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These supplementary materials contain the details of analytic calculations as well as additional numerical details
supporting the results presented in the main text.

The Kondo lattice Hamiltonian

In this section we detail the connection between the tight-binding model and the Schrieffer-Wolff transformation to
obtain the Kondo lattice Hamiltonian given in the main text.

The tight-binding Hamiltonian

Assuming W -layer weakly correlated the tight-binding Hamiltonian that describes the low-energy properties of the
system reads H = H0 +HW +Ht:

H0 =− ∆

2
(NMo −NW ) + U

∑
r∈Mo

nr↑nr↓

HW =− tW
∑

〈r,r′〉∈W

e−iνr,r′2πσ/3c†rσcr′σ,

Ht =− tMo

∑
〈r,r′〉∈Mo

f†rσfr′σ − th
∑
〈r,r′〉

f†r cr′ .

(1)

We have introduced the operator frσ for the Mo and crσ for W -layer, respectively. We notice that differently from
H0 and HW the contribution Ht changes the local configuration in the Mo layer.

The Schrieffer-Wolff transformation

We assume that U is the largest energy scale, U � tMo, and Γ(εF )/∆ < 1 where Γ(εF ) is the hybridization function:

Γ(εF ) = πt2hρ(εF )〈V ∗k Vk〉FS = πt2h

(
3
√

3a2
M

8π2

)∮
FS

dkt
V ∗k Vk
|∇kεkσ|

. (2)

Fig. S1 show the evolution of Γ(εF ) as a function of the filling x for the value of t2h/∆ corresponding to JK/tW = 1
value used for the numerical calculations shown in the manuscript. Within these assumptions valence fluctuations in
Mo layer are suppressed. We now observe that the tunneling Ht can be decomposed as:

Ht =
1∑

q=−1

1∑
d=−1

Tq,d, (3)



where Tq,d gathers all tunneling events that change the number of electrons unbalance between Mo and W by q and
the double occupancies in Mo layer by d. We list the Tq,d operators below:

T+1,+1 = −th
∑

r∈Mo

∑
σ

3∑
j=1

nrσ̄f
†
rσcr+δjσ,

T+1,0 = −th
∑

r∈Mo

∑
σ

3∑
j=1

hrσ̄f
†
rσcr+δjσ,

T0,+1 = −tMo

∑
r∈Mo

∑
σ

3∑
j=1

[
nrσ̄f

†
rσfr+γjσhr+γj σ̄ + nr+γj σ̄f

†
r+γjσfrσhrσ̄

]
,

T0,0 = −tMo

∑
r∈Mo

∑
σ

3∑
j=1

[
nrσ̄f

†
rσfr+γjσnr+γj σ̄ + hrσ̄f

†
rσfr+γjσhr+γj σ̄ + h.c.

]
,

(4)

we notice that T−q,−d = T †q,d, nrσ = f†rσfrσ and hrσ = 1−nrσ. Moreover, the terms T−1,+1 and T+1,−1 vanish. Before
moving on, we notice that the intralayer hopping HMo does not change the charge imbalance NMo−NW (q = 0), i.e.
HMo commutes with NMo −NW ([NMo −NW , HMo] = 0). Moreover, [NMo −NW , Tq,d] = 2qTq,d and∑

r∈Mo

[nr↑nr↓, Tq,d] = dTq,d. (5)

We seek an unitary transformation U = exp(−iS) which eliminates hops between states with different numbers of
doubly occupied sites and interlayer charge imbalance [33, 34, 57]:

H̄ ≡ eiSHe−iS = H + [iS,H] +
[iS, [iS,H]]

2!
+ · · · , (6)

where we applied the Baker-Campbell-Haussdorf formula. We now notice that to the lowest order in the expansion
we have:

[H0, iS] =

(q,d)6=0∑
q,d

Tq,d, (7)

where in previous sum we exclude the term with q = 0 and d = 0 in shorthand notation (q, d) 6= 0. We readily realize
that the solution of Eq. (7) reads:

S = −i
(q,d) 6=0∑
q,d

Tq,d
dU − q∆

. (8)

From the latter expression we find:

H̄ =H0 + T0,0 +HW +
1

2

(q,d) 6=0∑
q,d

(q′,d′) 6=0∑
q′,d′

[Tq,d, Tq′,d′ ]

−q∆ + dU
+

(q,d)6=0∑
q,d

[Tq,d, HW + T0,0]

