Supplementary Information

Title: Organoselenium has potent fungicidal effect on *Cryptococcus neoformans* and inhibits the virulence factors

Running title: Organoselenium: a fungicidal and anti-virulence compound

Authors: Daniel Felipe Freitas DE JESUS^a, Aline Luiza Duarte DE FREITAS^a, Isadora Maria DE OLIVEIRA^b, Larissa Costa DE ALMEIDA^a, Rafael Wesley BASTOS^c, Cristina de Castro SPADARI^a, Analy Sales de Azevedo MELO^d, Daniel de Assis SANTOS^e, Letícia Veras COSTA-LOTUFO^a; Flavia C. G. REIS^{f,g}; Marcio L. RODRIGUES^{f,h}; Hélio Alexandre STEFANI^b, Kelly ISHIDA^{a,*}

Affiliations: ^a Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil (USP); ^bSchool of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil; ^c Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; ^d Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; ^eInstitute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; ^fCarlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil; ^gCenter for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; ^hInstitute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

#Correspondence: Kelly Ishida, Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 – 05508-000, ICB II, Lab 150, São Paulo, SP, Brazil. Phone: +55(11)30917204, E-mail: ishidakelly@usp.br

Table S1. Antifungal activity of synthetic compounds against *Aspergillus fumigatus* ATCC 16913, *Candida albicans* SC5314 and *Candida neoformans* H99 and hemolytic activity on red blood cells.

		IC ₅₀ /IC ₉₀ /MFC	TT A			
Compound	Molecular structure	cture Cryptococcus Candida neoformans albicans		Aspergillus fumigattus	— HA ₅₀ (μg/mL)	
1	Br N OEt	>128	>128	>128	nd	
2	Br N OEt	4/8/16	8/16/32	>128	>128	
3	CI NOEt	>128	>128	>128	nd	
4	O CI Se OMe	>128	>128	>128	nd	
5	O CI N OEt	4/8/16	64/>128/>128	>128	>128	
6	MeO Se CF	>128	>128	>128	nd	

7	MeO Se	>128	>128	>128	nd
8	MeO Se F	>128	>128	>128	nd
9	MeO Se OM	16/64/128 e	64/>128/>128	>128	>128
10	MeO Se	>128	>128	>128	nd
11	MeO Se	>128	>128	>128	nd
12	MeO Se	32/64/>128	>128	>128	nd
13	MeO Se	64/128/>128	>128	>128	nd
14	MeO Se	16/128/>128	>128	>128	>128
15	MeO Se	>128	>128	>128	nd

16	MeO Se	16/32/>128	>128	>128	>128
17	N OEt	>128	>128	>128	nd
18	CI O OEt	>128	>128	>128	nd
19	O Se Se	>128	>128	>128	nd
20	MeO NOMe	64/>128/>128	>128	>128	nd
21	MeO Se OMe	>128	>128	>128	nd
22	MeO Se		16/>128/>128	128	>128
23	N O	>128	>128	>128	nd

24	F Se Se	8/32/32	>128	>128	>128
25	N O O Se	8/16/32	>128	>128	>128
26	Br	>128	>128	>128	nd
27		>128	>128	>128	nd

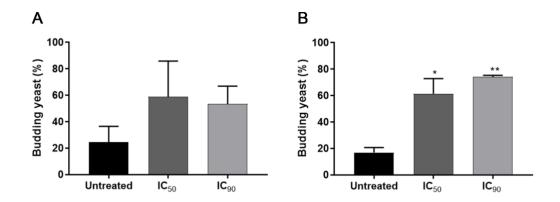
IC₅₀, the lowest concentration that inhibits 50% of fungal growth

IC90, the lowest concentration that inhibits 90% of fungal growth

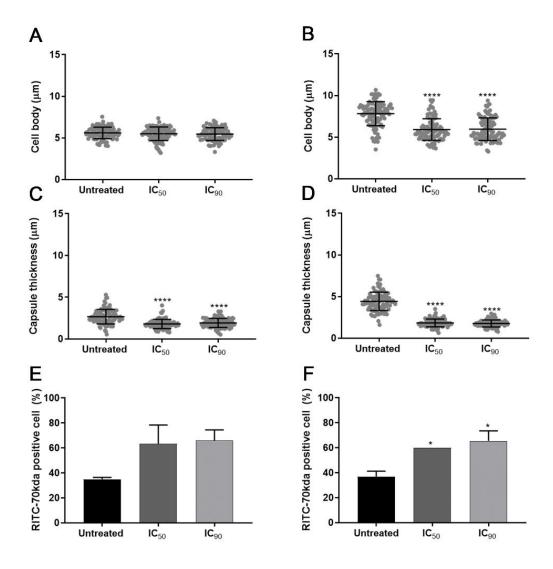
MFC, the lowest concentration that kills >99.9% of yeasts

 HA_{50} , the lowest concentration that leads to 50 % hemolysis of red blood cells nd, not determined

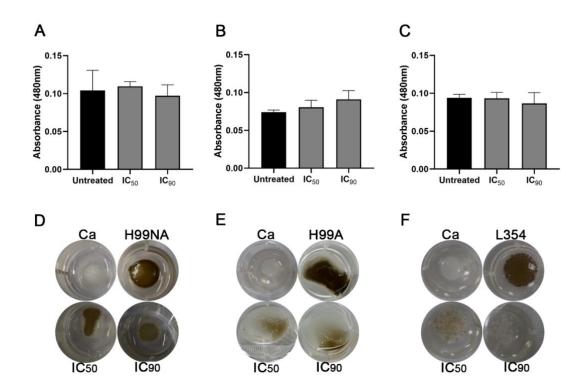
Table S2. Susceptibility of *Cryptococcus neoformans* strains to the organoselenium compound LQA_78 and the standard antifungals fluconazole (FLC) and amphotericin B (AMB). The concentration values are expressed in μg/mL.

