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Abstract

We present a multiagent-based model that captures the interactions between different types

of cells with their microenvironment, and enables the analysis of the emergent global behavior

during tissue regeneration and tumor development. Using this model, we are able to reproduce

the temporal dynamics of regular healthy cells and cancer cells, as well as the evolution of their

three-dimensional spatial distributions. By tuning the system with the characteristics of the

individual patients, our model reproduces a variety of spatial patterns of tissue regeneration

and tumor growth, resembling those found in clinical imaging or biopsies. In order to calibrate

and validate our model we study the process of liver regeneration after surgical hepatectomy

in different degrees. In the clinical context, our model is able to predict the recurrence of a

hepatocellular carcinoma after a 70% partial hepatectomy. The outcomes of our simulations

are in agreement with experimental and clinical observations. By fitting the model parameters

to specific patient factors, it might well become a useful platform for hypotheses testing in

treatments protocols.
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1 Overall Program

We have developed an off-lattice agent-based model to simulate tissue-scale features that emerge

from basic biological and biophysical cell processes. Since it is programmed in the context of

an object oriented approach, each cell is an agent implemented as a software object that acts

independently, with motion governed by the balance of adhesive, repulsive and motile forces. Each

cell also has an independent cell cycle state (including volume changes) and can also progress

through apoptotic and necrotic death processes. Moreover, depending on the type of cell, it can

also perform biased random migration based on a substrate gradient.

In our model, cell behavior is linked to the values and gradients of diffusing substrates, such as

oxygen-dependent cell cycle entry, necrosis and chemotaxis towards signaling factors. To facilitate

this, we have modeled a 3-D diffusion solver which solves 3-D diffusion equations for one or many

diffusible factors. Cell agents can secrete or uptake from the chemical microenvironment, as well

as sample the value or gradient of any or all substrates.

It is cross-platform compatible, i.e. it can be compiled and run on Linux and Windows with

no modification at all. For computational efficiency we use thread parallelization to relevant loops.

Finally, it is designed in a modular way so it allows further customization.

As shown in figure 1, we use three time steps to model (fast) diffusive biotransport processes,

∆tdiff, cell mechanics, ∆tmech, and (relatively slow) cell processes, ∆tcycle. We use these time steps

to set how frequently biotransport processes, cell movement processes, and cell phenotype processes

are updated.

Figure 1: We use different time scales to update the different biological processes. The microenvi-
ronment is updated at the short green tick marks, corresponding to ∆tdiff. Cell mechanics (including
cell position) is less frequently updated at the medium blue tick marks (∆tmech), and cell’s volume
and cycle/death models least frequently at the long red tick marks (∆tcycle). Note that this is an
schematic representation of the time steps, the default step sizes are given in section 4.
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Mathematically, this time scale separation allows us to hold cell positions fixed when updating

the partial differential equations (PDE) solutions, and then hold the chemical fields fixed when

updating cell positions and phenotypes. These time steps can be adjusted to model different

processes such as faster phenotypic processes and faster cell movement. Please find the time steps

default values in section 4.

After initializing the microenvironment, the cells, and the current simulation time t = 0, our

model tracks (internally) tmech (the next time at which cell mechanics methods are run), tcycle (the

next time at which cell processes are run), and tsave (the simulation data output time), with output

frequency ∆tsave. Initially we set:

tmech = ∆tmech

tcycle = ∆tcycle

tsave = 0

(1)

and repeat the following steps until reaching the maximum simulation time:

First we run the 3-D diffusion solver to update the biochemical microenvironment for cell-based

secretions and uptake, and reaction-diffusion, for the current fixed cell positions. Then, if t ≥ tmech

we calculate the force-based cell velocities and, if the type of cell allows it, we add the contribution

of motility. For each cell, we update the position using the Adams-Bashforth method and set

tmech = tmech +∆tmech.

Second, for the fixed cell positions and chemical substrate fields, if t ≥ tcycle, we run the cell

processes on an individual cell basis. The first step will be to update cell parameters, such as

transition and death rates, usually based on some chemical substrate (i.e. oxygen). Then we

advance in the cell cycle or death cycle model. Based on the cycle model, we update cell’s volume

and geometry. Finally we set tcycle = tcycle +∆tcycle and move on.

If t ≥ tsave we save the simulation results and set tsave = tsave +∆tsave

Finally we update the current simulation time by t = t+∆tdiff and start over. For a schematic

view of the main loop flow, please check figure 2.
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Initialize:
Microenvironment,

Cell,
Set simulation time:

t = 0

Compute cells ve-
locities and update

their positions

Run the
diffusion solver

Update cells
parameters

Save the
simulation results

Update
t = t+∆tdiff

Update
tmech = tmech +∆tmech

Update
t = t+∆tdiff

Advance in the
cell/death
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Update cells
volume

Update
tcycle = tcycle +∆tcycle
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t = t+∆tdiff
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t = t+∆tdiff

if
t ≥ tmech

t →
if

t ≥ tcycle

if
t ≥ tsave

Figure 2: Main loop flow diagram. Blue box represents the start of the program. Red boxes
represent the diffusion processes. Green boxes and orange boxes describe the cell mechanics and
cycling processes respectively. Finally, yellow boxes represent the data saving process.
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1.1 Input parameters

Parameter Description Units
Microenvironment Parameters

Ωx,Ωy,Ωz Domain size µm
∆x,∆y,∆z Microenvironment voxel size µm

D Substrates diffusion coefficients µm2/min
λ Substrates decay rates min−1

BC Set the boundary conditions dimensionless
ρBC BC substrates concentration multiple

Cell Parameters
V Total cell volume µm3

VN Total nuclear volume µm3

fCN Target cytoplasmic:nuclear volume ratio dimensionless
fF Target fluid fraction dimensionless
ρ∗ Substrates saturation value multiple

ρthres Substrates threshold value multiple
S Substrates release rate min−1

U Substrates uptake rate min−1

Cell Cycle Parameters
TG1 Duration of G1 phase hs
TS Duration of S phase hs
TG2 Duration of G2 phase hs
TM Duration of M phase hs

divprob % of cells allowed to divide dimensionless
Cell Mechanics Parameters

nx, ny, nz Mechanics discretization voxel size µm
RA Maximum cell adhesion distance µm

Cccr/a Cell-cell “repulsive”/adhesion force constant µm/min
Ccmr/a Cell-membrane “repulsive”/adhesion force constant µm/min

p Division polarization dimensionless

Table 1: Input parameters.
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Parameter Description Units
Time Parameters

TTot Total simulation time min
tsave Saving time min
∆tcycle Cell processes time step min
∆tmech Cell mechanics time step min
∆tdiff Diffusion time step min

tv Update voxel lists of particles time min

Table 2: Time input parameters.

1.2 Output parameters

Every tsave the program saves the following information:

Parameter Description Units
Microenvironment Parameters

Ωm Cell’s microenvironment voxel dimensionless
ρO2

O2 concentration in cell’s voxel mmHg
ρImm Immunostimulatory factor concentration in cell’s voxel dimensionless
ρGF Growth factor concentration in cell’s voxel dimensionless

Cell Parameters
ID Cell’s ID dimensionless

Ωmech Cell’s mechanical voxel dimensionless
x, y, z Cell’s center position dimensionless

r Cell’s radii µm
op Cell’s oncoprotein expression dimensionless

Type Cell type, i.e cancer, hepatocyte, etc dimensionless
Cycle Cell or death cycle dimensionless

Progenitor Cell progenitor’s ID dimensionless

Table 3: Output parameters.

