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Methods 1

Here we present a summary of our data sources and methods. We provide details on 2

pre-processing for data from Johns Hopkins’ daily death counts, the American 3

Community Survey, the Center for Medicare and Medicaid Services, the VERA 4

Institute, the Center for Disease Control’s PLACES dataset, the US Department of 5

Transportation, the Oxford COVID-19 Government Response Tracker, the New York 6

Times, Delphi Epidata, Google, and The COVID Tracking Project. We then provide 7

details on our clustering and modeling methodology. 8

Data Sources 9

The section presents the data sources and caveats for the variables studied in this 10

analysis. 11

Response Variable 12

County-level COVID-19 death is provided by the Center for Systems Science and 13

Engineering at Johns Hopkins University’s publicly available data repository [1]. We 14

limit our data to the 50 states and Washington D.C. We also apply a 7-day average to 15

smooth the daily death counts to account for noise in the data. 16

American Community Survey 17

We obtain race/ethnic composition, education, age, income, population density, and 18

household crowding from 2019 5-year estimates of the US Census Bureau American 19

Community Survey (ACS) [2]. We break down race/ethnicity by percent white (not 20
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Hispanic), Black, Asian, Hispanic, and other. Each white non-Hispanic, Black 21

non-Hispanic, Asian non-Hispanic, and Hispanic percentage indicate estimates for the 22

number of individuals who are precisely one race/ethnicity. 23

We calculate education as the percent of the population with at least a high school 24

diploma. A high ”education” value indicates a highly educated county. We also break 25

down age by percent of the population under the age of 19 and the percent of the 26

population over the age of 65. Income represents the median household income of a 27

county, and population density is calculated by dividing a county’s population by its 28

available land area, as provided by the Census Bureau. Finally, household crowding is 29

also provided by the ACS and is the estimation of the number of households with more 30

people than rooms. 31

We note that the values of all variables from the ACS are considered constant across 32

the pandemic and were gathered before COVID-19 hit the US. This means, for example, 33

that our income variable does not account for income shocks that occurred as a result of 34

the pandemic. 35

Center for Medicare and Medicaid Services 36

We obtain nursing home data from the Centers for Medicare & Medicaid Services, which 37

provide data for the average number of nursing home residents per day, organized by 38

provider [3]. We divide this number by a county’s population to determine the 39

percentage of the population that is in a nursing home. These data were most recently 40

updated in February 2021. As a result, the data might reflect the impact that 41

COVID-19 has had on the elderly population. 42

VERA Institute 43

We obtain incarceration data from the VERA Institute of Justice that determine jail 44

and prison populations at the county-level [4]. We elect to use only the jailed 45

population to proxy the incarcerated population because prison data was only available 46

in all states in 2014. In contrast, jail data has been available since 2018. Using 47

incarceration data that is more than five years old might not reflect the currently 48

incarcerated population. Delaware, Rhode Island, Vermont, and Connecticut do not 49

have local jails, and therefore, do not participate in the Bureau of Justice Statistics jails 50

data collection [4]. We assume that these states do not have any jailed population. 51

PLACES dataset 52

We obtain obesity data from the CDC’s PLACES dataset which is derived from the 53

Behavioral Risk Factor Surveillance Survey [5]. Obesity is calculated as the percentage 54

of the adult (18 years or older) obese population. 55

US Department of Transportation 56

Air Travel data is obtained from the US Department of Transportation and contains the 57

scheduled international passenger traffic every year [6]. We average the provided 58

quarterly numbers from 2019, yielding data on 250 airports. We then classify an airport 59

as a major international airport if it falls within the top third of airports with the most 60

international passenger traffic. We choose this threshold because the histogram of 61

international flights from the 250 airports is tri-modal (S7 Fig). We calculate the 62

distance to a major airport as the straight-line distance from the center of a county, as 63

provided by Johns Hopkins, to the closest major airport. If a county contains a major 64

airport, this distance is zero. 65
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Oxford COVID-19 Government Response Tracker 66

We determine governor stringency using the Oxford COVID-19 Government Response 67

Tracker (OxCGRT) [7]. OxCGRT tracks all government COVID-19 responses and ranks 68

each regulation on a scale from 0 to 100 based on the stringency of the response, where 69

