small sensing zone and a photodiode (placed near the sensing zone but 10 

orthogonal to the direction of laser light propagation) to detect the intensity scattered light across a truncated 11 

solid angle.  Air flow is drawn through each device by a miniature induction fan. 12 

The Plantower PMS5003 is described by the manufacturer as a “digital universal particle concentration sensor” 13 

1. This sensor has been used in multiple commercial low-cost air quality monitors, including the popular 14 

PurpleAir (older versions of the PurpleAir used the PMS1003 and newer versions use the PMS6003, but most 15 

units including the ones we evaluated use the PMS5003). The Sensirion SPS30 is described by the manufacturer 16 

as a particulate matter sensor for air quality monitoring 2. Piera describes the IPS-7100 as a “photon counting 17 

intelligent particle sensor”, and their technology as “intuitive direct-particle counting” 3. The IPS-7100 firmware 18 

is user-upgradable, and we updated from v1.9.9 to v1.9.10 on Piera’s request before the start of our first 19 

(fall/winter) data collection period.   20 

Table S1. Low-cost sensors specifications. 21 

 Plantower PMS5003 Sensirion SPS30 Piera IPS-7100 

Stated Outputs    



   Mass concentration PM1.0, PM2.5, PM10 PM1.0, PM2.5, PM4, PM10 
PM0.1, PM0.3, PM0.5, 

PM1.0, PM2.5, PM5, PM10 

   Number concentration 
PC0.3, PC0.5, PC1.0, 
PC2.5, PC5, PC10 

PC0.5, PC1.0, PC2.5, PC4, 
PC10 

PC0.1, PC0.3, PC0.5, PC1.0, 
PC2.5, PC5, PC10 

Cost at quantity of 1 $15 $50 $80 

Weight 42 grams 26 grams 26 grams 

Size 50 x 38 x 21 mm 41 x 41 x 12 mm 46 x 42 x 12 mm 

 22 

We chose these sensors for three reasons: (1) the technology featured in these devices, while similar across the 23 

three models, represents the state-of-the-art for commercial low-cost (<$100 USD) aerosol sensing; (2) the 24 

selected sensors are from major suppliers that span three continents: Asia (Plantower), North America (Piera), 25 

and Europe (Sensirion); and (3) these sensors (especially the Plantower PMS5003) represent the majority of in-26 

use technologies across the world.  For example, the Plantower has been deployed widely and in large numbers 27 

in networks throughout countries in Asia, like China and Taiwan 4–6, where it has a large share of the PM sensor 28 

market. The SPS30 and IPS-7100 were selected because they provide geographic diversity (they are from 29 

companies in North America and Europe, respectively). 30 

Reference monitor operating conditions 31 

The EDM 180 is an approved federal equivalent method (FEM) monitor for PM2.5 when operated continuously at 32 

a 1.2 L min-1 volumetric flow rate with a Nafion air dryer inside an isothermal inlet7,8. We complied with this 33 

configuration and added the fully temperature-controlled weather protection housing suggested by the 34 

manufacturer. This monitor is also UK-MCERTS certified for PM10 9. 35 

Datalogging 36 

We used a PurpleAir PA-II to collect data from two PMS5003 sensors. Logs in CSV format were downloaded from 37 

PurpleAir’s website. We developed a custom data logger and housing to collect data from two SPS30 sensors 38 

(Figure S3). The data logger used a Particle Boron LTE microcontroller to read the sensors’ data and send it via a 39 



cellular network to a server hosted by the Center for Energy Development and Health (CEDH) at Colorado State 40 

University. We collected data from two IPS-7100 sensors and sent those data to the server using a Wi-Fi enabled 41 

Espressif ESP32 microcontroller. We made a custom housing for the Piera IPS-7100 sensors similar to what we 42 

developed for the SPS30 sensors. 43 

For the Plantower PMS5003 sensor, the “CF=1, standard particle” output variables were used in all calculations 44 

involving PM1.0, PM2.5, and/or PM10 concentrations.  The “CF=1” variables from the PMS5003 are uncorrected, 45 

according to the manufacturer, as opposed to the “ATM” variables which use a proprietary algorithm and 46 

calibration unspecified by the manufacturer to estimate atmospheric aerosol concentrations. 47 

One-minute averages of all reported outputs were logged for the SPS30 and IPS-7100 sensors, whereas the 48 

PMS5003 (which was operated in a PurpleAir device) logged 2-minute averages. Unless otherwise stated, raw 49 

sensor mass and number readings were recorded directly, and only time-based averaging was applied. 50 

 51 
Figure S1. Data logger and housing used for the IPS-7100 (shown in picture) and SPS30 sensors. 52 

 53 



Field evaluation location and setup 54 

 55 
Figure S2a. Map of the Powerhouse Energy Campus building in Fort Collins, where the sensors were tested. 56 

 57 
Figure S2b. Layout of the instruments used for the field evaluation. 58 

 59 



Common variables 60 

PMx : Cumulative particulate matter concentration up to the particle size indicated by the subscript (in µm).  61 

