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1 Fitness function

Our fitness function is based on the relative binding free energy ∆∆F , that is calcu-
lated from the mechanical pathway in the thermodynamic cycle defined in Fig. S1A,
as explained in detail in [19]. ∆∆F is the difference in work required to stretch a
membrane in presence (∆F ′

s) and absence (∆Fs) of a peptide bound to its surface.
Since the lateral tension σ(A) in a membrane is linearly related to the change in

membrane area A∗−A0
A0

, the mechanical work of stretching ∆Fs =
∫A∗

A0
σ(A)dA can

be reliably approximated by measuring the surface tension only at two end-states
(tensionless σ(A0); and stretched σ(A∗)) from MD simulations at constant areas A0

and A∗. Such that:

∆∆F = ∆F ′
s −∆Fs =

∫ A∗

A0

σ′(A)dA−
∫ A∗

A0

σ(A)dA

=
A∗ −A0

2

[
(σ′(A∗) + σ′(A0))− (σ(A∗) + σ(A0))

] (1)

The membrane tensions in the peptide-free systems σ(A∗) and σ(A0) only have
to be measured once to be used in the calculations for any peptide. Consequently,
∆∆F can be calculated from two MD simulations per peptide (to obtain σ′(A∗) and
σ′(A0)), and this is how it was implemented for the fitness calculation in Evo-MD.

We applied a scaling factor c (eq. 2) that is 1 when the peptide is at the membrane
surface (dmem = b) and 0 when the peptide is in solution (dmem ≥ 2b) or fully adopts
an inter- or transmembrane configuration (dmem ≤ 0). See Fig. S1B. The reference
values for b are based on the monolayer thickness of a tensionless POPC membrane
(b = 1.90 nm for σ(A0)) and a stretched POPC membrane (b = 1.79 nm for σ(A∗))
[19] within the Martini 3 force-field. The lowest value for c (tensionless or stretched
condition) is used in the fitness scaling.

fitness = c ·∆∆F =
1

2

(
1− cos

πdmem

b

)
·∆∆F (2)

Typically, peptides with a near-optimal ∆∆F (around −30 kJ mol−1) have values
for c of 0.97 and 0.90, for the tensionless and stretched condition, respectively. This
corresponds to respective insertion depths (dmem) of 1.69 and 1.42 nm. High values
of c mean that the fitness is dominated by ∆∆F , as intended. Removing this cosine
scaling factor would result in peptide optima that adopt inter- or transmembrane
configurations, since such a symmetric embedding in fact results in the maximiza-
tion of induced tension measured within the constant area ensemble. However, for
curvature sensing/induction we are aiming to optimize asymmetric insertion in only
the outer leaflet instead [42], thus requiring the scaling factor c to reintroduce this
asymmetry in the system.



Fig. S1 Evo-MD fitness function. A) Thermodynamic cycle that connects the commonly
used alchemical pathway (thermodynamic integration of (un)binding, ∆F ′

b−∆Fb) to the mechan-
ical pathway (work of stretching, ∆F ′

s − ∆Fs). Adapted from previous work [19]. B) Schematic
explanation of the cosine scaling factor c, that is related to the insertion depth dmem of the pep-
tide.



2 Tuning Evo-MD settings

Evo-MD runs were performed with population sizes (n) ranging from 48 to 288. After
ranking the population on fitness, the best quarter p = n

4 is selected as a parent
pool for the next generation. We plotted the convergence (Fig. S2) and decided to
perform the production runs with a population size of 144 (and, consequently, 36
parents), since the GA converged to the highest value for these settings (Fig. S2).

Ideally, one would extensively test the effect of changing the GA-related set-
tings (e.g. number of parents, number of elites, mutation rate) on the convergence.
However, such optimization is in the case of Evo-MD severely challenged by the com-
putational expense of the fitness calculation by MD simulation (even when using
coarse-graining). Taken together, the two MD simulations that are carried out for
every peptide require roughly 24 CPU hours to complete on the Intel Cascade
Lake Platinum 9242 (CLX-AP) CPUs of the HLRN Lise supercomputer nodes we
used. Consequently, every iteration of the GA takes 24 × 144 = 3, 456 CPU hours.
We need at least 20 iterations to reach convergence (Fig. S2), which equates to
3, 456× 20 = 69, 120 CPU hours for a single GA run. In terms of wall hours, we can
run all the simulations of a population in parallel and on 8 cores each (24/8 = 3 wall
hours per iteration), which means that a converged GA run (20 iterations) requires
about 60 wall hours (2.5 days).