−q∆ + dU
+O([HW + T0,0]S2). (9)

Projecting the model in the low-energy subspace with one-electron in Mo layer, i.e. nr = 1 for r ∈Mo, we find that
the latter term vanishes. Furthermore, the projection constraints q′ = −q and d′ = −d:

H̄ = −tW
∑

〈r,r′〉∈W

e−iνr,r′2πsσ/3c†rσcr′σ − µNW +
1

2

(q,d) 6=0∑
q,d

[Tq,d, T−q,−d]

dU − q∆
, (10)

where the constant energy term ∆NW /2 has been absorbed in the chemical potential shift and T0,0 vanishes in the
low-energy subspace. By performing straightforward calculations we find that the commutator in Eq. (10) gives:

1

2

(q,d) 6=0∑
q,d

[Tq,d, T−q,−d]

dU − q∆
=t2h

(
1

∆
+

1

U −∆

) ∑
r∈Mo

3∑
jl=1

Sr · c†r+δjσ
σσσ′ cr+δlσ′ +

4t2Mo

U

∑
〈r,r′〉∈A

Sr · Sr′

+ t2h

(
1

∆
− 1

U −∆

)∑
k

|Vk|2c†kck.

(11)



0.0 0.2 0.4 0.6
x

0.0

0.1

0.2

0.3 Γ(ε
F
)/∆

Figure S1. Hybridization function. Evolution of Γ(εF )/∆ as a function of the filling x of the conduction band.

Expanding close to the bottom of the conduction band [κ(κ′) for ↑ (↓)] |Vκ/κ′+k|2 ' 9(aMk)2/4 we realize that the
latter terms can be simply accounted by a redefinition of the bare mass mW → mW /[1+(th/∆−th/(U−∆))th/(2tW )].
Finally, we find the effective spin-fermion Hamiltonian:

H̄ =
∑
k

ξkσc
†
kσckσ + JH

∑
〈r,r′〉∈A

Sr · Sr′ +
1

2N

∑
r∈Mo

∑
k,p

e−i(k−p)·rJk,pSr · c†kσ σσσ′ cpσ′ , (12)

where JH = 4t2Mo/U , Jk,p = JKV
∗
k Vp, JK = 2t2h[1/∆ + 1/(U − ∆)], ξkσ = εkσ − εF , εkσ is the elec-

tron dispersion and εF fixes the number of electron in the conduction band. The dispersion relation reads
εkσ = −2tW

∑3
j=1 cos(k · ai + 2πsσ/3), a1 =

√
3aM (1, 0), a2,3 =

√
3aM

(
−1/2,±

√
3/2
)

are the lattice vectors with

aM = 5nm the moiré cell lattice constant. The form factor is Vk =
∑3
j=1 e

ik·δj . Despite U is large and JH small
the particular form of the exchange interaction Jk,p = JKV

∗
k Vp gives rise to a non-trivial competition between a

low-density magnetic phase and a paramagnetic heavy Fermi liquid. We observe that in the following we will measure
the value of ∆ with respect to the bottom of conduction band −6tW .

On the higher-order corrections

Higher order corrections in the expansion lower the symmetry of the spin interaction in the Mo-layer. This can
be simply realized noticing that the phase factor in the Hamiltonian HW lower the spin-symmetry of the model to
U(1) around z. Including higher-order hopping processes mediated by th gives an XXZ spin model with Dzyaloshin-
skii–Moriya interactions:

HS = JH
∑

〈r,r′〉∈Mo

(
SzrS

z
r′ + γS+

r S
−
r′ + h.c.

)
+D

∑
〈r,r′〉∈Mo

(Sr × Sr′)z , (13)

we refer to Ref. [8] for additional details. For simplicity we consider the isotropic limit γ = 1/2 and D = 0 in our
calculations.

The mean-field approach

In this section we detail the mean-field of Abrikosov fermions discussed in the main text. We perform the decompo-
sition of the spin-1/2 into spinons Sr = χ†rασαβχrβ/2 and performing the mean-field decomposition in the magnetic
and excitonic channels we obtain the mean-field Hamiltonian:

H̄mf =λ
∑
k

χ†kχk +
hz

2

∑
k

χ†kσ
zχk +

h‖

2

∑
k

[
χ†k+Qσ

−χk + h.c.
]

+
∑
kσ

ξkσc
†
kσckσ

+
Mz

2

∑
k

Jk,kc
†
kσ

zck +
M‖

2

∑
k

[
Jk+Q,kc

†
k+Qσ

−ck + h.c.
]

+ JK
∑
k

[
V ∗k Φ∗c†kχk + h.c.