PMa-b : Differential particulate matter concentration within the size range indicated by the subscript (in µm).  62 

PMa-b : Also defined as PMb – PMa . 63 

Statistical analyses 64 

Descriptive statistics were calculated for each sensor. We present the statistical metrics corresponding to a 65 

single unit (i.e., “unit a”) of each sensor model, except for the metrics that measure intra-model (unit-to-unit) 66 

variability.  Standard statistical metrics were calculated to assess sensor precision (coefficient of variation among 67 

co-located devices of the same model), linearity (coefficient of determination vs. reference), and bias (e.g., 68 

RMSE, MAE, NMB vs. reference) as a function of particle size range. Where appropriate, we developed linear 69 

regression models between sensor and reference data using ordinary least squares to estimate slope, intercept, 70 

and as inputs to estimate relative expanded uncertainty (REU), which has been adopted by the European 71 

Commission air quality directive as a measure of low-cost sensor performance relative to reference monitors 10.  72 

Visual diagnostics were used to assess model assumptions (i.e., linearity, normality, and homoscedasticity) 73 

(Figures S8 and S9). Time-series and scatter plots were developed to visualize sensor performance as a function 74 

of particle size range. 75 

Performance metrics - Equations 76 

Root mean square error (RMSE):  77 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑥𝑖)

2

𝑛

𝑛

𝑖=1
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Where 𝑛 is the number of data pairs, 𝑦𝑖  is the ith low-cost sensor measurement, and 𝑥𝑖  is the ith reference 79 

monitor measurement. 80 

Mean absolute error (MAE):  81 

𝑀𝐴𝐸 =
1

𝑛
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 82 

Where 𝑛 is the number of data pairs, 𝑦𝑖  is the ith low-cost sensor measurement, and 𝑥𝑖  is the ith reference 83 

monitor measurement. 84 

Mean bias error (MBE): 85 

𝑀𝐵𝐸 =
1

𝑛
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𝑛
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 86 

Where 𝑛 is the number of data pairs, 𝑦𝑖  is the ith low-cost sensor measurement, and 𝑥𝑖  is the ith reference 87 

monitor measurement. 88 

Normalized mean bias (NMB): 89 

𝑁𝑀𝐵 =
∑ (𝑦𝑖 − 𝑥𝑖)
𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

 90 

Where 𝑛 is the number of data pairs, 𝑦𝑖  is the ith low-cost sensor measurement, and 𝑥𝑖  is the ith reference 91 

monitor measurement. 92 

Coefficient of variation (CV): 93 

𝐶𝑉 =
𝜎

𝜇
=
√
∑(𝑥𝑗 − 𝜇)2

𝑁
𝜇

 94 



Where 𝜎 is the standard deviation of the measurements of all units, 𝜇 is the mean of the measurements of all 95 

units, 𝑁 is the number of sensor units, and 𝑥𝑗  is the measurement of the jth sensor. 96 

Relative expanded uncertainty (REU): 97 

The European Commission guide to the demonstration of equivalence of ambient air monitoring methods 98 

recommends the following equation to estimate the REU of low-cost sensors 10: 99 

𝑅𝐸𝑈(𝑦𝑖) =
2√

𝑅𝑆𝑆
𝑛 − 2

− 𝑢2(𝑏𝑠, 𝑅𝑀) + 𝑢2(𝑏𝑠, 𝑠) + [𝑏0 + (𝑏1 − 1)𝑥𝑖]
2

𝑦𝑖
 100 

Where 𝑛 is the number of pairs of collocated data (i.e., reference monitor and LCS), 𝑦𝑖  is the low-cost sensor 101 

measurement, and 𝑥𝑖  is the reference monitor measurement. The slope and intercept of a linear regression of 𝑦𝑖  102 

as a function of 𝑥𝑖  are given by 𝑏1 and 𝑏0 respectively. 𝑅𝑆𝑆 is the sum of the squared residuals and is calculated 103 

as: 104 

𝑅𝑆𝑆 =∑[𝑦𝑖 − (𝑏0 + 𝑏1𝑥𝑖)]
2

𝑛

𝑖=1

 105 

𝑢(𝑏𝑠, 𝑅𝑀) is the between reference method standard uncertainty. Values of this uncertainty are tabulated for 106 

many reference monitors. If not available, it is recommended to use a value of 0.67 µg/m3. This was the case for 107 

our reference monitor. 108 

𝑢(𝑏𝑠, 𝑠) is the between LCS standard uncertainty. When multiple units of the same sensor model are tested, 109 

𝑢(𝑏𝑠, 𝑠) can be estimated as: 110 

𝑢(𝑏𝑠, 𝑠) = √(
∑ ∑ (𝑦𝑙,𝑗 − 𝑦̅𝑙)

2𝑝
𝑗=1

𝑁
𝑙=1

𝑁(𝑝 − 1)
) 111 

Where 𝑦𝑙,𝑗  is the measurement of sensor unit 𝑗 for period 𝑙. 𝑦̅𝑙 is the mean for period 𝑙 of all sensor units. 𝑁 is 112 

the number of measurements over time. 𝑝 is the number of collocated sensor units.  113 