Fig. S2 Tuning Evo-MD settings. Convergence of the population’s best candidate for differ-
ent population sizes n and parent pools p = n
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3 Evo-MD run including all 20 natural amino
acids

In our production runs, we only used the 10 most helix-prone amino acids with all
chemical groups represented (small: A; hydrophobic: L, M; polar: S, Q; anionic: E;
cationic: K; aromatic: W, Y, and F). To probe the effect of this assumption, we
performed an additional Evo-MD run with all 20 natural amino acids (AAs) included.

As can be expected with the vastly increased search space (1024 → 2024), we
observed a slower convergence and required the algorithm to run for 40 iterations
(Fig. S3A). To test its robustness, we introduced a double mutation rate after 20
iterations, i.e. Pmut =

2
L per residue, with L = 24. This caused a slight drop in the

population’s average |∆∆F | after which it recovered to a similar value of ≈ −25
kJ mol−1. This indicates that the evolution has approached the global optimum,
although it is not quite there yet: the best sequences in this 20-AA run score about 2
kJ mol−1 lower than the optima from the 10-AA run. However, the general physical
characteristics are already fully reproduced, evident from the consensus sequence
of the best 36 peptides in the final generation (Fig. S3B) being highly similar to
the consensus sequences we found for the 10-AA runs (Fig. 2C-E in main text). As
described in the main text, we see a high conservation of big hydrophobic residues (F
and W) and a few charged residues that co-locate at the polar side of the amphipathic
helix (Fig. S3C). From the reduced height of the characters in the sequence logo, we
conclude that the sequences in the 20-AA run are more diverse, due to the larger
choice of amino acids and the doubled mutation rate. Generally though, this optimum
confirms the conclusions drawn from the original 10-AA runs: the physically optimal
curvature sensor is very hydrophobic in nature and would empirically be classified as
a binder instead, showing that those two classes are part of the same thermodynamic
continuum.

Fig. S3 Evo-MD run with all 20 natural AAs. A) The population best (solid line) and
population average (dashed line) for a Evo-MD run with all 20 amino acids included. B) Consensus
sequence logo [40] for the best 36 sequences of the final population. C) Helical wheel representation
[20] for the consensus sequence in B.



4 Curvature generation by Evo-MD optimum

To probe the curvature generative properties of the Evo-MD optimized peptides,
we performed a 4 µs coarse-grained MD simulation of a POPC membrane (441
lipids per leaflet) with and without the hydrophobic consensus peptide (Fig. 2E in
main text) bound to the surface. All MD settings were the same as described in
section 4.2 of the main text. The local mean curvature in the upper leaflet (to which
the peptide was bound) was measured and plotted from the MD trajectory with
the membrane-curvature toolkit (github.com/MDAnalysis/membrane-curvature) in
MDAnalysis [52] (Fig. S4) and showed an induced mean curvature of 0.3 Å−1. We
should note that the magnitude of the generated curvature is somewhat arbitrary,
since it depends on the box area (with periodic boundary conditions). The fact that
we find curvature generation for a theoretically optimal curvature sensor shows that
those phenomena are indeed two sides of the same coin.

Fig. S4 Curvature generation by the Evo-MD optimum. Contour plot of the mean cur-
vature of the upper leaflet of an initially flat 17 × 17 nm2 POPC membrane without a peptide
(left) and with a peptide – the Evo-MD optimum FFFWWFFFEFLWWMFWWWWKWFFF (Fig. 2E in main text)
– bound to its surface. By asymmetrically inducing tension in the upper leaflet (and not in the

lower leaflet), peptide inclusion leads to a 0.3 Å−1 mean curvature.



5 ∆∆F depends linearly on sequence length

Within Evo-MD, we chose a sequence length L of 24 residues, which is a typ-
ical length for curvature sensing motifs in natural proteins. To investigate the
influence of sequence length on the relative free energy ∆∆F , we performed addi-
tional calculations for poly-phenylalanine (FL), poly-leucine (LL), poly-alanine (AL),
and amphipathic peptides comprising FFQQ repeats (skipping a Q after every 11
residues, ≈3 helical turns, to maximize the hydrophobic moment). We opted to do
this analysis for uniform sequences to facilitate the interpretation of the results: any
changes in ∆∆F can only be attributed to the change in length, since everything
else is the same. F, L, and A were chosen since they are prevalent in α-helical motifs
and have different hydrophobicities.