2 Biochemical microenvironment

Tissues are filled with various chemical compounds, including signaling and other factors that

regulate how cells move, grow, and die, depending on the concentration and/or gradient of any

and all of these compounds. In order for cells to survive and grow, they need to obtain oxygen

and other nutrients released from blood vessels. In general, they need the interaction with the
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stroma, the vascular network and the immune system that make up the microenvironment where

autocrine and paracrine phenomena occur in a dynamic way, where changes in the phenotype can

occur [1]. These chemical substances move through tissues by diffusion, and are uptaken by cells

and reaction terms. These same transport processes can be used to model how chemotherapeutic

drugs reach their intended targets: susceptible cancer cells, and try to understand the mechanisms

of therapeutic resistance. By performing computational simulations of the movement of dozens

of various chemical substances and of cellular chemical uptake and secretion rates, we can test

hypotheses that can control the overall growth of cells and enable 3-D simulations of multicellular

secretomics.

To simulate this motion we use a first-order, implicit (and stable) operator splitting, allowing

us to create separate, optimized solvers for the diffusion-decay equation 2.

∂ρ

∂t
= ∇ · (D ◦ ∇ρ)− λ ◦ ρ (2)

where ρ is the vector of densities, D are the diffusion coefficients, λ are the decay rates and ◦

denotes the Hadamard (termwise) product. Bold terms represent vectors.

Following [2], we solve the diffusion-decay terms using the Finite Volume Method (FVM) [3],

further accelerated by an additional first-order splitting [4,5] into separate solutions in the x−, y−

and z−directions via the locally one-dimensional method (LOD) [5]. For each dimension, we solve

the resulting tridiagonal linear systems with the Thomas Algorithm [6].

Next we will discuss the methods previously mentioned.

2.1 Domain discretization and notation

First of all we discretize the spatial simulation domain, Ω, into voxels (volumetric pixels) to

solve the reaction-diffusion equation with the finite volume method. We use a Cartesian mesh, so

the FVM reduces to a finite difference scheme. With that in mind let {Ωm}Nm=0 be a set of voxels

(Fig. 3) that constitutes Ω. We can write Ω = [xL, xU ] × [yL, yU ] × [zL, zU ], where L stands for

Lower and U stands for Upper. Step sizes in x, y and z directions are given by ∆x, ∆y and ∆z
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respectively.

Figure 3: Domain discretization using a Cartesian mesh.

For each (i, j, k) ∈ [0, Nx − 1]× [0, Ny − 1]× [0, Nz − 1] the voxels are labeled as:

m(i, j, k) = i+ jNx + kNxNy (3)

where Nx, Ny and Nz are the nodes number in each direction. Then we can define

Ωm = Ωm(i,j,k) = Ωi,j,k = xm +

[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
×
[
−∆z

2
,
∆z

2

]
(4)

where xm are the voxels centroids {xm}Nm=0, given by

xm = xm(i, j, k) = xi,j,k = [xi, yj , zk] (5)

and each voxel volume will be given by

Vm = ∆x∆y∆z. (6)

Then, for a fixed time step, ∆t, let tn = t0 + n∆t. So for any voxel Ωm and any time t ≥ t0, we
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can define:

un
m =

∫
Ωm

ρn(x)dV (7)

and denote the mean density ρ at time tn in voxel Ωm by

ρn
m =

un
m

Vm
=

∫
Ωm

ρdV

Vm
(8)

2.2 Operator splitting

Now that we have the mean density ρ at time tn, we can solve eq. 2 by splitting the operator

into simpler operators, each of which can individually be solved by tailored, optimized algorithms.

Therefore, to advance the solution from ρn at time tn to ρn+1 at time tn +∆t we can use a first

order splitting [4]:
ρn+1 − ρn

∆t
= ∇ ·

(
D ◦ ∇ρn+1

)
− λ ◦ ρn+1 (9)

This uses a stable implicit time discretization.

2.3 Finite volume method

By using the Finite Volume Method (FVM) [3], volume integrals in a partial differential equation

that contain a divergence term are converted to surface integrals, using the divergence theorem

∫∫
~F · d~S =

∫∫∫
∇~FdV (10)

we can write eq. 9 as

1

∆t

∫
Ωm

(
ρn+1 − ρn

)
dV =

∫
∂Ωm

(
D ◦ ∇ρn+1

)
· ndS −

∫
Ωm

λ ◦ ρn+1dV (11)

where nmj is the outward normal vector from voxel m to voxel j, then
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1

∆t

(
ρn+1
m Vm − un

m

)
≈
∑

j∈Nm

Dij ◦

(
ρn+1
j − ρn+1

m

∆xmj

)
Smj − λ ◦ ρn+1

m Vm (12)

Finally, we divide by Vm to obtain the implicit discretization of the FVM

1+∆tλ+∆t
∑

j∈Nm

Smj

∆xmjVm
Dmj

 ◦ ρn+1
m −∆t

∑
j∈Nm

Smj

∆xmjVm
Dmj ◦ ρn+1

m = ρn
m (13)

2.4 Locally one-dimensional method

We can use the locally one-dimensional (LOD) method [4, 5] to split higher-dimensional PDE

into a series of related one-dimensional PDEs that can be solved with fast matrix solvers. We do

this by splitting the operator in eq. 2

η − ρn

∆t
=

∂
(
D ◦ ∂η

∂x

)
∂x

− 1

3
λ ◦ η (14)

η∗ − η

∆t
=

∂
(
D ◦ ∂η∗

∂y

)
∂y

− 1

3
λ ◦ η∗ (15)

σ − η∗

∆t
=

∂
(
D ◦ ∂σ

∂z

)
∂z

− 1

3
λ ◦ σ (16)

Applying the FVM and setting D constant, for each voxel i we have:

(
1+

1

3
∆tλ+

∆t#Ni

∆x2
D

)
◦ ηi −

∑
j∈Ni

∆t

∆x2
D ◦ ηj = ρn

i (17)

For any fixed 0 ≤ j < Ny and 0 ≤ k < Nz, and over the range 0 ≤ i < Nx (that is, for m from

mL = m(0, j, k) to mU = m(Nx − 1, j, k)), we obtain the tridiagonal vector system:

(
1+

1

3
∆tλ+

∆t

∆x2
D

)
◦ ηmL

− ∆t

∆x2
D ◦ ηmL+1 = ρn

mL
(18)
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− ∆t

∆x2
D ◦ ηm−1 +

(
1+

1

3
∆tλ+ 2

∆t

∆x2
D

)
◦ ηm − ∆t

∆x2
D ◦ ηm+1 = ρn

m (19)

− ∆t

∆x2
D ◦ ηmU−1 +

(
1+

1

3
∆tλ+

∆t

∆x2
D

)
◦ ηmU

= ρn
mU

(20)

Similar calculations in the y− and z− directions give additional tridiagonal linear systems to

solve. This tridiagonal linear system that can be solved efficiently and directly by the Thomas

algorithm [6].

2.5 Thomas algorithm

Thomas algorithm, also known as tridiagonal matrix algorithm, is a simplified form of Gaussian

elimination that can be used to solve tridiagonal system of equations. A tridiagonal system for n

unknowns may be written as

aixi−1 + bixi + cixi+1 = di (21)

where a1 = 0 and cn = 0



b1 c1 0

a2 b2 c2

a3 b3
. . .