100 is the most stringent. We calculate the average stringency for all state-wide 70

responses in each period, excluding the last four weeks of the period to account for the 71

lag between governor interventions and deaths [8]. 72

Election Results 73

Political leaning is obtained from The New York Times’ 2020 election data. We 74

calculate political leaning as the number of individuals who voted for Joe Biden 75

subtracted from the number of individuals who voted for Donald Trump divided by the 76

total number of voters. This calculation results in a value between -1 and 1, where a 77

value of -1 represents a county where all voters voted for Joe Biden, and a value of 1 78

represents a county where all voters voted for Donald Trump. 79

Delphi Epidata 80

Public mask usage data is obtained from Facebook’s COVID-19 symptom survey and is 81

an estimate of the percentage of people who wore a mask for most or all of the time 82

while in public in the five days before filling out the survey [9]. This survey contains 83

only data beginning on September 8, 2020. Because mask usage is known to be a 84

dynamic variable that has changed over the past year, we choose to include only mask 85

usage data for period 3 [10]. 86

Unfortunately, these data are sparse at the county level compared to our other data 87

sources. S10 Fig suggests that counties with these data might not be representative of 88

all counties. Of the counties without mask data, approximately 2000 are Republican, 89

and about 200 are Democratic. The excluded counties, however, tend to have higher 90

death rates. 91

Because of the limitation of these data, however, we present results both including 92

and excluding counties with mask usage data (Fig 5 and S6 Fig). 93

Google Mobility 94

We use Google’s mobility data as a proxy for social distancing and interactions between 95

individuals who do not live together [11]. Google provides these data as percent changes 96

in mobility from a baseline value. The data is separated into retail and recreation, 97

grocery and pharmacy, parks, transit stations, workplace, residential mobility. We 98

average the percent change in workplace mobility from the baseline in each period for 99

counties with available data. We choose to use workplace mobility because this is the 100

least sparse category that we believe still proxies for interactions between individuals 101

not living together. For a robustness check, we also averaged workplace and retail and 102

recreation mobility if counties had both data points available with similar results. If a 103

county did not have both data points available, we used only workplace mobility. 104

The COVID Tracking Project 105

We use The COVID Tracking Project’s Racial Data Tracker to obtain state-level 106

estimates of COVID-related deaths broken down by race and ethnicity. Because there 107

are no reliable county-level datasets on COVID-related deaths by race/ethnicity, we 108

multiply the state level estimates by the proportion of a state’s Black, Hispanic, or total 109
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population in a given county (using the Census Bureau’s state and county population 110

numbers). 111

Plotting 112

All maps are created using the U.S. Census Bureau’s 2019 county shapefiles [12]. S12 113

Fig plots counties using the urbnmapr package in R [13,14], which uses census shapefiles 114

under the hood. All other maps use Matplotlib to directly plot the county shapefiles. 115

S11, S13, and S14 Fig are constructed with R. All other plots are created with a 116

combination of Matplotlib [15], GeoPandas [16], and seaborn [17]. 117

Clustering 118

We first convert smoothed daily death data (using a 7-day smoothing) to z-scores (mean 119

subtracted from data, divided by the standard deviation) to allow cross-county 120

comparisons. These z-scores are stored in a matrix A where each row of the matrix 121

contains the standardized time series of death counts in a particular county, and each 122

column represents one day of data. The matrix A is 3067× 382 since we have 3067 123

counties and 382 days of data. 124

We then perform a k-means clustering on our data using Python tslearn’s 125

TimeSeriesKMeans package (with euclidean distance metric and 10 random 126

initializations) [18–20]. By clustering the data, we can think of the time series for each 127

county as a point in a 382-dimensional space. The k-means clustering algorithm can be 128

described as follows: (1) A total of k counties are randomly chosen as the initial cluster 129

centers. (2) All other counties are assigned to one of the k clusters based on their 130

minimum distance to the cluster means. (3) The new mean is then calculated as the 131

centroid of each k cluster. Steps (2) and (3) are repeated until convergence is reached. 132

We use simple Euclidean distance for this analysis, although we also tried other distance 133

metrics such as dynamic time warping, and we obtained similar results. 134

We select the number of clusters (k) using an elbow plot. An elbow plot for k-means 135

clustering shows the total distance from each county to its assigned cluster center. 136

Because increasing the number of clusters decreases the total distance, a “kink” in the 137

elbow plot represents a new cluster that does not significantly reduce the total distance. 138

Then, a kink in the elbow plot does not significantly reduce the total distance, thus 139

yielding a reasonable choice for k. S9 Fig shows the elbow plot that results from 140

performing k-means clustering on A. We observe a kink in the plot around k = 3 and 141

therefore choose to perform 3-means clustering. To select the optimal clusters, we run 142

3-means clustering with ten different combinations of counties as the initial three 143

clusters and select the configuration with the smallest total distance from each county 144

to the cluster center. 145

Model Details 146

In this section, we present the model details for our virus introduction and virus spread 147

models. 148

Virus Introduction Models 149

To predict virus introduction, we run a logistic regression without any regularization. 150