The results show that the magnitude of ∆∆F increases linearly with increasing
sequence length L (Fig. S5). This finding can be understood from the notion that the
relative binding free energy is directly related to the excluded volume of the peptide
in the hydrophobic interior of the lipid membrane. Similar to the enrichment of bulky
amino acids in the global optima we found by Evo-MD, increasing the sequence
length will also increase the total volume of the peptide and, in turn, the magnitude
of ∆∆F .

We performed a linear fit (∆∆Ffit(L) = afitL + bfit, with afit = −1.03 and
bfit = 3.28, see Fig. S5) on the combined data of poly-F, -L, -A, and -FFQQ. Now,
we can use this as a calibration to approximate the relative free energy (∆∆F ) of
fragments with length L by scaling the calculated ∆∆FL=24 of the full-length original
sequence:

∆∆F =
∆∆Ffit(L)

∆∆Ffit(L = 24)
∆∆FL=24 =

afitL+ bfit
afit · 24 + bfit

∆∆FL=24 (3)

Fig. S5 ∆∆F and length relate linearly. Linear relation between sequence length L and
relative free energy ∆∆F for different model sequences.

The physical interpretation of ∆∆FL=24 is the sensing free energy of the peptide
if it were 24 amino acids long, assuming the same amino acid composition. We
validated this length-extrapolation by using the CNN model (see section 2.2 in the
main text) to predict ∆∆F for three example ALPS-derived peptides of increasing
lengths (DFLNNAMS)1, (DFLNNAMS)2, and (DFLNNAMS)3, and extrapolating the resulting
values to ∆∆FL=24 using eq. 3 (Table S1).



Table S1: Example calculation of length-adjusted free energy. ∆∆FL=24 is the free
energy value of a peptide, extrapolated to a sequence length of 24.

Sequence ∆∆F (kJ mol−1) ∆∆FL=24 (kJ mol−1)

(DFLNNAMS)1 -3.674 -15.881
(DFLNNAMS)2 -8.341 -13.548
(DFLNNAMS)3 -12.928 -12.928

Average -14.119
SD 1.271

If both the CNN prediction and the length-extrapolation were perfect, the
∆∆FL=24 values in the right column of Table S1 would be identical. In reality, they
have a standard deviation (SD) of 1.271. Since this SD is lower than the expected
error of the CNN model (RMSE=1.71 kJ mol−1, see Fig. 3C in main text), we
conclude from this example that the length extrapolation is valid.



6 Training data description

The data set for training our neural network comprises all sequences and respective
∆∆F values we obtained through the Evo-MD tuning (Fig. S2) and production runs
(Fig. 2B in main text). A potential issue with training a neural network only on
evolutionary optimized data is that such dataset is inherently skewed towards highly
scoring sequences. To circumvent this, we performed additional ‘steered Evo-MD’
runs in which the aim is to minimize the squared distance from a set target value,
similar to a harmonic constraint in MD. I.e. the steered Evo-MD fitness (which should
be maximized) is given by eq. 4. In total, we performed 20 iterations of such steered
Evo-MD (with the same settings as for the main production runs) with ∆∆Ftarget

set to -5, -10, and -15 kJ mol−1.

fitness = −(∆∆F −∆∆Ftarget)
2 (4)

To enable the model to handle all 20 natural amino acids, we also added the
results for the 20-AA Evo-MD run (Fig. S3A), as well as 2,500 randomly generated
sequences. Finally, sequences from miscellaneous test runs and follow-up projects
were included in the data set as well.

Table S2: Composition of the data set.

Source sequences AAs Comments

Evo-MD optimization 12,480 10 Tuning population size (Fig. S2)
Evo-MD production runs 11,232 10 3 runs of 26 iterations (Fig. 2B)

Steered Evo-MD 8,640 10 ∆∆Ftarget = -5, -10, or -15 kJ mol−1

20-AA Evo-MD 5,760 20 1 run of 40 iterations (Fig. S3A)
Random sequences 2,500 20

Miscellaneous 14,400 10 Test runs and follow-up projects
Miscellaneous 7,200 20 Test runs and follow-up projects

Total 62,212
Total (unique) 53,940

Taken together, the data comprise 53,940 unique sequence-∆∆F combinations
(Table S2), with all peptides being 24 residues long. To also handle shorter peptides –
and to expand the training data further – we split all sequences at a random position
such that the fragments had a minimal length of 7 amino acids (≈ 2 helical turns).
Then, we used the interpolation described previously (Fig. S5 and eq. 3) to obtain
an approximated ∆∆F for each of these fragments, and added them to the data
set. After removing any newly arisen duplicates, we obtained our final set of 138,358
sequences, the ∆∆F distribution of which is plotted in Fig. S6.