. . . . . . cn−1

0 an bn





x1

x2

x3

...

xn


=



d1

d2

d3
...

dn


(22)

For such systems, the solution can be obtained in O(n) operations instead of O(n3) required

by Gaussian elimination. A first sweep eliminates the a′is, and then, an abbreviated backward

substitution produces the solution.
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The forward sweep consists of the computation of new coefficients as follows

c̃i =


ci
bi
; i = 1

ci
bi−aic̃i−1

; i = 2, 3, ..., n− 1

d̃i =


di

bi
; i = 1

di−aid̃i−1

bi−aic̃i−1
; i = 2, 3, ..., n

The solution is then obtained by back substitution

xn = d̃n

xi = d̃i − c̃ixi+1; i = n− 1, n− 2, ..., 1

By applying this method to equations 18, 19 and 20 we not only have a computational efficiency

of O((n − 1)2 + (n − 1)4) but, due to the fact that each x strip of voxels is independent, we can

distribute and run many instances of the Thomas solver across the processor cores allowing us to

easily parallelize the x diffusion problem. We solve along each of the y and z dimensions similarly.

2.6 Boundary conditions and Dirichlet nodes

In its first stage, a tumor has no vascular system of its own, so it must rely upon the host

vasculature in the nearby stroma for crucial oxygen, nutrients, and growth factors (we refer to

these generically as “substrates”). Substrates diffuse from the surrounding vascularized tissue,

enter the tumor, and are uptaken by the cells. This motion of substrates from external sources (the

host vasculature) to internal sinks (the metabolically active tumor cells) causes substrate gradients

to form within the tumor. To model this we use Dirichlet boundary condition which gives the

boundary value of the substrate, to be applied uniformly to each simulation boundaries. We can

also turn the substrate flux off by applying a Neuman (no flux) condition for that substrate on the
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simulation boundary. It is important to mention that any individual boundary can have a separate

activated/deactivated state and boundary condition. Moreover the activation of each substrate can

be set on an individual basis. For example we can use Dirichlet condition on oxygen but deactivate

the flux of growth factor.

Another important characteristic is that we can approximate Dirichlet conditions on one or

more selected voxels (Dirichlet nodes) by overwriting the data stored in any voxel with a prescribed

vector of values. Again, we can perform that on an substrate individual basis. The code performs

this step after each operator of of the LOD algorithm (i.e., after x-diffusion, after y-diffusion, and

after z-diffusion; see section 2.4 above). It is very useful to model blood vessels.

2.7 Test

To validate our diffusion solver, we tested it’s convergence against a 1-D problem with a known

analytical solution and compared our results with those obtained by [2].

We have considered

∂ρ

∂t
= D

∂2ρ

∂x2
(23)

and

∂ρ

∂x
(x, t) = 0 (24)

for −L0 < x < L0 and t > 0. With initial value

ρ(x, 0) = 1 + cos

(
π

L0
x

)
, −L0 ≤ x ≤ L0 (25)

and exact solution

ρ(x, t) = 1 + exp−βt cos

(
π

L0
x

)
(26)

where β = π2D
L2

0
. We set the same parameters values as in [2]: L0 = 500µm and D = 105µm2/min.
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Our solution is plotted for several times in figure 4, which is in great agreement with [2].
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Figure 4: Solution for 1-D diffusion problem, plotted at different times.

We have also checked the convergence in space and time. We took ρ∆t,∆x as the numerical

solution simulated with time step size ∆t and spatial step size ∆x. Then, for any given norm, the

error for the algorithm should take the form

Err(∆t,∆x) = ||ρ(x, t)− ρ∆t,∆x((x, t))|| ∼ A∆tm +B∆xn (27)

Therefore, to test for the convergence in ∆t, we must choose ∆x sufficiently small that B∆xn �

A∆tm. In that case,

Err ∼ A∆tm (28)

then

log (Err) ∼ log (A) +m log (∆t) (29)

Thus, we calculate the order of convergence as the slope of the linear least squares fit of log (Err)

versus log (∆t).

We perform convergence testing with ∆x = 5µm, with ∆t ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1}

min. The error values are plotted in figure 5 (left). We see first-order convergence in time at several
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solution times (showing good accuracy on both short and long time scales). It is important to

note that for any fixed ∆t, the errors decrease over time; this shows that the solutions demonstrate

better accuracy as solutions approach steady state.

The errors show evidence of saturating for very small ∆t, where the error from the spatial

discretization is likely to dominate, and so B∆xn � A∆tm no longer holds for the convergence

calculation. The error for ∆t = 1min (an unlikely choice of time step size in most applications) is

comparatively large, giving a large drop in error between ∆t = 1min and ∆t = 0.1min; this large

drop may unduly increase the computed convergence rate.

To check the convergence in space we used ∆t = 10−5min to ensure B∆xn � A∆tm as in

equation 27. Then, similarly to before

log (Err) ∼ log (B) + n log (∆x) (30)

and the order of convergence can be calculated as the slope of the linear least squares fit of log (Err)

versus log (∆x). This errors are plotted in figure 5 (right). At all times, the solutions demonstrate

approximately second-order convergence. Moreover, for any fixed ∆x, the accuracy improves over

time as the solution approaches steady state.

3 Cell

As it was mentioned earlier, since we are implementing an agent-based model programmed in

the context of an object oriented approach, cells are agents implemented as software objects that act

independently. They progress through a cell cycle (section 3.2) when preparing to divide (section

3.4), can control their entry into and exit from the cycle, and can self-terminate (apoptosis) when

they detect irreparable DNA errors or other damage (section 3.7). Their behavior is governed

by a signaling network that integrates genetic and proteomic information with extracellular signals

received through membrane-bound receptors (section 3.8.2). In certain situations leading to another

perturbations of extracellular or intracellular homeostasis or microenvironment, i.e. lack of oxygen,

cells can respond through a variety of mechanisms, or can succumb to any kind of necrosis (i.e.
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Figure 5: Left: Convergence in ∆t with ∆x = 5µm. Each curve gives the error across ∆t at
a different time (from top to bottom: t = 0.5, 1, 2, 3, 4, and 5 min). Notice that for each fixed
resolution ∆t, the error improves in time as the solution approaches steady state. The linear least-
squares fits are plotted for 10−4 ≤ ∆t ≤ 10−1; the slope of each line, showed in left legend box, gives
the order of convergence at that time. Right: Convergence in ∆x with ∆t = 10−5min. Each curve
gives the error across ∆x at a different time. Notice that, as it happened in time convergence, for
each fixed resolution ∆x, the error improves in time as the solution approaches steady state. The
slope of each linear least squares fit, shown in the right legend box, gives the order of convergence
at that time.

necroptosis, ferroptosis, pyroptosis, etc) [7]. In pathologic conditions leading to hypoxia, i.e. lack

of oxygen, cells can respond through a variety of mechanisms, or can succumb to necrosis (section

3.7).

In the next sections we will describe the main features of the cell.

3.1 Proliferation

Cell division is regulated by a highly regimented series of stages known as the cell cycle (Fig.

6). It has different phases in which the cell perform different actions. In the first stage we have the

G1 (gap 1) phase, in which the cell physically grows. Proteins are synthesized, new organelles are

constructed, and the cell prepares for DNA replication. The next phase is the S (synthesis) phase.

Here the DNA is replicated. Next, the G2 (gap 2) phase is a period of protein synthesis and rapid

cell growth to prepare the cell for mitosis. Final preparations are made within the cell nucleus for

the division of the cell. In the final M (mitosis) phase, the two copies of the DNA are separated
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and incorporated into two nuclei (mitosis), and the cytoplasm and the organelles are divided into

two daughter cells (cytokinesis).