]
.

(14)



In the previous expression Mz and M‖ are the out-of-plane and in-plane components of the magnetization of the local
moments, the magnetic field hz and h‖ are given by:

hz = 6Mz +
∑
p

Jp,p〈c†pσzcp〉/N,

h‖ = −3M‖ +
∑
p

(
Jp,p+Q〈c†pσ+cp+Q〉+ h.c.

)
/(2N).

(15)

The excitonic order parameter reads:

Φ = −
∑
k

V ∗k 〈c
†
kχk〉/(2N). (16)

The mean-field free-energy reads:

Fmf =− kBT
∑
k

∑
λ

log
[
1 + e−Ekλ/kBT

]
+ 2JKN |Φ|2 +

3JHN

2
M‖

2

− 3JHNM
z2 − JKMzNmz − JKNM‖m‖ − λN +Nµx,

(17)

where Ekλ is the mean-field dispersion relation. The mean-field solution is obtained by minimizing Fmf with respect
to the variational parameters Mz,M‖,Φ,mz,m‖. The Lagrange multiplier λ imposes the Gutzwiller constraint∑

k〈χ
†
kχk〉/N = 1, while the chemical potential µ fixes the number of particle in conduction band

∑
k〈c
†
kck〉/N = x.

Taking the saddle point of Eq. (17) with respect to the variational parameters gives a set of self-consistency equations
that are solved by find-root algorithm.

Energetics of the HFL and AFM states

In this section we detail the weak coupling expansion to determines the characteristic energy scales of the AFM
and HFL phases that are the RKKY energy and the Kondo temperature, respectively. We will also introduce the
effective model describing the quasiparticle excitations in the two different regimes.

AFM

In the magnetic regime the local moments Sr form a 120◦ AFM order with 〈Sr〉 =
(
M‖ cosQ · r,M‖ sinQ · r,Mz

)
,

Q = κ− κ′, correspondingly the conduction electron Hamiltonian reads:

H̄c
mf =

∑
k

ξkσc
†
kσckσ +

JKM
z

2

∑
k

|Vk|2c†kσ
zck +

JKM
‖

2

∑
k

[
V ∗k Vk+Qc

†
kσ

+ck+Q + h.c.
]
. (18)

In the limit of low-doping the Fermi surface is a small electron pocket around κ(↑) and κ′(↓) that are folded into the
origin of the magnetic Brillouin zone γm, depicted in Fig. S4(b). Expanding close to quadratic order around γm and
keeping only the two lowest energy bands we find the continuum model:

H̄cmf =
∑
k

c†k

[(
~2k2

2mW
− εF

)
σ0 +

9JKa
2
M

8

∑
a

da(k)σa

]
ck, (19)

where dz(k) = Mzk2, dx(k) = −M‖(k2
x − k2

y) and dy(k) = 2M‖kxky. We readily realize that due to the SOC term
the spin is no longer a good quantum number, the eigenstates |ukλ〉 are labeled by λ = ± and the corresponding

eigenvalues are εkλ = (~2k2/2mW − εF ) + λ9JKa
2
Mk

2|M |/8 with |M | =
√

(Mz)2 + (M‖)2. We observe that the
theory is O(3) invariant under rotation of the magnetization Ma → RabM

b. The resulting stabilization energy does
not depend on the orientation of the local moments. The Fermi momentum obtained by setting εkλ = 0 reads
k±F =

√
2mλεF /~2 where mλ = mW /[1+λ(JK/8tW )] and the Fermi energy is εF ' x/ (

∑
λ ρλ) with ρλ = ρ0mλ/mW .

We notice that in the Kondo regime JK is smaller than the bandwidth of conduction electrons 9tW so that the mass
is always positive. The kinetic energy variation with respect to the normal state reads:

δεcmf = εcmf − εcJK=0 = −ρ0J̄
2
K |M |2/2, (20)



where J̄K is the average over the FS of the Kondo exchange. We conclude that the total energy per site in the
magnetic regime is given by:

εmf = −3JH |M |2/2− ρ0J̄
2
K |M |2/2. (21)

The energy gain from the coupling between the conduction band and the local moments goes quadratically in the
electron density x. We conclude observing that interaction effects between conduction electrons in the B sublattice
introduce the tendency to develop a finite out-of-plane ferromagnetic polarization. The analysis of the effect of
interaction between conduction electrons is left to future studies.