Fig. S6 ∆∆F distribution. ∆∆F distribution of all 138,358 sequences in the data set.

7 Optimization of neural network architecture
and hyperparameters

25% of the training data was randomly selected as a validation set. The remaining
data was used to train the convolutional neural network (CNN), using 5-fold cross
validation. Optimization of the CNN was done in two steps, using 988 randomly
generated sequences as an independent test set. First, we experimented with different
architectures, varying the number of convolutional layers (Nc ∈ {1, 2}), the number
of nodes per convolutional layer (Nn,c ∈ {32, 64, 128}), the number of dense layers
(Nd ∈ {1, 2}), the number of nodes per dense layer (Nn,d ∈ {32, 64, 128}), and
the random dropout (d ∈ {0.1, 0.3, 0.5}) that is applied when the convoluted and
flattened data enters the first dense layer. A batch size (b) of 64 and a learning rate
(lr) of 0.001 were used.

Second, for the best architecture thus far (Fig. 3A in main text, green row in
Table S3), we varied the batch size (b ∈ {32, 64, 128}) and learning rate (lr ∈
{0.01, 0.001, 0.0001}), but found no futher improvement with respect to the original
settings (b = 64, lr = 0.001)

For every tested configuration of the model, we report the average epoch of
MSE convergence during cross validation and the final MSE for ∆∆F prediction
using the randomized test set (988 sequences, see Fig. 3C in main text) in Table S3.
Some models with 32 nodes in the convolutional layer(s) showed no convergence, i.e.
the MSE for the validation set did not improve after initialization. We found that
dropout had the largest influence on the model’s performance, d = 0.5 being optimal
to prevent over-training.



Table S3: Hyperparameter testing results. Overview of the tested architec-
tures and hyperparameters, sorted by MSE (in kJ2 mol−2). The settings indicated
in green were used for the final model.

Nc Nn,c Nd Nn,d d b lr epoch MSE
2 64 1 64 0.5 64 0.001 18 2.92
2 32 1 64 0.5 64 0.001 8 2.94
1 64 1 32 0.5 64 0.001 62 2.96
1 64 1 128 0.5 64 0.001 32 3.00
1 32 2 128 0.5 64 0.001 20 3.01
1 32 2 64 0.5 64 0.001 43 3.05
1 64 2 128 0.5 64 0.001 36 3.09
1 32 2 32 0.3 64 0.001 39 3.11
1 32 1 64 0.3 64 0.001 42 3.13
1 32 2 32 0.5 64 0.001 40 3.15
1 64 2 64 0.5 64 0.001 46 3.21
1 32 1 128 0.5 64 0.001 33 3.22
2 64 1 64 0.5 128 0.001 32 3.28
2 64 1 64 0.5 32 0.01 9 3.29
2 128 2 128 0.5 64 0.001 19 3.30
1 64 1 64 0.5 64 0.001 46 3.31
1 32 2 64 0.3 64 0.001 38 3.33
1 32 1 64 0.5 64 0.001 38 3.34
1 32 1 32 0.3 64 0.001 64 3.36
1 64 1 128 0.3 64 0.001 27 3.37
1 64 1 64 0.3 64 0.001 42 3.37
2 32 2 64 0.3 64 0.001 6 3.38
2 32 2 64 0.5 64 0.001 Not converged -
2 32 1 128 0.3 64 0.001 Not converged -
2 32 1 128 0.5 64 0.001 Not converged -
1 128 1 32 0.5 64 0.001 52 3.41
2 128 2 128 0.3 64 0.001 19 3.44
1 64 2 64 0.3 64 0.001 38 3.44
1 64 2 32 0.5 64 0.001 51 3.44
2 64 1 64 0.3 64 0.001 25 3.45
2 64 1 64 0.5 128 0.0001 108 3.45
2 64 1 128 0.3 64 0.001 17 3.45
1 64 2 32 0.3 64 0.001 34 3.45
2 32 1 128 0.1 64 0.001 22 3.46
1 32 1 32 0.5 64 0.001 57 3.47
2 64 1 64 0.5 64 0.01 5 3.49
1 32 1 32 0.1 64 0.001 40 3.49
2 64 2 64 0.5 64 0.001 22 3.51
1 128 2 128 0.5 64 0.001 27 3.51
1 32 2 128 0.3 64 0.001 33 3.52
2 32 2 128 0.1 64 0.001 10 3.55
2 64 1 64 0.5 32 0.001 21 3.55
2 32 1 32 0.1 64 0.001 26 3.56
1 32 1 128 0.3 64 0.001 31 3.59
2 128 2 64 0.3 64 0.001 20 3.60
2 32 1 64 0.3 64 0.001 17 3.60
1 64 1 32 0.3 64 0.001 45 3.60
1 128 2 64 0.5 64 0.001 38 3.60
2 64 1 32 0.5 64 0.001 21 3.61
2 32 2 32 0.1 64 0.001 25 3.63
2 64 1 32 0.3 64 0.001 24 3.63
2 32 1 32 0.5 64 0.001 30 3.64
2 128 1 64 0.5 64 0.001 19 3.65