Figure 6: Cell cycle

The cell cycle contains numerous checkpoints [8] that monitor and regulate its progress. One of

them is the cell growth checkpoint. It occurs toward the end of the growth phase G1 and checks

whether the cell is big enough and has made the proper proteins for the S phase. If the cell is not

ready it exits the cell cycle and enters the G0 quiescent state [9, 10]. Most noncancerous somatic

cells stay in this quiescent to keep the tissue homeostasis. There are numerous checkpoints in the

S and G2 phases to detect and repair DNA damage, for example the DNA synthesis checkpoint

which, as its name states, checks whether the DNA has been replicated correctly. If cells overcome

this checkpoint they undergo mitosis. The last checkpoint, the mitosis checkpoint, checks whether

mitosis is complete. If so, cell divides and the cycle repeats. On the other hand, if cells fail to

repair their DNA damage at such checkpoints induce apoptosis [11]. In the process, “executioner”

proteins in the cytoplasm break down the organelles, degrade the cytoskeleton, and fragment the

DNA. The cell shrinks, and the degraded cell contents are released as harmless (i.e., chemically

inert) vesicles known as apoptotic bodies, which are ingested (phagocytosed) by specialized immune

cells as well as neighboring cells [12, 13].
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The speed of the cell cycle progression is regulated by the production and balance of internal

chemical signals, principally cyclins and cyclin-dependent kinases (CDKs). Surface receptors help

control gene expression levels through complex signaling pathways. The gene expression pattern,

in turn, determines the production and balance of proteins (including cyclins and CDKs). Hence,

cell cycle progression is regulated by a complex interaction between the cells internal biomachinery

and its surrounding environment [11].

As we have mentioned before, most noncancerous somatic cells stay quiescent (i.e. in the G0

phase) to keep the tissue homeostasis, but when a differentiated cell dies, a somatic stem cell (i.e.

undifferentiated cells that reside among differentiated cells in a tissue or organ) may divide either

symmetrically into two new stem cells or asymmetrically into a stem cell and a progenitor cell. The

progenitor cell either further divides or terminally differentiates into the desired cell type, migrates

or is pushed to the correct position, and assumes its function. This process is tightly regulated

by intercellular communication via biochemical signals (growth factors) and mechanics. Each cells

response to the microenvironment is governed by surface receptors that interact with an internal

signaling network. In some cases such as liver regeneration, cells not only proliferate but undergo

into hyperplasia process. The liver has an extraordinary capacity to regenerate from various types

of injuries [14, 15]. It consists of various cells types but most of all hepatocytes, which carry out

most of the metabolic and synthetic functions of the liver. In severely damaged liver with impaired

hepatocyte proliferation, facultative liver stem cells proliferate and are assumed to contribute to

regeneration, but after a surgical resection of a portion of the liver (partial hepatectomy, PHx),

regeneration does not require such stem cells. The remnant tissue undergoes hyperplasia to recover

the original liver mass. As it was discussed in [16–18] this complex process depends on the hep-

atectomy. It was shown that after a 70% PH no cell division was observed in more than 40% of

hepatocytes and the average number of cell divisions two weeks after was estimated as 0.7 times per

hepatocyte. But in the case of a 30% PH, hepatocytes did not undergo cell division at all, instead

they did undergo hyperplasia.
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3.2 Cycle

Based on what we have mentioned before, we model the cell cycle as a directed graph in which

the nodes are the phases and the edges are the transition rates (Fig. 7 )

Phase transitions times can either be deterministic i.e transition occur at a fixed time, or stochas-

tic. The probability of transitioning from phase Pi to phase Pj is given by:

Prob (Pi(t) + Pj(t+∆t)) = 1− exp (−rij∆t) ≈ rij∆t; (31)

where rij are the transition rates given by 1/ti in which ti represents the time that takes to the cell

to go through the phase i.

It is important to point out that we can adjust the graph to model different types of cell

cycles depending on the information we have. For example, when studying liver regeneration, cell

proliferation is characterized by the expression of a proliferation protein called Ki-67 [17]. This

protein expresses when the cell is proliferative, i.e. in the S, G2, and M phases [19], and to a lesser

extent in the G1 phase [20]. Ki-67 is seen in post-mitotic daughter cells [21], but it is not produced

in these cells [19]. Instead, any remaining Ki-67 protein in post-mitotic cells is degraded quickly,

with a half-life of 60− 90 minutes [19].

We can relate both cycles by setting the phase “Ki-67+ pre-mitotic” (K+pre) to be the combined

duration of S, G2 , and M phases, which are relatively fixed compared to the duration of G0/G1

[22, 23]. As we have mentioned before, after mitosis, Ki-67 protein is degraded quickly, so we set

the second phase “Ki-67+ post-mitotic” (K+post) that takes place at the G1/G0 phase, to be on

the order of two Ki-67 half-lives (we use an intermediate estimate of a 75 minutes half-life). Then,

the remaining G1/G0 phase will be the “Ki-67-” (K−) phase. The calibration of the cell cycles

times will depend on the types of cell under study. Please refer to section 4 for more information.

One important aspect is that the transition rates can change based upon microenvironmental

conditions (e.g. it may increase with oxygenation). For example, consider the Ki-67 cell cycle (fig.

8). Phases (K+pre) and (K+post) have stochastic durations, which means that the cell will spent a

mean of tK+pre and tK+post in each one respectively, but phase K− will depend on the oxygenation

22



Figure 7: Schematic representation of the cell
cycle

Figure 8: Cell cycle based on the expression of
the protein Ki− 67

of the tissue. Then we can model the transition from Ki-67− to Ki-67+ pre-mitotic as:

r−+ =
1

tK−
max

{(
O2 −O2,prol

O∗
2 −O2,prol

)
, 0

}
(32)

where O2 is the current oxygen value in the cell’s voxel O2,prol is the proliferation threshold, i.e.

the oxygen value below which the proliferation ceases and O∗
2 is the proliferation saturation value,

above which the proliferation rate is maximized. No further oxygenation benefits the cell. In other

words, cells will spend a mean time of tK− if O2 ≥ O∗
2 . Numerical values of those parameters can

be found at section 4.

3.3 Volume and geometry

To model cell volume variation, each cell tracks V (total volume), VF (total fluid volume), VS

(total solid volume), VNS (nuclear solid volume), VCS (cytoplasmic solid volume), VN (total nuclear

volume), and VC (total cytoplasmic volume). Key parameters include nuclear solid, cytoplasmic

solid, and fluid rate change parameters (rN , rC , and rF ), the cells “target” fluid fraction fF , target

solid volume V ∗
NS , and target cytoplasmic to nuclear volume ratio fCN . For each cell, these volumes

are modeled with a system of ordinary differential equations (ODEs):
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dVF

dt
= rF (V ∗

F − VF (t)) , (33)

dVNS

dt
= rN (V ∗

NS − VNS(t)) , (34)

dVCS

dt
= rC (V ∗

CS − VCS(t)) , (35)

where rF , rN , and rC are variation rate constants, and V ∗
F , V ∗

NS and V ∗
CS are the target volumes

that cells must reach in each phase. The remaining volumes can be calculated by

VCS =

(
1− VF

V

)
VC ; (36)

VNS =

(
1− VF

V

)
VN ; (37)

VS = VCS + VNS ; (38)

using

V ∗
CS(t) = fCNV ∗

NS(t), (39)

V ∗
F (t) = fFV (t), (40)

where, fCN = 1/fNC is the target cytoplasmic to nuclear volume ratio and fF is the cells target

water fraction.

Target volumes and transition rates will depend on the cell type and its corresponding cell cycle,

but we can estimate those parameters to any type of cell as follows:

First we estimate the water fraction fF . For that we consider that a typical cell water mass
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fraction fm is 70% [24,25]. Now let ρ be the mass density of water, ρS be the relative mass density

of the solid cell fraction and VS be the total solid cell volume, so that V = FF +VS . Since typically

ρS ≈ 1.3ρ [26, 27], we can solve for VS :

fm =
mF

mF +mS
=

ρVF

ρVF + ρSVS
=

ρVF

ρVF + 1.3ρVS
(41)

where mF and mS are the cell’s total fluid and solid masses respectively. Then we get

VS =
1− fm
1.3fm

VF (42)

Next,

fF =
VF

VF + VS
=

1

1 + VS

VF

=
1

1 + 1−fm
1.3fm

(43)

Taking fm = 0.70 then fF ≈ 0.75. With that in mind and knowing the nuclear volume of the

type of cells we are working with, we can compute V ∗
NS = (1− fF )VN .