HFL

In the paramagnetic regime electrons are described by the mean-field Hamiltonian reads:

H̄mf =
∑
kσ

ξkσc
†
kσckσ + λ

∑
k

χ†kχk + JK
∑
kσ

[
V ∗k Φ∗c†kχk + h.c.

]
. (22)

We easily realize that the Green’s function of the problem reads:

G−1
σ (k, iε) =

(
iε− λ −JKΦVk
−JKΦ∗V ∗k iε− ξkσ

)
, (23)

so that the saddle-point equation for the bosonic amplitude Φ can be written as:

Φ = − T

2N

∑
kσ

∑
iε

V ∗k Gχ,σ(k, iε)JKVkΦGc,σ(k, iε), (24)

where Gχ,σ(k, iε) = (iε− λ)−1 is the bare Green’s function and Gc,σ(k, iε) = [iε− ξkσ − Σc,σ(k, iε)]−1 with

Σc,σ(k, iε) = J2
K |Φ|2|Vk|2/(iε− λ). (25)

From the latter expression we readily find the quasiparticle residue:

Zk =
1

1− ∂zΣc,σ(k, z)|z=0
=

1

1 + J2
K |Φ|2V ∗k Vk/λ2

. (26)

The latter quantity evaluated at the Fermi surface of the heavy Fermi liquid gives the mass enhancement of the
quasiparticles. Discarding the Φ = 0 solution the equation reduces to

1

JK
=

1

2N

∑
kσ

f(Ek−σ)− f(Ek+σ)√
(ξkσ − λ)2 + 4J2

K |Φ|2|Vk|2
=

1

2N

∑
kσ

θ(−Ek−σ)√
(ξkσ − λ)2 + 4J2

K |Φ|2|Vk|2
, (27)

where Ek± = (ξkσ + λ)/2 ±
√

(ξkσ − λ)2 + 4J2
K |Φ|2|Vk|2/2 and the RHS is obtained taking the we took the zero

temperature limit and considering the case x < 1 where only the lower band is filled. In addition we also have the
self-consistent equation for λ:

T

N

∑
kσ

∑
iε

1

iε− λ− Σχ,σ(k, iε)
= 1 =⇒ 1

2N

∑
kσ

θ(−Ek−σ)

(
1 +

ξkσ − λ√
(ξkσ − λ)2 + 4J2

K |Φ|2|Vk|2

)
= 1. (28)

The onset of the HFL instability is determined looking at the instability condition of the normal state to interlayer
hybridization. In this case the solution of Eq. (28) is λ = 0, i.e. the local moments are pinned at the Fermi level, and
Eq. (24) becomes:

1

JK
+ Π0

χc(q→ 0, iΩ = 0) = 0, (29)

where Π0
χc(q → 0, τ) = −〈Tτ (V̂q=0(τ)V̂ †q=0)〉/N , V̂q=0 =

∑
k V
∗
k c
†
kχk/

√
2 and Π0

χc(q → 0, iΩ) =
∫ β

0
eiΩτΠ0

χc(q →
0, τ). Expanding close to the bottom of the band Eq. (29) becomes:

1

JK
− ρ0

2

∫ EΛ

εF

dε
|Vε|2

ε− εF
− ρ0

2

∫ εF

0

dε
|Vε|2

εF − ε
= 0, (30)
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Figure S2. Intrinsic topological response of the HFL. Spin Hall effect (bottom panel) and anomalous Hall effect (top
panel) in the HFL as a function of the Zeeman field. The calculation is performed at JK/tW = 1, x = 0.65.
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Figure S3. Longitudinal conductivity. Ratio between the numerical evaluation of Eq. (32) and σxx = e2τ(1 − x)/m̄∗

obtained assuming a circular Fermi surface with average velocity.

where |Vε| = 9a2
Mk

2
ε/4 with kε =

√
2mW ε/~2.The integral is characterized by a log singularity at εF . We introduce

the IR cutoff TK , ε→ ε± TK , that regularize the divergence. Finally, by performing simple calculations we find:

TK ' εF e−1/(ρ0J̄K). (31)

Since the average over the Fermi surface J̄K goes linearly with the doping x in conduction band we find that the Kondo
temperature is exponentially suppressed in the limit x→ 0+. Finally, we notice that the Fermi energy is proportional
to the filling factor in the WSe2 layer, εF ∝ x. Away from the low-doping regime of exponential suppression we have
TK ∝ x which is different from the conventional result TK ∝

√
x. The behavior m/m∗ ∼ TK ∝ x is consistent with

experimental results in Ref. [56].

