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1. Supplementary methods 

1.1. Rationale 

The structure of human contact networks both facilitates and constrains the spread of pathogens. 

Particularly for HIV infection, the epidemic emerges first in specific subpopulations whose 

behavioural characteristics expose them to a higher risk of HIV infection [1]. In most countries 

the HIV epidemics remain concentrated in these high-risk subpopulations (core groups) 

including men who have sex with men (MSM), injecting drug users (IDUs), and female sex 

workers (FSWs) [2]. The high connectivity between individuals that are part of these 

subpopulations boost the transmission, maintaining a sustainable HIV epidemic (basic 

reproductive number [R0 > 1]). In concentrated epidemics several factors, including the 

configuration of the network, prevent the dispersion of the epidemic into the general population 
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(Figure S1 A). Besides few outflows of infections from the core groups, the epidemic remains 

enclosed in the core groups and is not sustainable in the general low-risk population (R0 < 1). 

The realization that heterogeneity in contact numbers can have a large impact on the 

transmission of a pathogen has produced considerable interest in networks in epidemiology. 

Through the study of network models, it would be possible to understand that contact network 

structure has a profound influence on epidemic dynamics and whether control strategies will be 

effective [3, 4]. Yet data on human contact networks are notoriously difficult to gather. Novel 

surveillance methodologies have been developed to study HIV epidemiology among high-risk 

subpopulations [2, 5-8]. Repeated integrated bio-behavioral surveillance surveys that incorporate 

state of the art sampling methodologies to reach hidden populations, such as respondent driven 

sampling, network scale-up, and capture-recapture methods, provide the best approach to study 

these key core groups [9-11]. Likewise, control interventions have been designed to defeat the 

epidemic in these core groups, and countries are moving towards allocative efficiency resource 

allocation targeting these high-risk subpopulations (Figure S1 B). 

The HIV epidemic in several countries in sub-Saharan Africa (SSA), however, has escaped from 

the high-risk subpopulations (Figure S1 C), and successfully invaded and maintained sustainable 

levels of transmission in the general population (R0 > 1). This complex epidemiological context 

challenges the concept of targeted interventions to behavioral core groups, and difficulties the 

identification of vulnerable population at high risk of infection.  

Recent evidence suggests that the HIV epidemic in SSA is characterized by a spatially structured 

transmission of the infection, with geographically located micro-epidemics (geographical HIV 

clusters) [12-15]. In this study, we argue that these geographical HIV clusters expose the location 

of vulnerable population at high risk of infection. Likewise, new hope for the empirical study of 

contact networks has emerged in recent years from the widespread availability of pathogen 

molecular sequence data. Phylogenetic analysis of HIV sequences is an excellent adjunct to 

enumerating networks and allows for tracking of local transmission patterns. In epidemiological 

phylogenetic analysis, sequence data is already commonly used to link individuals into probable 

transmission pairs or clusters based on the evolutionary relationship between their pathogens. 

While such approaches cannot fully reveal the structure of contact networks due to the inherent 

limitations of sampling, phylogenetic approaches to study pathogen spread provide a useful 

heuristic for identifying networks and assessing the connectivity between different 

subpopulations or risk-groups.  

Against this background, here for the first time a spatially explicit phylogenetic transmission 

network of a community with a generalized HIV epidemic and the transmission intensity from an 

HIV high-risk location were analyzed. We argue that if the HIV geographical high-risk 

populations have a role similar to the one played by behavioral core groups in transmission 

networks of concentrated epidemics then they could be key drivers of the transmission dynamics 

of the generalized epidemic. Targeting these geographical core groups, would not only impact 
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HIV incidence within the geographical HIV cluster, but also disrupt the entire transmission network 

of the community (Figure S1 D).   

 

 

Figure S1. A) In most countries the HIV epidemics remain concentrated in these high-risk subpopulations (core 

groups. B) Control interventions target behavioral core groups in concentrated epidemics. C) HIV epidemic invades 

the general population in generalized epidemics. D) Control interventions target geographical core groups in 

generalized epidemics. Black figures represent susceptible individuals, whereas red figures represent infected 

individuals. Maps were created using ArcGIS by Esri version 10.5 (http://www.esri.com) [16], and basemaps were 

obtained from ESRI and OpenStreetMap available at ArcGIS Online basemaps 

(https://www.arcgis.com/home/item.html?id=b834a68d7a484c5fb473d4ba90d35e71). 