By knowing the cell cycle times, we can compute the rates parameters as follows. We set rN

so that 95% of the nuclear solid volume doubles in the S-phase time, TS-Phase. Then the analytical

solution for eq. 34, with V ∗
NS = 2 and VNS(0) = 1, gives:

1 + 0.95 = 2− (2− 1) exp (−rN tS-Phase) −→ rN ≈ − ln (0.05)

tS-Phase
(44)

To estimate the cytoplasmic solid biomass creation rate rC we set it sufficiently large to ensure

that the biomass is 95% doubled within a short cell cycle. Moreover, because cytoplasmic biomass

creation lags nuclear biomass creation in this model (which happens primarily in the S phase),

we set rC fast enough to ensure that 95% of the biomass is created within the last half of the

S-phase until the first part of G1 phase. In the Ki-67 cell cycle, this process would happen during

the positive phases K+pre and K+post. If tC denotes this time scale, the analytical solution to

equation 35 (with target volume V ∗
CS = 2 and initial volume VCS(0) = 1) gives
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1 + 0.95 = 2− (2− 1) exp (−rCtC) −→ rC ≈ − ln (0.05)

tC
(45)

Finally, the water transport parameter, rF , must be set sufficiently large to match the biomass

creation, with a time scale tF . So we estimate tF to be one order of magnitude faster than tC .

Assuming that the 95% of the targeted water flux occurs within the time scale tF we have

1 + 0.95 = 2− (2− 1) exp (−rF tF ) −→ rF ≈ − ln (0.05)

tF
(46)

The numerical values of these volume variation rates depends on the cell cycle times. They can

be found in section 4 for each specific type of cell.

3.4 Division

When a cell divides, we halve all it’s sub-volumes and copy all state and parameter values into

it’s daughter. To decide in which position the daughter will born we let 0 ≤ p ≤ 1 be the degree

of polarization (fully polarized if p = 1 and completely random if p = 0), and θ be the cell’s unit

orientation vector (directed from cell base to cell apex). Then we define

d =
r− (r · θ)θ + ((1− p)(r · θ))θ

||r− (r · θ)θ + ((1− p)(r · θ))θ||
(47)

If V is the volume of the parent cell at the time of division, with equivalent radius R, the

daughter cells will have equivalent radius 1
3√2

R. Now, if xparent is the center of the parent cell, we

can place the two daughter cells at

xdaughters = xparent ±
(
R− 1

3
√
2
R

)
d. (48)

By combining the last three subsections, we can see in Fig. 9 how cell volume and sub-volumes

changes as it goes through the cell cycle and divides.
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Figure 9: Cell’s sub volumes and radii variation

3.5 Mechanics

Adhesion between cells happens when receptors on a cells surface bond with the adhesive ligands

present on nearby cells. The closer the cells are, the more surface area and therefore, receptorligand

pairs, get into direct contact. Hence, the adhesive force between the cells increases as the cells are

drawn more closely together [28]. On the other hand cells resist compression by other cells due to

the structure of their cytoskeletons [29, 30]. In that sense, the repulsive force between cells is zero

when cells are just touching, and increases rapidly when cells are pressed together.

To reproduce that behavior, we have consider different forces models, such as the linear spring

model [31, 32] and the Johnson-Kendall-Roberts (JKR) model [33]. In the first case the force is

assumed to be directly proportional to the distance between cell midpoints, vanishing at the rest

length. While this behavior may be reasonable for small distances, it results in unphysically strong

long-range interactions if extended to distances larger than the rest length. At the same time, a

linear force does not result in very large repulsive forces when cells are very close, i.e. cells are

highly compressible. This can lead to the problem of collapsing volumes, where a cell population

collapses on itself under strong compression [34]. Additionally, the linear force will feature a large

discontinuity at the maximum interaction range which can lead to further numerical difficulties. The
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JKR force model, has been confirmed experimentally to be valid for biological cells under certain

conditions, however, it turned out to be computationally very expensive since it requires the solution

of an implicit equation in order to recover the force for a given center-center distance [35]. We have

then decided to implement the piecewise polynomial force model. This model is constructed as the

sum of a positive adhesive and a negative repulsive polynomial force contributions. To compute

these forces it uses adhesive and repulsive interaction potentials functions that depend upon each

cell’s size, maximum adhesion distance, adhesion and repulsion parameters and distance to other

cells. It solves the issues of the linear spring model and strikes an attractive balance between

numerical efficiency and the capability to reproduce cell mechanics and biophysical measurements.

This force model has been tested and validated in numerous works [36–39]. Please refer to ref. [40]

for further description on these interaction forces models.

In order to compute the piecewise polynomial forces we use adhesive (Φ), and repulsive (Ψ),

interaction potentials functions defined as follows

∇Φc-c =


(
1− |xj−xi|

Ri,A+Rj,A

)ncca+1
xj−xi

|xj−xi| if |xj − xi| ≤ Ri,A +Rj,A

0 otherwise
(49)

∇Ψc-c =


−
(
1− |xj−xi|

Ri+Rj

)nccr+1
xj−xi

|xj−xi| if |xj − xi| ≤ Ri +Rj

0 otherwise
(50)

where ncca and nccr are integer powers chosen for the smoothness of the force’s behavior at the

edge of interaction. Ri, Rj and Ri,A, Rj,A are cells i, j radii and maximum adhesive interaction

distances respectively, and xi, xj are the cells centers positions.

Our model also supports cell-basement membrane adhesive and repulsive interaction, so for

cell-basement membrane forces we use

∇Φc-bm =


(
1− |d|

Ri,A

)nc-bma+1
d
|d| if |d| ≤ Ri,A

0 otherwise
(51)
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∇Ψc-bm =


−
(
1− |d|

Ri

)nc-bmr+1
d
|d| if |d| ≤ Ri

0 otherwise
(52)

where d is the distance from i cell center to the basement membrane.

Now that we have the interaction potentials we can compute the forces as follows, for cell-cell

interaction:

Fij
cca = −Ccca∇Φc-c (53)

Fij
ccr = −Cccr∇Ψc-c (54)

where Ccca and Cccr are the cell-cell adhesion and repulsion parameters respectively that takes into

account the deformability of the cells, so to compute their value we need to know how confluent

the tissue is. In cell culture biology, cell confluence is defined as the percentage of a culture dish or

a flask occupied by any type of adherent mammalian cells [41]. For example, 50 percent confluence

means roughly half of the surface is covered, while 100 percent confluence means the surface is

completely covered by the cells, and no more room is left for the cells to grow as a monolayer.

Although we must point out that tumor cells have altered the phenomenon of contact inhibition

and show multilayer growth [42]. So we can estimate the mean cell-cell equilibrium distance, s, for

a tissue with confluence f , where 0 ≤ f ≤ 1. Due to the mechanics the cells obey, they will tend to

form a hexagonal closed-packed structure as shown in figures 10 and 11.

Figure 10: Hexagonal closed-packed tissue.
Figure 11: Closer look at the hexagonal closed-
packed tissue.