Transport properties

In this section we detail the evaluation of the transverse and longitudinal conductivities in the various phases of
the phase diagram.

Charge transport in the HFL

In the paramagnetic regime the local moments fractionalize giving rise to a finite density of holes in MoTe2 layer.
In this regime the field Φr is equivalent to the holon operator carrying physical charge −1 [50], i.e. opposite to the
electron charge. As a result both conduction electrons c and spinon χ contribute to the charge current. Within the
semiclassical Boltzmann equation approach and in the relaxation time approximation the transport properties are



simply obtained as integrals over the quasiparticle Fermi surface [48, 49]:

σxx =
3
√

3a2
Me

2τ

8π2

∑
σ

∮
FS

dkt
v̄xF,σ v̄

x
F,σ

~|v̄F,σ|
, (32)

and

σxy ≡ σOhm
xy + σAH

xy =
3
√

3a2
M

8π2

e3τ2B

~
∑
σ

∮
FS

dkt
v̄yF,σ

[
v̄yF,σ∂kx − v̄xF,σ∂ky

]
v̄xF,σ

~|v̄F,σ|
+

e2

2πh

∑
σ

∮
FS

dkt t ·Aσ(k), (33)

where the anomalous Hall contribution σAH
xy arises from the circulation of the Berry connection Aσ(k) =

i 〈ukσ|∂kaukσ〉, with |ukσ〉 occupied eigenstate of the Hamiltonian in Eq. (22), along the FS. In Eqs. (32) and (33)
kt is the component of k along the tangent t to the FS curve. We notice that the FS of the heavy quasiparticle is
obtained by the set of k points solution of the equation:

heavy FS : ξkσ − J2
K |Φ|2|Vk|2/λ = 0, (34)

where the second term comes from the conduction electron self-energy Σc,σ(k, 0) introduced in Eq. (25) computed
at iω = 0. The Fermi velocity vF,σ is obtained replacing k → k + eA(t)/~ in ξ̄kσ = Zkσ[ξkσ − J2

K |Φ|2|Vk|2/λ] and
expanding to linear order around the FS we find ξ̄kF+ e

~A(t)σ ' ev̄F ·A(t) where:

v̄F,σ =
ZkF ,σ

~
∇k[ξkσ − J2

K |Φ|2|Vk|2/λ]
∣∣∣
kF
, (35)

and Zk,σ = [1 − ∂zΣc,σ(k, z)|z=0]−1 is the quasiparticle weight. The evaluation of σxx and σOhm
xy is considerably

simplified observing that the Fermi surface consists of a hole-pocket around κ′ for spin ↑ and κ for spin ↓, respectively.
Assuming a circular hole-like Fermi surface with average mass m̄∗ the longitudinal contribution becomes

σxx = 2
e2τ

m̄∗

(√
3a2
M

8π2

)
k2
F

∫ 2π

0

dφ cos2 φ =
e2τ

m̄∗

(
2πk2

F

√
3a2
M

8π2

)
=
e2τ(1− x)

m̄∗
. (36)

As a sanity check we show in Fig. S3 the ratio between Eq. (36) and the numerical evaluation of Eq. (32) for various
concentrations of electrons in the W -layer. By following the same line of reasoning we obtain σOhm

xy = −e3τ2B(1 −
x)/m̄∗2. We now look at the anomalous contribution σAH

xy which can be conveniently written as σAH
xy = e2(W↑+W↓)/h

where Wσ =
∫
d2kf(εkσ)Ωσ(k)/(2π) and Ωσ(k) = ∂kxA

y
σ(k)− ∂kyAxσ(k). Due to the opposite winding of spin ↑ and

↓ we find that in the absence of a magnetic field W↑ = −W↓. We observe that the difference W↑ −W↓ gives a finite
spin Hall (SH) conductivity [40] even in the absence of the external field. Fig. S2 shows W↑±W↓ as a function of the
magnetic field at doping x = 0.46 and JK/tW = 1. The small value of W↑ + W↓ at finite B follows from the Berry
curvature distribution which is peaked around the bare FS of the conduction electrons. As a result we find a small
AH contribution and a large SH one.