1 128 1 32 0.3 64 0.001 44 3.65
1 128 1 64 0.5 64 0.001 47 3.66
1 64 2 32 0.1 64 0.001 23 3.67
1 64 2 128 0.3 64 0.001 25 3.70
2 32 1 64 0.1 64 0.001 20 3.72
2 128 1 32 0.3 64 0.001 22 3.74
2 64 1 32 0.1 64 0.001 19 3.75
1 128 1 128 0.5 64 0.001 42 3.75
2 128 1 128 0.3 64 0.001 25 3.75
2 128 2 64 0.5 64 0.001 30 3.76
2 64 1 64 0.5 64 0.0001 87 3.76
1 128 2 32 0.5 64 0.001 43 3.76
1 32 2 128 0.1 64 0.001 19 3.77
2 128 1 64 0.3 64 0.001 17 3.78
2 64 2 32 0.1 64 0.001 13 3.78
2 64 1 64 0.5 32 0.0001 70 3.78
1 32 2 64 0.1 64 0.001 20 3.79
1 128 1 128 0.3 64 0.001 30 3.79
2 128 1 128 0.5 64 0.001 22 3.80
2 64 2 128 0.5 64 0.001 23 3.81
2 32 1 32 0.3 64 0.001 32 3.82
2 32 2 64 0.1 64 0.001 18 3.82
2 128 1 64 0.1 64 0.001 12 3.82
2 128 1 128 0.1 64 0.001 14 3.83
1 128 1 64 0.3 64 0.001 33 3.83
1 64 2 64 0.1 64 0.001 18 3.87
2 64 2 32 0.5 64 0.001 30 3.89
1 64 1 128 0.1 64 0.001 19 3.89
2 32 2 32 0.3 64 0.001 26 3.90
2 128 2 64 0.1 64 0.001 14 3.91
2 128 2 32 0.5 64 0.001 25 3.92
2 128 2 32 0.3 64 0.001 17 3.93
2 64 2 128 0.1 64 0.001 18 3.93
1 32 2 32 0.1 64 0.001 31 3.93
2 128 1 32 0.5 64 0.001 20 3.94
1 32 1 64 0.1 64 0.001 30 3.94
1 128 2 128 0.3 64 0.001 18 3.94
2 64 2 64 0.3 64 0.001 31 3.96
1 128 2 32 0.3 64 0.001 34 3.97
1 128 2 64 0.1 64 0.001 14 4.02
2 64 1 128 0.1 64 0.001 17 4.03
1 32 1 128 0.1 64 0.001 18 4.03
2 64 1 128 0.5 64 0.001 14 4.04
1 128 1 64 0.1 64 0.001 29 4.07
1 128 1 128 0.1 64 0.001 15 4.09
1 128 1 32 0.1 64 0.001 34 4.09
1 128 2 128 0.1 64 0.001 11 4.12
1 64 1 32 0.1 64 0.001 39 4.13
2 64 2 32 0.3 64 0.001 30 4.13
2 64 2 128 0.3 64 0.001 33 4.14
1 128 2 32 0.1 64 0.001 25 4.19
2 128 2 32 0.1 64 0.001 14 4.27
2 64 1 64 0.1 64 0.001 18 4.29
2 64 1 64 0.5 128 0.01 8 4.33
2 32 2 32 0.5 64 0.001 16 4.33
1 64 1 64 0.1 64 0.001 33 4.38
2 128 2 128 0.1 64 0.001 12 4.45