29



Figure 12: Shared hexagons of the darker cell.
Figure 13: Equilibrium distance, s, between
cells

Keeping in mind that each cell shares three hexagons as shown in figures 10 and 12, we can

compute the density ρ as

ρ =
3f

AHex
(55)

where AHex is the hexagon area given by

AHex =
3
√
3s2

2
(56)

where s is the equilibrium distance as shown in figure 13, then

ρ =
3f

3
√
3s2

2

(57)

so the the equilibrium distance s will be given by

s =

√
2f√
3ρ

(58)

Next, for two cells, i, j, at the equilibrium distance s, adhesive and repulsive forces are equal,

F ij
cca = F ij

ccr = 0, so:
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F ij
cca = F ij

ccr

Ccca∇Φc-c = Cccr∇Ψc-c

Ccca

(
1− |s|

Ri,A +Rj,A

)nc-bma+1
s

|s|
= Cccr

(
1− |s|

Ri +Rj

)nc-bmr+1
s

|s|

Ccca = Cccr

(
1− |s|

Ri+Rj

)2
(
1− |s|

Ri,A+Rj,A

)2
(59)

Consequently, the piecewise quadratic function has one free parameter, Cccr.

For the cell-basement membrane forces we proceed as with the cell-cell forces, hence

Fi
cmba = −Ccmba∇Φc-mb (60)

Fi
cmbr = −Ccmbr∇Ψc-mb (61)

Now we can update cells positions by using Newton’s second law

mi
dvi

dt
=
∑

F (62)

We assume that three types of forces act on each cell. First we have a drag force, which represents

dissipative, drag-like forces such as fluid drag and cell-extra cellular matrix adhesion. Cells friction

with the viscous environment is directed against the cells direction of motion so

Fi
drag = −νvi (63)

where ν is the drag coefficient.

Secondly, as we have mentioned before, neighboring cells exert mechanical forces on the cell. In

the simplest case these involve repulsive forces due to limited cell compressibility, but they usually

also include cell-cell adhesion. Interactions are assumed to be pairwise and symmetric, i.e.
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Fij
cells =

∑
j 6=i

Fij (64)

where the sum runs over all neighbors, excluding the cell itself. What is consider a cell neighbor

will be discussed later on in section 3.5.1.

Finally, the third force acting on the cells is the cell-basement membrane, such that

Fi
c-bm =

∑
i

Fi (65)

So the resulting governing equation for cell mechanics reads

mi
dvi

dt
=
∑

Fij
cca + Fij

ccr + Fi
cmba + Fi

cmbr + Fi
drag (66)

This is a system of second-order ordinary differential equations governing the cell center posi-

tions, with one equation for each degree of freedom.

It is important to note that the world of microscopic organisms involves fluids that are highly

viscous in nature and dominate any inertial forces that may be present [43]. Given these conditions,

the physics that governs the movements of these organisms at a microscopic level can be described

by a low Reynolds Number [44,45]. The Reynolds Number is a dimensionless quantity that is based

on the Navier-Stokes equation, which describes the motion of an incompressible Newtonian fluid.

It represents the ratio of inertia to viscosity of a fluid [46] and it allows for a qualitative description

of the flow regime from the Navier-Stokes equation [45]. In this context, biological cells are highly

dissipative objects, for which viscous forces greatly exceed inertial forces. Thus, the motion of cell

deformations due to the force acting on the cell membrane is usually assumed to be overdamped,

with inertial terms being negligible when compared to dissipative terms. This is commonly known

as the inertialess assumption, mi
dvi

dt ≈ 0, and assumes that forces equilibrate at relatively fast time

scales in contrast to the ones of cell cycling, death cycling and volume variation. Then, equation

66 reduces to
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vi =
1

νi

(∑
Fij

cca + Fij
ccr + Fi

cmba + Fi
cmbr

)
(67)

Now we can use numerical methods to solve this equation.

For an initial value problem stated as

dx

dt
= f(t,x) (68)

with

x(t0) = x0 (69)

a numerical scheme provides an approximation for function values xn ≈ x(tn) at discrete time

points tn, n = 1, ..., N . The simplest numerical scheme is the forward Euler method. It calculates

the next function value by taking a step in the direction of the current gradient [47]. This method is

a first-order scheme, meaning that as long as the time step, ∆t, is sufficiently small, the local error

in one single time step is proportional to ∆t2 and the global approximation error is proportional to

∆t. That means that if one halves the step size for a first-order scheme makes the solution twice

as accurate.

Higher order schemes such as the midpoint rule [48], improve the convergence rate at the cost of

additional function evaluations. This is a second order method which means that halving the step

size divides the error by four. Hence, less steps are needed to achieve a given accuracy compared

to the forward Euler method, although each single step will be more costly.

Both methods are one-step methods, meaning that they calculate the function value at the

next time point based on only the current function value. Multi-step methods additionally take

past function values into account. One of the simplest two-step methods is the Adams-Bashforth

method [47],

xi(t+∆t) = xi(t) +
1

2
∆t (3vi(t)− vi(t−∆t)) (70)
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In addition to the order of the scheme, the schemes stability is an important characteristic, a

numerically unstable solution will oscillate and grow without bounds, even though the true solution

does not. In this case the step size needs to be reduced to recover a stable, bounded solution.

The stability region depends on both the numerical scheme and on the ODE problem to be solved

and this imposes an upper bound on ∆t for which the scheme can be used. The forward Euler

method has very poor stability properties and may hence require very small time steps. For all the

previously mentioned, we use the Adams-Bashforth method to compute the cell position.

3.5.1 Numerical implementation

When working with cell interactions, the efficiency of the program is mainly determined by the

efficiency of the computation of the forces which act upon those cells [49]. For example, lets assume

a simulation with N = 1000 cells. In each time step all possible pairs of cells have to be considered

with respect to their interaction force, hence, N(N −1)/2 ≈ 500000 force computations are needed.

In our model we work with short-range interactions, meaning that most of those force evaluations

are unnecessary because the corresponding cells are located far away from each other. Moreover,

for approximately equal-sized cells each single particle can be in contact with not more than about

12 other cells (Fig. 11), hence, only about 6N = 6000 force computations are necessary. This

number is notably smaller than the 500000 computed before and allows us save a lot of computer

time. Therefore, we need a method to reduce the number of pair interactions which are considered

at each time step.

As we have mentioned before, the forces we are considering are of short range so the force

computation can be restricted to pairs of cells which are nearest neighbors. But to decide which

cells are nearest neighbors is not trivial at all since every pair of close cells have to be considered.

The intuitive solution would be to simply check whether all pairs of cells are neighbors or not, but

this will lead to about 500000 computations again. To avoid it we have implemented the so called

Link cell algorithm. Here the simulation domain of size Nx×Ny×Nz is discretized into nx×ny×nz

identical rectangular voxels. It is very important to notice that the discretization of the domain for

the mechanics computations is not the same discretization that we have used for the diffusion in the
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biochemical microenvironment. The voxel size is bigger in the mechanical discretization that the

one in the diffusion discretization (section 4). But the most significative difference is the neighbor

lists. For the microenvironment discretization we have used a Von Neumann neighborhood (Fig. 14)

in which each voxel has 6 neighbors connected by their faces. While in the mechanics discretization

we have used the Moore neighborhood (Fig. 15), in which each voxel has 26 neighbors, that is,

every voxel in contact with the mean voxel.

Figure 14: Von Neumann
neighborhood (green voxels).

Figure 15: Moore neighbor-
hood (green voxels).

Figure 16: Moore neighbor-
hood restricted by the com-
mutativity relation.