Expansion around the original Fermi surface: the topological Kondo Hamiltonian

Here we derive the k ·p Hamiltonian describing the regions around κ and κ′ where the Fermi surface of spin ↑ and
↓, respectively, conduction electrons is located. The analysis clarifies the topological origin of the hybridization gap.
To start with we observe that the mean-field heavy Fermi liquid Hamiltonian reads:

Hσ(k) =

(
λ JKΦVk

JKΦ∗V ∗k ξkσ

)
. (37)

Expanding the form factor Vk and the dispersion ξkσ around κ we readily find:

H↑(κ+ k) =

(
λ −∆K(kx − iky)

−∆K(kx + iky) ~2k2/(2mW )− µ

)
, (38)

and H↓(κ
′+k) = H∗↑ (κ−k). The crossing between the local moment χ and the c-electron dispersive band takes place of

a circle with radius kc =
√

2mW (µ+ λ) where the continuum model reduces to H↑(κ+kc) = −∆Kkc(e
iθτ−+e−iθτ+).
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Figure S4. Bandstructure and Berry curvature of the small Fermi surface magnetic state. (a) Dispersion of the
electrons close to the bottom of the conduction band. Dashed lines are obtained with the continuum Hamiltonian (19) while
the solid ones are the lowest energy bands of the mean-field Hamiltonian (18). (b) Berry curvature around the origin of the
magnetic Brillouin zone. Solid lines show the two Fermi surfaces. The calculations has been performed at doping x = 0.08,
JK/tW = 1, JH/tW = 0.025 and magnetic field hW /tW = 0.08.

The interlayer Kondo hybridization lifts the degeneracy and induces winding in the two dimensional space associated
with the interlayer degrees of freedom τ . The resulting Berry curvature can be readily obtained from the Kubo
formula observing that the eigenvalues of Eq. (38) are described by the matrix U(k) = exp[−iϕk(k× τ )z/2] with
tanϕk = ∆Kk/dz and dz projection of the Hamiltonian along τz. The integral gives quantized Chern number
C↑ = −C↓ = 1. The model gives a topological Kondo metal which is adiabatically connected to a quantum Spin Hall
Kondo insulator at filling 2.

The magnetic regime

We now turn our attention in the magnetic regime where only the c-electrons contribute to charge transport.
The low-energy Hamiltonian is given in Eq. (19) and describes electrons with dispersion relation εkλ = ~2k2/2mλ

shown in Fig. S4(a) and group velocity vkλ = ~k/mλ with mλ = mW /[1 − λJK |M |/(4tW )] and λ = ±. Under the
assumption of a single transport time, i.e. momentum- and band-independent, we apply Eqs. (32) and (33) to find
σxx = e2τx/ (

∑
λmλ/2) and σOhm

xy = e3τ2Bx/ (mW

∑
λmλ/2). We now conclude our analysis considering the AHE

contribution coming from the the Berry phase winding introduced by the dx(k) and dy(k) terms in Eq. (19). In the
absence of an external magnetic field Mz = 0 and the eigenstates are simply |uk±〉 = (1,±e−2iϕk)

√
2 with 2π-Berry

phase around the origin of the magnetic Brillouin zone. A small Zeeman term opens a gap in the band structure and
gives rise to a finite Berry curvature Ω±(k):

Ω±(k) = ± 64h2k2η2[
16k4η2 +

(
2h+

m↑−m↓
m↑m↓

k2
)2
]3/2

, (39)

where η = 9JKM
‖/8 and m↑/↓ = mW /[1 ± JKMz/(4tW )]. We notice that the Berry curvature is an even function

of k, vanishes quadratically at k = 0 and takes its maximum value at finite momentum k. The maximum is located
at k4

max = h2/(8η2) for Mz = 0. The momentum space distribution in the magnetic moiré Brillouin zone is given in
Fig. S4(b). We observe that from Eq. (39) the anomalous Hall conductivity is obtained as:

σAH
xy =

e2

2πh

∑
λ

∫
d2kΩλ(k)f(εkλ − µ), (40)

which in the zero temperature limit becomes:

σAH
xy =

e2

h

∫ k+
F

k−F

dk kΩ+(k) =
e2

h

h[k2(m↓ −m↑)− 2hm↑m↓]√
16k4η2(m↑m↓)2 + [k2(m↑ −m↓) + 2hm↑m↓]2

∣∣∣∣∣
k+
F

k−F

. (41)
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