Supporting Information

Gelation in Photoinduced ATRP with Tuned Dispersity of the

Primary Chains

Frances Dawson, Hugo Jafari, Vytenis Rimkevicius, Maciej Kopeć*

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

*e-mail: mk2297@bath.ac.uk

Flory-Stockmayer equation for ATRP systems

Derivation of the equation 2 after Gao and Matyjaszewski^{1,2} is reproduced here for reader's convenience.

From the Flory-Stockmayer theory:

$$v_c = \rho p_c (DP_w - 1) = 1$$

where is v_c is the weight-average number of crosslinks per primary chain (equal to 1 at incipient gelation), ρ is the fraction of vinyl bonds residing on the divinyl crosslinker, p_c is the conversion of double bonds at the gel point and DP_w is the weight-average degree of polymerisation of the primary chains in the absence of crosslinks.

Assuming $DP_w >> 1$ and since $D = DP_w/DP_n$ as well as $\rho = \frac{2[X]_0}{[M]_0 + 2[X]_0}$

then,

$$1 = \frac{2[X]_0}{[M]_0 + 2[X]_0} p_c \oplus DP_n$$

Further, in an ATRP of a monomer with initial concentration $[M]_0$ and a divinyl crosslinker with initial concentration of vinyl bonds $2[X]_0$, $DP_n = \frac{[M]_0 + 2[X]_0}{[PC]_t} p_c$, where $[PC]_t$ is the instantaneous concentration of the primary chains.

Thus,

$$1 = \frac{2[X]_0}{[M]_0 + 2[X]_0} p_c \mathbb{D} \frac{[M]_0 + 2[X]_0}{[PC]_t} p_c = p_c^2 \mathbb{D} \frac{2[X]_0}{[PC]_t}$$

Finally, conversion at the gel point:

$$p_c = \sqrt{\frac{[PC]_t}{2[X]_0}} \frac{1}{\overline{\Theta}}$$

Figure S1. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 200 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 1**). The sample was taken after 23 min and the polymerization reached 66% conversion measured by ¹H NMR. The parallel reaction with 3 equiv, of the HDDA crosslinker gelled in 25 min and the conversion at the gel point was estimated to be 62%.

Figure S2. GPC trace of a reaction with conditions MA/EBiB 100:1 and 100 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 2**). The sample was taken after 25 min and the polymerization reached 52% conversion measured by ¹H NMR. The parallel reaction with 3 equiv, of the HDDA crosslinker gelled in 30 min and the conversion at the gel point was estimated to be 55%.

Figure S3. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 50 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 3**). The sample was taken after 40 min and the polymerization reached 55% conversion measured by ¹H NMR. The parallel reaction with 3 equiv, of the HDDA crosslinker gelled in 25 min and the conversion at the gel point was estimated to be 50%.

Figure S4. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 20 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 4**). The sample was taken after 60 min and the polymerization reached 50% conversion measured by ¹H NMR. The parallel reaction with 3 equiv, of the HDDA crosslinker gelled in 70 min and the conversion at the gel point was estimated to be 50%.

Figure S5. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 10 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 5**). The sample was taken after 105 min and the polymerization reached 48% conversion measured by ¹H NMR. The parallel reaction with 3 equiv, of the HDDA crosslinker gelled in 105 min and the conversion at the gel point was estimated to be 48%.

Figure S6. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 200 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 6**). The sample was taken after 26 min and the polymerization reached 77% conversion measured by ¹H NMR. The parallel reaction with 1.5 equiv, of the HDDA crosslinker gelled in 35 min and the conversion at the gel point was estimated to be 77%.

Figure S7. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 100 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 7**). The sample was taken after 27 min and the polymerization reached 74% conversion measured by ¹H NMR. The parallel reaction with 1.5 equiv, of the HDDA crosslinker gelled in 31 min and the conversion at the gel point was estimated to be 72%.

Figure S8. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 50 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 8**). The sample was taken after 30 min and the polymerization reached 69% conversion measured by ¹H NMR. The parallel reaction with 1.5 equiv, of the HDDA crosslinker gelled in 35 min and the conversion at the gel point was estimated to be 70%.

Figure S9. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 20 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 9**). The sample was taken after 55 min and the polymerization reached 60% conversion measured by ¹H NMR. The parallel reaction with 1.5 equiv, of the HDDA crosslinker gelled in 70 min and the conversion at the gel point was estimated to be 63%.

Figure S10. GPC trace of a reaction with conditions [MA]:[EBiB] = 100:1 and 10 ppm of the CuBr₂/Me₆TREN catalyst (**Table 1, entry 10**). The sample was taken after 110 min and the polymerization reached 66% conversion measured by ¹H NMR. The parallel reaction with 1.5 equiv, of the HDDA crosslinker gelled in 110 min and the conversion at the gel point was estimated to be 63%.

Figure S11. Comparison of two formulas to calculate p_c as a function of the initial crosslinker concentration $X = [X]_0/[I]_0$. The second order exponential decay function (red squares) was obtained in ref. 3 using Predici simulation software.

Figure S12. GPC traces recorded pre-gelation for reactions with 20-100 ppm of the catalyst used to synthesize fully developed networks for structural characterization. (a-c) $[HDDA]_0 = 1.5$; (e-g) $[HDDA]_0 = 3$. Reaction conditions: [MA]:[EBiB]:[HDDA] = 100:1:1.5 or 3; $[CuBr_2] = 20-100$ ppm vs monomer; $[CuBr_2]$:[Me6TREN] = 1:6, MA/DMSO = 1:1 (v/v), rt, $\lambda_{max} = 390$ nm, 10 h. Note that for 10-hour reactions, the LED lamp (Kessil PR106L-390) was set to 50% intensity, hence longer reaction/gelation times.

References

- 1. Gao, H.; Matyjaszewski, K., Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. *Prog. Polym. Sci.* **2009**, *34* (4), 317-350.
- Gao, H.; Li, W.; Min, K.; Matyjaszewski, K., Gelation in Atom Transfer Radical Copolymerization with a Divinyl Cross-linker. In *Controlled/Living Radical Polymerization: Progress in ATRP*, American Chemical Society: 2009; Vol. 1023, pp 203-213.
- 3. Gao, H.; Min, K.; Matyjaszewski, K., Determination of Gel Point during Atom Transfer Radical Copolymerization with Cross-Linker. *Macromolecules* **2007**, *40* (22), 7763-7770.