Each cell is assigned to the voxel which contains its center so each voxel stores a list of cells

that reside within it. These lists are used to reduce the number of force evaluations. It is worth

mentioning that since these lists are used to identify collision partners, the voxel size must exceed

the diameter of the largest cell. Then, for example, any cell belonging to voxel 13 (Fig. 15) can then

interact only with cells from the same voxel or from the neighbor voxels 0−26. Using commutativity

of the neighborhood relation (if i is a neighbor of j then j is a neighbor of i too), it is sufficient to

restrict the search to the voxels 13− 26 (Fig. 16).

To efficiently determine the possible collision partners of cells, at the beginning of the simulation

each voxel is assigned a list of neighboring voxels which stays invariant during the simulation. Those

list will depend on how we take the boundary conditions. In our model we can chose between

periodic boundary conditions, free boundary conditions (walls) or both. Finally the cell interaction

forces can be computed using the list of cells stored in each voxel and the ones stored in the adjacent

voxels. In our model the interaction forces with all other cells located in the same voxel are first
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computed, then we proceed with the interaction with the cells located in the neighboring voxels.

Because neighborhood relations between particles change only slowly, i.e., two particles which

are close to each other at a given time will stay close, at least in the following few time steps, we

update the voxel lists of particles every tv (numerical value in section 4). But even if the lists were

constructed in each simulation time step this operation is not too time consuming since it scales as

O(N).

3.6 Secretion and uptake

This is one of the most important parts of the cell’s data structure because it links it to the

microenvironment. We add the cell supply/uptake term to equation 2 such that for each cell k,

Ωmk be the voxel containing the cell center i.e. xk ∈ Ωmk

∂ρ

∂t
= ∇ · (D ◦ ∇ρ)− λ ◦ ρ+

∑
cells

Wkδ(x− xk)
[
Sk ◦

(
ρ∗
k − ρn+1

)
−Uk ◦ ρn+1

]
(71)

where Wk is the cell’s volume, x, and xk are voxel’s and cell’s centers, Uk are the cell’s uptake

rates, Sk are the cell’s secretion rates and ρ∗ are the saturation densities. δ(x − xk) is the Dirac

delta function, which we approximate by

δ(x− xk) ≈


1

Vik
if x ∈ Ωik

0 elsewhere

We solve for ρn+1 with the implicit time discretization as we did in section 2 with the microen-

vironment diffusion solver

ρn+1 − σ

∆t
=
∑
cells

Wkδ(x− xk)
[
Sk ◦

(
ρ∗
k − ρn+1

)
−Uk ◦ ρn+1

]
(72)

Finally, we iterate over all cells k with

ρn+1
ik =

(
σmk +∆t

Wk

Vmk
Sk ◦ ρ∗

k

)
(
(
1+∆t

Wk

Vmk
(Sk +Uk)

)
(73)
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where ( represents termwise division. These operations can be safely parallelized across the pro-

cessor cores.

3.7 Death

At a cell scale death is not an instantaneous event but a process, which means that the cell is

dying, not death. In fact it is using energy to degrade. Cell death has traditionally been described in

morphological terms (apoptosis, autophagy, necrosis) but since 2005 the Nomenclature Committee

on Cell Death (NCDD) presented a series of details in the terminology of regulated cell death

(Intrinsic apoptosis, Extrinsic apoptosis, Necroptosis, Ferroptosis, Pyroptosis, Pantharnos, Entotic

cell death, NETotic cell death, etc) outlining the phenomena that initiate it and differentiating the

different molecular mechanisms involved but having as a starting point the initial morphological

classification [7]. We model the death process in a similar manner as we did with the cell cycle, so we

have death models. At any time, each agent has one or more death rates which can be continually

updated. For any death rate ri and any time interval [t, t+∆t], the cell has a probability of entering

the corresponding death state given by

1− exp (ri∆t) ≈ ri∆t (74)

We model two types of deaths: Apoptosis and Necrosis.

3.7.1 Apoptosis

As we have mentioned before, if cells fail to repair their DNA damage they induce apoptosis.

Apoptosis is a form of programmed cell death that occurs in multicellular organisms [50]. Bio-

chemical events lead to characteristic cell changes (morphology) and death. These changes include

blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, DNA fragmentation, and

mRNA decay. It is a highly regulated and controlled process that confers advantages during an

organism’s life cycle. Apoptosis can be initiated through one of two pathways. In the intrinsic

pathway the cell kills itself because it senses cell stress, while in the extrinsic pathway the cell kills
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itself because of signals from other cells. Weak external signals may also activate the intrinsic path-

way of apoptosis [51]. Both pathways induce cell death by activating caspases, which are proteases,

or enzymes that degrade proteins. The two pathways both activate initiator caspases, which then

activate executioner caspases, which then kill the cell by degrading proteins indiscriminately.

Upon entering the apoptosis death model, we set the target nuclear solid volume V ∗
NS = 0 to

simulate the degradation of the nucleus, fCN = 0 to simulate the shrinking and blebbing of the

cytoplasm, and fF = 0 to simulate the active elimination of water from the cell. The rate parameters

rN , rC , and rF are reset with apoptosis-specific rates to reflect the timescales of nuclear degradation,

water loss, and cytoplasmic blebbing. Water loss occurs relatively quickly as cytoplasmic blebbing

in contrast to the nucleus degradation. Please check the parameters values in section 4. When the

cell completes the apoptosis death cycle time, it is removed from the simulation.

3.7.2 Necrosis

Sustained hypoxia, i.e. when the oxygen concentration is not enough to keep the cells alive,

such as that encountered in ischemic tissue [52–54] and in larger tumors [55, 56], can lead to ATP

depletion and consequently cell death. This unplanned cell death is referred to as necrosis.

When a cell becomes necrotic, its surface ion pumps cease to function, resulting in osmosis of

water into the cell, cell swelling, and subsequent bursting [57]. This differs from apoptosis, where

the volume loss is orderly and the intracellular contents are contained in apoptotic bodies [57].

In necrotic cells, the remaining solid cell fraction is generally not phagocytosed by surrounding

cells, as they themselves are typically also necrotic. In some cancers (e.g., breast cancer [58],

liver cancer [59], ovarian cancer [60], and lymphoma [61,62]) and other pathologic conditions (e.g.,

tuberculosis [63] and abscesses [64, 65]), necrotic tissue can undergo calcification: the solid cell

components are replaced by calcium phosphate and/or calcium oxalate molecules that bond together

to form calcite crystals that grow into hard microcalcifications [66]. But it should be noted that

there are several regulated pathways that also trigger necrosis cell death (Necroptosis, Ferroptosis,

Pyroptosis, etc) [7].

To model necrosis we assume that any cell (in any cell cycle model) at any time interval [t, t+∆t],
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can enter the necrotic state, with rate rnecrosis. The necrosis death rate parameter is set dynamically

according to the microenvironmental conditions (oxygen concentration) as shown in equation

rnecrosis =


rnecrosis if O2 < O2,nec max

rnecrosis

(
O2,nec limit−O2

O2,nec limit−O2,nec max

)
if O2,nec limit ≤ O2 ≤ O2,nec limit

0 if O2,nec limit < O2

where O2 is the current oxygen concentration at the cell’s voxel, O2,nec limit is the oxygen limit value

at which necrosis starts and O2,nec max is the oxygen value at which necrosis reaches its maximum

rate.

When a cell becomes necrotic it initially swell by oncosis (cell death-related swelling), ruptures

(lysis), and slowly degrade. So when entering the necrotic death model we set fCN = V ∗
NS = 0 to

model cytoplasmic and nuclear degradation, fF = 1 to model oncosis and fF = 0 to model lysis.

The rate parameters rF , rN , and rC are set to match expected time scales throughout necrosis.

Please check section 4 for numerical values.

3.8 Cancer cell

The correct interpretation of growth and inhibitory signals is key to maintaining healthy tissues.