1 128 2 64 0.3 64 0.001 25 4.47
2 128 1 32 0.1 64 0.001 16 4.49
2 32 2 128 0.3 64 0.001 Not converged -
2 32 2 128 0.5 64 0.001 Not converged -
1 64 2 128 0.1 64 0.001 13 5.15
2 64 2 64 0.1 64 0.001 18 5.44



8 Benchmark peptide sequences and properties

Table S4: Benchmark peptides. Sequences, physicochemical properties, and experimental
classification of 19 natural benchmark peptides (or derivatives thereof) from the chemically diverse
ALPS- and α-synuclein (aSyn) families.

Peptide Sequence Length L Charge z ⟨H⟩ µH Exp. classification

ALPS Synapsin GGGFFSSLSNAVKQTTAAAAATFS 24 +1 0.373 0.328 Sensor [53]
ALPS2 ArfGAP1 VSQLASKVQGVGSKGWRDVTTFFS 24 +2 0.370 0.441 Sensor [32]
ALPS Kes1/Osh4 MSQYASSSSWTSFLKSIASFNGD 23 0 0.413 0.241 Sensor [23]
ALPS Barkor SSAGGMISSAAASVTSWFKAYTG 23 +1 0.439 0.344 Sensor [33]
ALPS Vps41 FNPTTNIGSLLSSAASSFRGTPDK 24 +1 0.310 0.365 Sensor [34]
ALPS Nup133 LPQGQGMLSGIGRKVSSLFGILS 23 +2 0.555 0.417 Sensor [54]
ALPS Pah1p MQYVGRALGSVSKTWSSI 18 +2 0.476 0.557 Sensor [35]

ALPS GMAP-210 MSSWLGGLGSGLGQSLGQVGGSLA 24 0 0.536 0.437 Sensor [24]
ALPS GMAP-210 (inv) LSGGVQGLSQGLGSGLGGLWSSML 24 0 0.594 0.424 Sensor [25]

ALPS GMAP-210 (L12D) MSSWLGGLGSGDGQSLGQVGGSLA 24 -1 0.433 0.335 Non-binder [25]
ALPS GMAP-210 (cond) MSSWLGGLLGSLVGSLLTIFKDML 24 0 0.823 0.466 Binder [25]

ALPS1 ArfGAP1 DFLNNAMSSLYSGWSSFTTGASRF 24 0 0.464 0.486 Sensor [8]
ALPS1 ArfGAP1 (3A) DFLNNAMSSAYSGASSATTGASRF 24 0 0.263 0.306 Non-binder [23]
ALPS1 ArfGAP1 (2Ki) DFLNNAMSKLYSGWSSFKTGASRF 24 +2 0.372 0.483 Binder [23]

aSyn1 DVFMKGLSKAKEGVVAAAEKTK 22 +2 0.129 0.354 Sensor [9]
aSyn1 (Mut5) RVFMKGLSDADRFVVAFARDTD 22 0 0.273 0.444 Non-binder [9]
aSyn1 (Mut3) DVFMKGLSKAKAFVVAFAAKTK 22 +4 0.364 0.323 Binder [9]

aSyn2 KTKQGVAEAAGKTKEGVLYVGSKT 24 +3 0.064 0.215 Sensor [11]
aSyn2 (T6) KLKQGVAEAAGKFKEGVLYVGSKL 24 +3 0.248 0.374 Binder [11]



9 ∆∆F values for different membrane
compositions

Many biological membranes are anionic. Hence, many curvature sensing motifs
in natural proteins have evolved to be cationic to improve membrane interac-
tions and potentially enable additional composition sensing. This aspect is not
captured by our initial MD simulations, since we use neutral POPCmembranes
in our setup. To correct for this discrepancy, we performed additional (and
otherwise identical) ∆∆F calculations on membranes with 25% of negatively
charged 16:0–18:1 phosphatidylglycerol (POPG).

Due to additional coulomb interactions, we generally found higher (more
negative) free-energy values on the negatively charged membrane, especially
for positively charged peptides (Table S5). On average, we observed a change
of cz = −0.93±0.89 kJ mol−1 in ∆∆F for every unit of net charge. I.e. raising
the net charge of a peptide by one boosts the magnitude of ∆∆F by ≈ 1 kJ
mol−1.