Relative expanded uncertainty (REU) plot 114 

The REU plot aids in the qualitative and quantitative analysis of errors. The position of the point on the y-axis is a 115 

measure of the bias. The scattering of the points along the y-axis is a measure of noise. 116 

 117 
Figure S3. Relative expanded uncertainty (REU) plots for PM estimates from the low-cost sensors. Horizontal axes 118 

correspond to the GRIMM EDM180 measurements. The red line is the data quality objective established by the European 119 
Commission for low-cost PM sensors (points under the red line have adequate uncertainty). Some points are not shown in 120 

the plots due to the axes range. 121 

Weather data during the evaluation 122 

The first testing period (23-Nov-2021 to 09-Jan-2022) included late fall and early winter conditions with 13 123 

inches of snowfall. Temperature ranged from -22°C to 23°C and relative humidity ranged from 0% to 77%. 124 



 125 
Figure S4. Ambient temperature and relative humidity at 1-hour resolution during the fall/winter campaign. 126 

The second testing period (13-Jun-2021 to 30-Jul-2022) was comprised of summer conditions with temperature 127 

ranging from 11°C to 38°C and relative humidity ranging from 0% to 82%. 128 

 129 
Figure S5. Ambient temperature and relative humidity at 1-hour resolution during the summer campaign. 130 

 131 



GRIMM EDM180 vs. Thermo Scientific 5014i BAM PM2.5 and PM10 data for quality assurance  132 

 133 

Figure S6. Scatterplots of PM2.5 (left) and PM10 (right) daily concentrations for the GRIMM EDM180 (reference monitor) and 134 
the Thermo Scientific 5014i Beta-attenuation monitor (an FEM monitor). The dashed black line corresponds to the “1:1” 135 

relationship. Constant error was assumed for the Deming regression. 136 



Time-series plot of the summer period 137 

 138 

Figure S7. Time series graph of PM concentrations (cumulative and differential) during the first 14 days of the summer 139 
period.  140 

 141 
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Confidence intervals of regression model estimates 143 

Table S2. Confidence intervals (2.5% to 97.5%) of the model parameters presented on Table 1. The models are linear 144 
regressions of the low-cost sensor vs. the reference monitor (EDM180). 145 

 PM1.0 PM2.5 PM10 PM1.0-2.5 PM2.5-10 

Slope      

   Piera IPS-7100 0.85 to 0.89 1.64 to 1.76 0.17 to 0.25 0.11 to 0.46 0 to 0.015 

   Sensirion SPS30 0.86 to 0.89 0.75 to 0.80 0.15 to 0.18 0.19 to 0.26 0.05 to 0.06 

   Plantower PMS5003 1.41 to 1.46 1.62 to 1.73 0.16 to 0.23 0.07 to 0.23 0 to 0.012 

Intercept      

   Piera IPS-7100 -1.67 to -1.41 -7.04 to -5.98 1.44 to 3.33 1.04 to 2.09 1.45 to 1.73 

   Sensirion SPS30 -0.62 to -0.45 -1.60 to -1.18 0.46 to 1.22 -0.26 to -0.05 -0.60 to -0.40 

   Plantower PMS5003 -1.17 to -0.84 -3.41 to -2.61 5.04 to 6.82 1.95 to 2.44 1.36 to 1.68 

 146 
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Residual plots of the linear models used in the study 148 

Residual plots are mainly used to evaluate the assumptions of a linear model, such as homoscedasticity, 149 

independence, and normality. Qualitatively, a “good model” will have residuals that are uncorrelated 150 

(independent), normally distributed and centered around the zero line, and constant with respect to the 151 

magnitude of the predicted value (homoscedastic). Residuals that do not follow these patterns suggest one or 152 

more violations of the assumptions for a linear model (which is often the case for low-cost sensor data and 153 

increasingly evident in the larger size fractions). 154 

 155 

 156 

Figure S8. Residual plots corresponding to the low-cost sensor vs. reference monitor linear regression models presented in 157 
Figure 2 and mentioned throughout the manuscript.  The horizontal red line represents perfect modeled-measured 158 

agreement across the range of fitted values; the blue lines represent a LOESS (locally estimated scatterplot smoothing) fit to 159 
the observed residuals. 160 



Quantile-Quantile plots of the linear models used in the study 161 

Quantile-Quantile plots are used to assess the normality assumption for a linear regression model. The 162 

distribution of the residuals (i.e., black dots) is compared against the expected distribution of residuals for an 163 

ideal model (i.e., red line). On a “good” Quantile-Quantile plot, the points sit close to the 1:1 line across the data 164 

range. 165 

 166 

 167 

Figure S9. Quantile-Quantile plots corresponding to the low-cost sensor vs. reference monitor linear regression models 168 
presented in Figure 2 and mentioned throughout the manuscript.   169 
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