1.2. Data sources 

2. Data come from one of the most comprehensive demographic surveillance systems in 

Africa— the Africa Health Research Institute (AHRI) Population Intervention Platform 

Surveillance Area (PIPSA)[17]. This surveillance system is located in Hlabisa subdistrict, 

one of the five subdistricts in the rural district of Umkhanyakude in northern KwaZulu-Natal, 

South Africa (Figure S2). This surveillance system has routinely collected socio-

demographic, behavioral and epidemiological information on a population of ~90,000 

participants within a circumscribed geographic area (438 km2) for over a decade (Figure S2).  

A B

C D
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Figure S2. A) location of the Kwazulu-Natal province (red) in South Africa; B) a close-up of the Kwazulu-Natal 

province with the area sampled (red); C) grid composed by 108 cells of 3km X 3km dimension that covered the 

entire surveillance area for spatial aggregation of the data. Maps were created using ArcGIS by Esri version 10.5 

(http://www.esri.com) [16], and basemaps were obtained from ESRI and OpenStreetMap available at ArcGIS 

Online basemaps (https://www.arcgis.com/home/item.html?id=b834a68d7a484c5fb473d4ba90d35e71). 

 

Between Jan 1, 2011 and Dec 31, 2014, 36,035 individuals between 15-54 registered in the 

surveillance were residents in the study area. Of these, 26,984 individuals were offered to 

participate in the population-based annual HIV testing. Of these, 18,548 individuals (for a total 

of 29,030 records) consented and participated in the annual HIV testing. All of them consented 

and provided dried blood spots samples. Of these 5, 619 individuals were HIV-positive, and 

1,426 samples with >10,000 RNA copies/ml were included for phylogenetic analyses (Figure 

S3). 
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Figure S3. Flow chart of study population 

 

2.1. Simulation models  

Two microsimulation models were designed to assess the association between the HIV 

geographical high-risk population and the transmission link configuration observed. All two 

microsimulations used data from the total sampled population, in which the geo-location of each 

participant as well as the number of transmission links were used. In each microsimulation, the 

number of links subject to the location of participants with respect to the HIV geographical high-

Individuals (15-54 years) resided in the 
study area between 2011-2014

N=36,035 (80,714 records)

Offered to participate population-based 
annual HIV testing

N=26,984 (46,669 records)

Participated population-based 
annual HIV testing

N=18,548 (29,030 records)

Consented and provided dried 
blood spot sample

N=18,548 (29,030 records)

Confirmed for HIV serostatus
N=18,511 (28,915 records)

HIV-negative
N=12,671

Samples with >10,000 
RNA copies/ml 

N=1,426

HIV-positive
N=5,624

Not contacted
N=9,051 (34,045 records)

Refused to participate
N=8,436 (17,639 records)

Invalid samples or 
indeterminate HIV test results 

N=37 (115 records)

Included in the study
(based on the latest sample available)*

N=18,295

Samples unavailable or invalid 
for sequencing

N=216 (553 records)
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risk populations (within, outside, or in both sides of the geographical HIV cluster) as well as the 

distance of the links were recorded. All results were based on the average of 10,000 realizations 

of the model.  

2.1.1. Model 1.  Random link formation model  

For this model, the probability of a link formation between individuals is independent of the 

distance between individuals or the location of the individuals related to the geographical HIV 

cluster. The algorithm randomly selects two individuals and generates a link between them. The 

microsimulation repeats this process until the number of links (n = 350) is reached. The flow 

diagram in Figure S4 illustrates the steps of this model. 

 

 
Figure S4. Flow diagram for the random link formation model 

2.1.2. Model 2. Gravity model  

For the gravity model, in the first step two individuals are selected based on their location with 

respect to the geographical HIV cluster, in which individuals located within the geographical 

HIV cluster have 40% higher likelihood (value derived from the HIV spatial risk estimation), of 

being selected for a link formation. Then, the distance between individuals is measured, and the 

location of the individuals related to the geographical HIV cluster (if the individuals are located 

within or outside the geographical HIV cluster) is recorded. For this microsimulation, in the first 

step an individual is randomly selected. In the next step, the distance between individuals is 
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measured and the probability of link formation is estimated using the following exponential 

decay function, 

     (1) 

In which  is a fitted parameter, and dist is the distance between individuals being evaluated, and 

if one of the individuals is located within the geographical HIV cluster, the likelihood of ling 

formation is increased by 40%. The flow diagram in Figure S5 illustrates the steps of this model. 