We consider the virus to be introduced to a county in a given period if at least five 151

deaths occurred in the county throughout the period. To account for spatial 152

autocorrelation, we include latitude and longitude on all models. We choose to exclude 153

latitude and longitude in our visualization of feature importance and model coefficients 154
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because latitude and longitude are not inherent measures of risk or disease spread. We 155

additionally run a logistic regression with L1 regularization to predict virus introduction 156

as a robustness check. 157

Virus Spread Models 158

Regressions. To predict virus spread, we first run two different regressions: a LASSO 159

regression and a random forest regression. The LASSO regression can help select only 160

the most important variables, and the random forest regression captures nonlinearities 161

in the data. To calculate feature importance in the random forest regression, we 162

calculate permuted feature importance. This metric perform a random permutation on 163

a given explanatory variable and calculates the resulting loss in accuracy of the model. 164

To address spatial autocorrelation in these regressions, we include latitude and 165

longitude as predictors in all models. 166

We run the LASSO regression using Python sklearn [21]. This regression seeks to 167

minimize the following objective function: 168

1

2 ·N
· ||y −Xw||22 + α · ||w||1 (1)

where N is the number of data points, y is the observed death rate, X is a matrix of 169

the independent variables, w is a vector of coefficients, and α determines how much to 170

penalize coefficients. A large α will force more coefficients towards zero. We run the 171

LassoCV model with values of α ranging from 0 to 1 with a step size of 0.001 and 5-fold 172

cross-validation. We then weight the regression by the log of a county’s population. 173

The second regression we consider is a random forest regression. To ensure that we 174

find the optimal model that does not over-fit when trained on all of our data, we first fit 175

the model using all variables but 70% of counties as training data. We perform a grid 176

search using 5-fold cross-validation on our training data and select the hyper-parameters 177

that yield the lowest Mean Absolute Error (MAE). The hyper-parameters on which we 178

perform the grid search are the following: (i) number of estimators (either 50, 70, or 90), 179

(ii) maximum number of features (either the number of features or the square root of the 180

number of features), (iii) maximum tree depth (between 5 and 100), (iv) the minimum 181

number of samples required to split a node (2, 5 or 10), (v) and the minimum number of 182

samples required for a leaf node (1, 2 or 4). We toggle bootstrapping on and off as well. 183

We repeat this process three times, which yields an optimal random forest configuration 184

for each period (see S16 Fig for out-of-sample predictions). Once we have these optimal 185

configurations, we fit the models on all counties and predict purely in-sample. 186

We test four monotonic transformations of our input variables to account for 187

nonlinear relationships between explanatory and response variables: squared, square 188

root, log, and exponential. If any of these transformations yields a higher Pearson’s 189

correlation with either death rate or log-transformed death rate than the correlation 190

between the untransformed variable and death rate, we apply the transformation to the 191

given variable. We find the optimal transformation for each variable in each period. In 192

all three time periods, most explanatory variables yield higher correlations to the log of 193

our response variables, so we take the logarithm of our response variable in the 194

remainder of our analysis. 195

Finally, it is important to distinguish between counties that are included in virus 196

introduction vs. virus severity. In our virus spread models, we consider a county that 197

was either introduced to COVID-19 in the period of interest or a previous period. In 198

our virus introduction models, however, we consider all counties and aim to predict 199

counties first exposed to the virus in the period of interest. For example, for virus 200

spread models in period 2, we only include counties that were introduced to the virus in 201
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period 1 or 2. In running period 2 virus introduction models, we only attempt to 202

predict counties first exposed to the virus in period 2 out of all counties. 203

Excluding Variables. Throughout our regression models, we choose to exclude 204

variables that are measures of a similar idea. Excluding these variables improves the 205

condition number of the matrix of explanatory variables, making our results more 206

trustworthy. The condition number is a measure of how much output can change given 207

a small perturbation in the input [22]. We remove density (as crowding serves as a 208

proxy), percent under 19 (as percent over 65 serves as a proxy), and certain 209

race/ethnicity variables (percent white not Hispanic, Asian, and other, as percent Black 210

and Hispanic serve as a proxy). We keep all obesity, education, and income despite their 211

correlations because these variables address different concepts and vulnerabilities. 212

Removing these variables reduces the condition number of the matrix of explanatory 213

variables from 133.99 to 107.41 for our virus introduction analyses. In period 2 spread 214

analysis, which only includes counties exposed in period 1 or 2, removing these variables 215

reduces the condition number from 150.98 to 119.35. Finally, in our period 3 spread 216

analysis, removing these variables reduces the condition number from 93.61 to 58.20 217