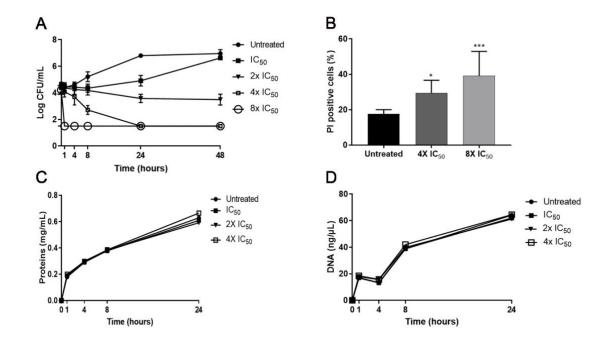

Strains _	AMB			FLC			LQA_78		
	IC ₅₀	IC ₉₀	MFC	IC50	IC90	MFC	IC ₅₀	IC ₉₀	MFC
H99 NA	0.016	0.03	0.06	1	2	8	4	8	16
H99 A	0.016	0.03	0.06	4	8	64	4	8	16
CAP59	0.03	0.03	0.03	0.5	1	8	2	4	8
L53	0.06	0.25	0.25	1	2	4	8	16	32
L177	0.06	0.125	0.25	2	4	8	8	16	32
L331	0.06	0.125	0.25	1	2	4	8	16	32
L333	0.03	0.06	0.125	2	4	16	16	32	64
L354	0.25	0.25	0.5	4	8	16	8	16	32
L378	0.25	0.5	1	2	4	16	16	32	64
L449	0.06	0.125	0.25	2	4	16	16	32	64
L576	0.125	0.25	0.5	2	4	8	16	32	64
L580	0.125	0.25	0.5	2	4	8	16	32	64
541	0.03	0.03	0.03	0.25	0.25	0.25	1	2	8
542	0.03	0.03	0.125	4	8	64	1	2	4
543	0.125	0.25	1	0.25	0.25	2	1	4	4
544A	0.25	0.25	0.25	1	2	4	4	4	8
545A	0.125	0.25	0.5	1	2	8	4	8	8

IC50, the lowest concentration that inhibits 50% of fungal growth


IC₉₀, the lowest concentration that inhibits 90% of fungal growth

MFC, the lowest concentration that kills >99.9% of cells


The assays were performed in duplicate at least three times. The data represent the modal mean.


Figure S1. The compound LQA_78 inhibits *Cryptococcus neoformans* growth, resulting in budding yeast accumulation. (**A**) H99 adapted strain and (**B**) clinical isolate L354. *p<0.05 and **p<0.01 compared to the untreated group (one-way ANOVA with Dunnett's post-test). Two independent experiments were performed in duplicate.

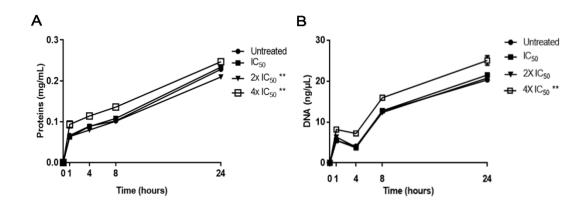

Figure S2. Inhibitory effect of LQA_78 on *Cryptococcus neoformans* H99 adapted strain (left column) and clinical isolate L354 (right column) virulence factors. **(A-B)** Cell diameter, **(C-D)** capsule thickness, **(E-F)** capsule permeability. *p<0.05 and ****p <0.0001 compared with the untreated group (one-way ANOVA with Dunnett's post-test). n=50-100 cells. Two independent experiments were performed in duplicate.

Figure S3. Inhibitory effect of LQA_78 on melanin leakage (A-C) and melanin production (D-F) of *Cryptococcus neoformans* strains after 72 h of incubation at 30°C. (**A, D**) H99 nonadapted strain, (**B, E**) H99 adapted strain, and (**C, F**) clinical isolate L354. Two independent experiments in duplicate (one-way ANOVA with Dunnett's post-test).

Figure S4. Fungicidal effect of LQA_78 on *Cryptococcus neoformans* H99 (adapted strain). **(A)** Time-kill curve, **(B)** flow cytometry analysis by propidium iodide (PI) after 24 h of incubation with LQA_78, **(C-D)** quantification of protein **(C)** and DNA **(D)** on supernatant after 0, 1, 4, 8 and 24 h of treatment. *p <0.05 and ***p <0.001 compared with the untreated group of three independent experiments [one-way ANOVA with Dunnett's post-test for **(B)** and two-way ANOVA for **(C)** and **(D)**].

Figure S5. Cytoplasm leakage of *Cryptococcus neoformans* H99 (non-adapted strain) treated with LQA_78. (**A**) Quantification of protein and (**B**) DNA on supernatant after 0, 1, 4, 8 and 24 h of treatment. **p <0.01 compared with the untreated group of three independent experiments (two-way ANOVA with Dunnett's post-test).