 

Figure S5. Flow diagram for the gravity model 

2.1.3. Model fitting 

Model 2 was fitted to six measures derived from the transmission link data: number of links 

within, outside and in both sides of the geographical HIV cluster, and average distance of links 

within, outside and in both sides of the geographical core area. Fitting procedure was performed 

using a nonlinear least-square fitting method that incorporates an algorithm implemented in 

distProbability of link formation e − =
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MATLAB® [18] that minimizes the sum of squares between all measures and the model, using 

the Nelder–Mead simplex algorithm as described elsewhere [19]. 

2.1.4. Goodness of fit of the models 

The evaluation of the performance of the two different microsimulations was conducted using 

the root mean squared error (RMSE) approach. After conducting 10,000 realizations of the 

model, the RMSE of each of the six measures fitted were calculated. Each RMSE was calculated 

as the square root of the average squared difference between the observed measure i (Oi) and the 

measure estimated by the model (Ei) as following,   

                      (2) 

3. Supplementary results 

3.1. Intra-household transmission 

Figure S6 illustrates the location of heterosexual links located in the same household (red dots), 

and the location of participants involved in a heterosexual link that were located in different 

households (green dots). The map only included participants from heterosexual links in which 

age difference between the couples was ≤5 years.  

 

Figure S6. Geographical location (green dots) and kernel density map of households in which a male and a female 

living in the same house were not phylogenetically linked (n= 29), and households in which a male and a female 

living in the same house were phylogenetically linked (n= 4) (red dots). Black circle enclosed the geographical HIV 

cluster. Maps were created using ArcGIS by Esri version 10.5 (http://www.esri.com) [16]. 
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3.2. Phylogenetic cluster 

From the 1,426 HIV Pol sequences included in the phylogenetic analyzes, the homestead geo-

location of the sampled individual was available for 1,222 sequences. From these 1,222 

individuals we identified that 333 were linked in 132 phylogenetic transmission clusters with 

sizes ranging from 2 sequences to 11 (Figure S7 A). These clustered individuals accounted for a 

total of 350 transmission links, whose geo-location is illustrated in Figure S8 A. The geo-

location of non-phylogenetically linked individuals is illustrated in Figure S8 B. The proportion 

of individuals sampled from inside the identified geographical HIV cluster was roughly the same 

among individuals in phylogenetic cluster and in the whole dataset of sequences (Figure S7 B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7.  A) Cluster sizes distribution for the identified phylogenetic transmission clusters. B) Proportion of 

samples from the geographic HIV cluster in each analyzed group of sequences.  
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Figure S8. A) Geographical distribution of participants that were phylogenetically linked in a transmission cluster, 

and B) participants that were not phylogenetically linked. Red circle indicates the location of the geographical HIV 

cluster. Spatial random error in the geographical references was introduced. Maps were created using ArcGIS by 

Esri version 10.5 (http://www.esri.com) [16]. 

 

 

3.3. Microsimulation results 

 

Figure S9 illustrates the results of one of the realizations of each model compared with the 

transmission link data.  

 

 

Figure S9. Comparisons among average distance of transmission links derived from the models (A) and distribution 

of transmission links (B).  Distribution of the transmission links derived from the random model (yellow bars; 

RMSE = 113.17). Distribution of the transmission links derived from the gravity model (orange bards; RMSE = 

16.37).  
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3.4. Spatial variables 

The geographical HIV cluster identified is located in a high population density area and high 

urban development (Figure S10). Individuals outside to the geographical core area and that 

belong to an HIV transmission link appears to be dispersed across the study area without a clear 

spatial pattern (Figure S11).  

 

Figure S10. Population density [20] and nightlight intensity [21] in the area of study. Blue circle enclosed the 

geographical HIV cluster. Maps were created using ArcGIS by Esri version 10.5 (http://www.esri.com) [16]. 
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Figure S11. Transmission link locations with respect to population density within the geographical HIV cluster [20] 

(A, B). Transmission link locations with respect to accessibility [22] within the geographical HIV cluster (C, D). 

Blue circles enclosed the geographical HIV cluster. Spatial random error in the geographical references was 

introduced. Maps were created using ArcGIS by Esri version 10.5 (http://www.esri.com) [16]. 
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