If the cell receives both growth-promoting and -inhibiting signals, its behavior is determined by the

balance of the signals and the resulting gene expression pattern. Two types of genes are particularly

relevant to regulating cell proliferation. Oncogenes respond to or create growth signals and promote

cell cycle progression. Tumor suppressor genes (TSGs) respond to inhibitory signals, retard or halt

the cell cycle, ensure proper DNA repair, and may trigger apoptosis under certain circumstances.

Cancer initiation, or carcinogenesis, starts with the malfunction of one or more of these types

of genes [67]. Genetic mutations can cause overactivity in oncogenes and impair the function of

tumor suppressor genes. Sometimes, a single uncorrected point mutation is sufficient to affect the

function of an oncogene [68] or functionally neutralize a tumor suppressor gene [69]. In other

cases, cell division errors (e.g., during M phase) can create a mutant fusion oncogene, where the
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protein coding portion of an oncogene is mistakenly fused with the triggering portion of another,

frequently expressed gene. As a result, signals are “misrouted” to the oncogene, thus boosting its

activity. Because normal cells possess two copies of each tumor suppressor gene, both copies must

be damaged for a total loss of function of the gene. While the probability of independent mutations

in both copies of the TSG is ordinarily small, loss of heterozygosity (two damaged copies of the TSG

are passed to a daughter cell) can significantly accelerate the process [70]. Furthermore, the loss of

just one TSG copy can significantly impair its activity and increase the probability of completing

a multi-step carcinogenesis pathway [71].

Next we will discuss the main differences between cancer cells and healthy cells. Our discussion

primarily focuses upon carcinomas (cancers arising from epithelial cells).

3.8.1 Cycle

As we have mentioned before, cancer occurs when defective genes cause cells to malfunction

and interact with the body in an aberrant, hyperproliferative manner (either by increased cell

proliferation or reduced cell apoptosis). Thus, in contrast to healthy cells, cancer cells grow and

divide in an uncontrolled manner, invading normal tissues and organs and eventually spreading

throughout the body. To model this behavior, we use the same cell cycles as we did with healthy

cells but cancer cells do not enter in the quiescent state after a given number of divisions. Therefore

cancer cells proliferate indefinitely.

Another difference between healthy cells and cancer cells is the presence of a mutant oncoprotein,

o, in the last. This mutant oncoprotein is assumed to increase immunogenicity proportionally to o,

similarly to mutant tumor-associated epitopes being presented on MHCs (major histocompatibility

complexes) [72, 73]. This is meant to model intratumoral heterogeneity. So, we assign each cell a

random expression of this oncoprotein such that 0 ≤ o ≤ 2, with a normal distribution with mean

1 and standard deviation of 0.25 approximately. Then we adjust the model to set the rate of the

stochastic cell cycle entry to scale proportionally not only to oxygen but to the oncoprotein. Then,

eq. 32 becomes:
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r−+ = o

[
1

tK−
max

{(
O2 −O2,prol

O∗
2 −O2,prol

)
, 0

}]
. (75)

Therefore an increased oncoprotein increases the rate of cell proliferation.

3.8.2 Secretion

In addition to the oxygen consumption that healthy cells also present, in our model, cancer cells

secrete an immunostimulatory factor. This substrate models a chemokine such as basic fibroblast

growth factor (bFGF) [74], which diffuses according to the differential equations we have previously

introduced in sections 2 and 3.6.

3.8.3 Death

In our model cancer cells can also undergo two types of cell deaths: Necrosis and Apoptosis.

The first one will be induced by the lack of nutrients, particularly oxygen, in the tumor microenvi-

ronment. The second one will be induced, for example, by lymphocytes when immunotherapies are

applied [75]. Please refer to sections 3.7.2 and 3.7.1 respectively to learn more about those death

models.

3.8.4 Angiogenesis

As we have mentioned before, in its first stage, the tumor has no vascular system of its own,

and so it must rely upon the host vasculature in the nearby stroma for crucial oxygen, nutrients,

and growth factors. This substrates diffuse from the surrounding vascularized tissue, enter the

tumor, and are uptaken by tumor cells. The motion of substrates from external sources (the host

vasculature) to internal sinks (the metabolically active tumor cells) causes substrate gradients to

form within the tumor.

Of particular importance is oxygen, which generally diffuses on the order of 100 − 200µm into

tissue before dropping to levels insufficient for cellular metabolism [55, 56, 76]. Interior tumor cells

experience hypoxia and respond to their harsher microenvironment in a variety of ways. Deeper
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within the tumor, oxygen drops to critically low levels that cause the tumor cells to necrose.

These dynamics are manifested as an outer tumor viable rim of proliferating cells, an interior

band of hypoxic cells, and a central necrotic core. Once the cells reach this state, the next stage

in cancer development, that can be viewed as a response to hypoxia, is angiogenesis. Angiogenesis

is the formation of new blood vessels, in which the tumor induces endothelial cells to form a new

vasculature that directly supplies the tumor with the nutrients, enabling further expansion. Some

of the same mechanisms responsible for angiogenesis play a role in metastasis, the spread of tumor

cells to distant locations.

We approximate this phenomena by using the Dirichlet nodes. They allow us to overwrite the

substrates values so that there is a direct supply of oxygen and other nutrients within the tumor.

With this fresh supply of nutrients, the tumor can now begin a new stage of rapid growth into the

surrounding tissue.

Future improvements of our work will include excluded volume on the Dirichlet nodes, so the

cancer cells would not step on the blood vessels.
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4 Parameters for the main examples

4.1 General

Parameter Value Units Reference
Microenvironment Parameters

Ωx × Ωy × Ωz 1000× 1000× 1000 µm -
∆x×∆y ×∆z 20× 20× 20 µm -

DO2
105 µm2/min [77]

λO2 0.1 min−1 [37]
DGF 106 µm2/min -
λGF 0.5 min−1 -
BC No flux at the boundaries - -

ρvessels,O2
38 mmHg [78]

Cell Mechanics Parameters
nx, ny, nz 30× 30× 30 µm -

RA 1.25Rcell µm [40]
Cccr 10.0ν µm/min [79]
Ccmr Cccr µm/min -
p 0 dimensionless -

Table 4: Numerical values of the input parameters used in all the examples.

Time Parameters
Parameter Value Units Reference

tTot 43200 min -
tsave 1440 min -
∆tcycle 6 min [36]
∆tmech 0.1 min [36]
∆tdiff 0.01 min [36]

tv 20∆tmech min -

Table 5: Times used in all the examples.
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4.2 Liver regeneration

Parameter Value Units Reference
Cell Parameters

V 8000 µm3 [80]
VN 268 µm3 [81]
O∗

2 38 mmHg -
O2,prol 10 mmHg -
GFprol 0.25 dimensionless -
SO2

0 min−1 -
UO2

10 min−1 -
Cell Cycle Parameters

tG1 21.6 hs [82]
tS 7.0 hs [82]
tG2 3.4 hs [82]
tM 1.6 hs [82]
ndiv 1 dimensionless [16]

divprob 0.7 dimensionless [16]

Table 6: Numerical values used for liver regeneration

4.3 Tumor growth

Parameter Value Units Reference
Cell Parameters

V 8000 µm3 [80]
VN 268 µm3 [81]
O∗

2 38 mmHg -
O2,prol 10 mmHg -
SO2

0 min−1 -
UO2

10 min−1 -
Cell Cycle Parameters

tG1 20.4 hs [82]
tS 13.6 hs [82]
tG2 3.0 hs [82]
tM 1.6 hs [82]
ndiv ∞ dimensionless -

Table 7: Numerical values used for Hepatocellular carcinoma recurrence
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