Table S5: Sensing free energies for different membrane compositions. Length-adjusted
∆∆FL=24 values calculated from MD simulations (n = 3) on anionic (75% POPC, 25% POPG)
and neutral (100% POPC) membranes, with standard deviations σ. The charge correction factor cz
is the average value of the difference (diff) between the two ∆∆FL=24’s devided by the respective
peptide charge z, and thus only exists for non-neutral peptides. The final column gives the charge-
adjusted ∆∆Fadj = ∆∆FL=24 +czz (eq. 1 in main text). The standard deviation σcz of the diff/z

values for all non-neutral peptides is propagated to the final error as σadj =
√

σ2 + (zσcz)2. All

free energies are given in kJ mol−1.

75% POPC, 25% POPG 100% POPC 100% POPC
Peptide z ∆∆FL=24 ∆∆FL=24 diff/z ∆∆Fadj

ALPS Synapsin +1 −10.11± 0.59 −9.94± 0.40 −0.17 −10.87± 0.98
ALPS2 ArfGAP1 +2 −12.47± 0.49 −9.01± 1.15 −1.73 −10.88± 2.12
ALPS Kes1/Osh4 0 −7.78± 0.92 −8.22± 0.11 - −8.22± 0.11
ALPS Barkor +1 −12.15± 0.31 −11.21± 0.28 −0.95 −12.14± 0.94
ALPS Vps41 +1 −12.99± 0.31 −11.30± 0.41 −1.82 −12.11± 0.98
ALPS Nup133 +2 −13.15± 0.64 −9.32± 2.07 −1.92 −11.19± 2.73
ALPS Pah1p +2 −13.67± 0.22 −10.06± 0.14 −1.80 −11.93± 1.79

ALPS GMAP-210 0 −12.94± 0.33 −11.04± 0.19 - −11.04± 0.19
ALPS GMAP-210 (inv) 0 −13.22± 0.24 −11.47± 0.14 - −11.47± 0.14

ALPS GMAP-210 (L12D) -1 −6.51± 0.85 −5.36± 0.86 1.15 −4.42± 1.24
ALPS GMAP-210 (cond) 0 −20.04± 0.13 −17.64± 0.42 - −17.64± 0.42

ALPS1 ArfGAP1 0 −12.58± 0.25 −10.99± 0.39 - −10.99± 0.39
ALPS1 ArfGAP1 (3A) 0 −10.26± 0.17 −8.92± 0.59 - −8.92± 0.59
ALPS1 ArfGAP1 (2Ki) +2 −13.00± 0.41 −11.05± 0.92 −0.97 −12.91± 2.01

aSyn1 +2 −8.14± 0.34 −7.18± 0.33 −0.48 −9.04± 1.82
aSyn1 (Mut5) 0 −7.58± 0.59 −7.57± 0.55 - −7.57± 0.55
aSyn1 (Mut3) +4 −13.63± 0.96 −7.18± 0.63 −1.61 −10.91± 3.63

aSyn2 +3 −3.26± 0.57 −0.66± 0.56 −0.87 −3.46± 2.74
aSyn2 (T6) +3 −9.53± 1.79 −9.48± 2.98 −0.02 −12.28± 4.01

cz −0.93
σcz 0.89



10 Calculating ∆Fsm

The partitioning free energy difference ∆Fsm between the membrane-bound
state m and solvation s was determined through thermodynamic integration
(TI) [55] (Fig. S7). The system setup of the peptide-membrane system is
the same as the tensionless system (R = ∞) that was implemented in Evo-
MD. Now, however, simulations were run with semiisotropic pressure coupling
rather than at constant area. The peptide-solvent system was prepared by
removing the lipid molecules from the system, performing a steepest decent
minimization, and a 50 ns MD simulation to obtain an equilibrated NpT
ensemble. The Van der Waals- and Coulomb-interactions between peptide par-
ticles and their surrounding were gradually switched off (coupling parameter
λ = 0 → λ = 1 with 37 intermediate states), such that the fully decoupled
configuration is the peptide in vacuum. For the peptide-membrane system, we
used a soft harmonic constraint (kforce = 50 kJ mol−1 nm−2) to retain a mem-
brane bound conformation in high decoupling states, as described previously
[19]. We probed the influence of this harmonic constraint by performing addi-
tional TI simulations for one of the curvature sensors (ALPS1 ArfGAP1) with
a five fold higher force constant (kforce = 250 kJ mol−1nm−2), which yielded
the same value for ∆Fsm(R = ∞): −26.271 ± 0.342 kJ mol−1, compared to
−25.670±0.988 kJ mol−1 for the original setting (kforce = 50 kJ mol−1nm−2).
This shows that the contribution of this constraint to the membrane binding
free energy is negligible. We also tried to perform additional TI calculations
with a five fold weaker force constant (kforce = 10 kJ mol−1nm−2), which
destabilized the simulations to such extent – especially in the high decou-
pling states – that we were unable to calculate a ∆Fm value for this setting.
This demonstrates the importance of introducing a weak constraint to pre-
vent the peptide from “flying across the box”. The latter would render the free
energy difference between the interacting and non-interacting state dependent
on the system’s dimensions, whereas ∆Fsm in our model is a scale-independent
intrinsic property which is independent of the system’s dimensions.