CAR Poisson Model. We also implemented a conditional autoregressive (CAR) 218

Poisson model of COVID-19 county death rates in the United States. The inclusion of a 219

conditional autoregressive spatial component in this model is intended to address how 220

robust the relationships are between observed covariates and COVID-19 death rates, 221

given the expected correlations in rates between counties which neighbor one another. 222

The implementation of our model is based on the Stan Case Study, Exact Sparse 223

CAR Models in Stan [23]. Spatial models, including CAR models and improvements on 224

the Besag-York-Mollié model, have often been used in current epidemiology and disease 225

risk mapping applications to distinguish spatially structured effects from the effects of 226

observed covariates [24,25]. 227

To describe our model, we write the deaths observed as y1, y2, ..., y2683 for each of 228

the 2,683 counties which have neighboring counties and for which all covariates were 229

available and hence were considered in our main manuscript. Letting Xi for i in 230

1. . . 2,683 represent the vector of observed covariates for the ith county and similarly Pi 231

represent the population of the ith county, we write that 232

yi ∼ Poisson(exp(Xiβ + ϕi + log(Pi))),

where β is a vector of the estimated coefficients for the covariates and ϕi is the 233

spatial component of the model. See [23] for the details of the prior distributions on β 234

and ϕ. This model is fit twice with data from periods 2 and 3 separately. 235

Given the computational complexity in fitting these models with over 2600 county 236

observations and a large number of covariates, we opted only to select the variables that 237

had the highest features importance measures in the LASSO and spatial linear models 238

from our main manuscript. To include parameters parsimoniously, we chose to include 239

parameters that appeared in the top three most important features from the LASSO 240

and spatial linear models for periods 2 and 3. Since we only modeled the probability of 241

counties being seeded during period 1 and did not model death rates, we have only 242

calibrated the spatial model presented here to the deaths data from periods 2 and 3. 243

All analyses for the CAR Poisson models were conducted using R version 4.0.2 [14] 244

and the model analyses were conducted in the Bayesian statistical computing and 245

modeling framework Stan using the No-U-Turns Hamiltonian Monte Carlo 246

Sampler [26,27]. 247

Spatial Lag Model. We also predict virus spread with a spatial lag model that 248

better accounts for spatial auto correlations. We run the spatial lag regression using 249

pysal’s ml lag model [28]. This model attempts to find the maximum likelihood 250

estimate of the following: 251
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y = ρWy + βX + ϵ (2)

where y is the median death rate, X is a matrix of independent variables, ρ and β 252

are the spatial autoregressive coefficient and independent variable coefficients, 253

respectively, and Wy represent the spatial lag. W is a weight matrix that determines 254

how heavily nearby counties impact a given county. For our analysis, we construct W 255

using n nearest-neighbors, where all n nearest-neighbors are weighted equally. We first 256

run the spatial lag model using all variables with values of n ranging from 1 to 20 and 257

find that n = 5 yielded the lowest mean absolute error (MAE). 258

For all of the models described, we also vary the cutoff at which we consider the 259

virus introduced in a county. We ran the same set of analyses using 1 and 3 as the death 260

cutoff (instead of 5). Finally, we remove the weights on the LASSO regression. All of 261

these robustness checks yield a similar narrative as the one described in our Results. 262

Model Results for Periods 1 and 2 263

In this section, we present the results for virus introduction and virus severity for 264

periods 1 and 2. 265

Period 1 (January 26, 2020 - June 2, 2020): Democratic Counties are First 266

Exposed to COVID-19 267

In period 1, we focus on virus introduction since the disease spread is almost entirely 268

driven by how early a county was exposed to the virus. The coefficients of a LASSO 269

regression model support this and can be seen in S3 Fig. 270

From any of the models presented in S4 Fig, we see that distance to a major airport 271

is one of the strongest predictors of being exposed in period 1. The coefficient on this 272

variable is negative, suggesting that counties farther from a major airport are less likely 273

to be exposed. We also note that Democratic counties are more likely to be exposed to 274

the virus in this period. S4 Fig shows the tests we run to address whether we observe 275

more virus introduction in Democratic counties due to proximity to international 276

airports. We begin by removing distance to an airport and crowding from the analysis 277

(S4(A) Fig; accuracy: 0.79; sensitivity: 0.81; specificity: 0.69). This results in a 278

coefficient on political leaning of -7.20. Adding distance to an airport back into the 279

model (accuracy: 0.80; sensitivity: 0.82; specificity: 0.73), the coefficient on political 280

leaning reduces in magnitude to -6.26, a 13% change. Finally, we add crowding back 281

into the model (S4(B) Fig; accuracy: 0.84; sensitivity: 0.86; specificity: 0.79), further 282

reducing the coefficient on political leaning to -2.30, an additional 63% decrease. 283

Between distance to an airport and crowding, the coefficient on political leaning has 284

reduced by 68%. 285

Period 2 (June 3, 2020 - October 7, 2020): COVID-19 Spreads to 286

Republican Counties 287

County-level mask-wearing data were not available for periods 1 or 2, and thus we 288

cannot conduct any tests with behavioral variables. As a result, we focus on 289

vulnerabilities, demographics, and political variables. 290

Counties far from airports are more likely to be exposed to the virus for the first 291

time as the disease spreads to more rural, Republican areas, as shown by S5 Fig 292

(accuracy: 0.69; sensitivity: 0.71; specificity: 0.56). This Fig hows the results of running 293

the same logistic regression as S4(B) Fig, just using virus introduction for period 2 as 294

the response variable. Both the coefficients on political leaning and airport are positive; 295
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however, other variables such as nursing home population and income are more 296

important in determining virus introduction in period 2. 297

Based on the feature importance and coefficients obtained from the regression 298

analyses, we conclude that among counties that have been exposed to the virus, more 299

severe COVID-19 spread is correlated with indicators of higher social vulnerability (as 300

indicated in the socio-economics and vulnerabilities boxes of S1 Fig). Fig 5A shows a 301

distribution of the death dates across all US counties in period 2 and Fig 5B and Fig 5C 302

indicates which variables have the most predictive power. The top variables in both 303

models are vulnerability-related: education and race/ethnicity. 304

We also conclude that Republican areas have higher death rates. There may be a 305

significant impact of behavioral variables such as mask usage and social distancing, but 306

we are unable to test these impacts in period 2. Instead, we see that the importance 307

and coefficient on political leaning are small relative to the coefficients on 308

vulnerability-related variables. Therefore, vulnerable populations were significantly 309

impacted by COVID-19, and Republican counties and counties with less strict 310

regulations were hit hardest. 311

Results for CAR Poisson Model 312

We found that the results of fitting a spatial sparse CAR Poisson model were consistent 313

with our findings from the main analyses for periods 2 and 3 (S11 Fig). 314

These model estimates reflect the associations between county-level covariates and 315

COVID-19 death rates after accounting for the estimated spatial correlation structure 316

included in the model. 317

We found that higher percentages of residents in nursing homes, Black non-Hispanic 318

population percentages, and Hispanic population percentages at the county level were 319

associated with higher COVID-19 death rates during period 2. Counties with higher 320

high school graduation rates were associated with having lower COVID-19 death rates 321

in period 2 after accounting for spatial correlations. During period 3, counties where the 322

population voted more Republican (positive political lean), and counties with higher 323

percentages of the population living in nursing homes were associated with higher 324

COVID-19 death rates. Counties with higher median income, greater high school 325

graduation rates, and policy strictness during period 3 were found to have lower 326

COVID-19 death rates. 327

We present the spatial model component visualized as exp(ϕi + log(Pi)), the 328

expected COVID-19 deaths per capita in each period conditioning out the effects from 329

covariates, in S12 Fig. 330

S12 Fig allows us to visualize the estimated spatial correlation structure and how 331

neighboring counties tend to be correlated with one another. In essence, we expect to 332

see that counties with high rates are surrounded by counties with high rates and 333

vice-versa for low rate counties. 334

Contemporary advice recommends that Bayesian models should be considered to 335

have converged only if the Markov chains have convergence diagnostics of 336

R̂ < 1.05 [26,29]. In S14 Fig, we present the R̂ convergence diagnostics for our 337

non-spatial and spatial effects for both periods 2 and 3, which are all below 1.05. 338

Results for Spatial Lag Model 339

We found that the results of fitting a spatial lag model were mostly consistent with our 340

findings from the main analyses for all periods (S15 Fig). In period 1, the day county is 341

seeded is the strongest predictor of the number of deaths in a county. In period 2, the 342

nursing home population, education, and race/ethnicity are the top three predictors. In 343

period 3, the spatial lag model less readily picks out political leaning, although the 344
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coefficient is still clearly positive. When including mask-wearing data, political leaning 345

is the 6th most predictive variable. In both cases, the nursing home population in a 346

county is the best predictor of the number of deaths the county experiences. 347
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