The Langevin stochastic dynamics (SD) integrator and thermostat were
used for the TI runs. Every λ-state was run for 500 ns, with the first 50 ns
being discarded from the analysis for equilibration. Free energies were obtained

through numerical integration over the ensemble averaged ∂V (λ)
∂λ values, with

V being the potential energy:

∆Fsm = ∆Fs −∆Fm =

[ ∫ 1

0

〈
∂V (λ)

∂λ

〉
λ

dλ

]
s

−
[ ∫ 1

0

〈
∂V (λ)

∂λ

〉
λ

dλ

]
m

(5)

Since we are interested in peptides that bind to curved membranes (10 ≤
R ≤ 100), we need to rewrite ∆Fsm as a function of the vesicle radius R, which
includes an offset given by the difference in binding free energy between a flat
tensionless membrane (R = ∞) and a curved membrane with radius R; i.e.
∆∆F (R):



Fig. S7 Thermodynamic integration. Schematic representation of thermodynamic integra-
tion to obtain the membrane binding free energy ∆Fsm(R = ∞) between the peptide binding to
a tensionless membrane (left) and the solvation energy (right).

∆Fsm(R) = ∆Fsm(R = ∞) + ∆∆F (R) (6)

Throughout this paper, we calculate ∆∆F (R) for a set relative strain ϵ =
0.165. As we have derived in our previous work [19], ϵ relates to the vesicle
radius R, with d being half the monolayer thickness, thus d ≃ 1 in for our 4
nm thick POPC bilayer:

ϵ(R) =
d2

R2
+

2d

R
=

1

R2
+

2

R
(7)

This relation yields a radius of R = 12.5 nm for our default calculation of
∆∆F (R) with ϵ(R) = 0.165.

Because ∆∆F (R) and ϵ(R) are linearly related (for relative strains below
ϵ(R = 12.5) = 0.165, see Fig. 3C in our previous work [19]), we can generalize
for all R from ∆∆F (R = 12.5):

∆∆F (R) =
∆∆F (R = 12.5)

ϵ(R = 12.5)
ϵ(R) =

∆∆F (R = 12.5)

0.165

( 1

R2
+

2

R

)
(8)

When we plug eq. 8 into eq. 6, we obtain:

∆Fsm(R) = ∆Fsm(R = ∞) +
∆∆F (R = 12.5)

0.165

( 1

R2
+

2

R

)
(9)

Because the curvature stress vanishes with 1/R2, the smaller the vesicles
become, the greater the offset ∆∆F (R) will influence the overall membrane
binding free energy ∆Fsm(R) due to the increase of hydrophobic lipid packing
defects on the surface. For typical liposome sizes in experiments (e.g. R = 50),
the contribution of ∆∆F (R) is rather small, since 1

502 + 2
50 = 0.04.



11 Classification of benchmark peptides

To validate our method, we compared the predictions of our physics-trained
CNN model (∆∆Fadj, and related Pm) with experimental classifications from
the literature for the 19 ALPS- and aSyn-related example peptides. 3/3 non-
binders, 8/12 sensors, and 3/4 binders are correctly classified.

Table S6: Classification of the benchmark peptides. Benchmark peptides sorted by
∆∆Fadj (predicted by the CNN, Fig. 4B in main text). ∆Fsm(R = 50) is the binding free energy
for vesicles with a 50 nm radius, as calculated by eq. 9 in SM section 11. Pm is calculated from
∆Fsm(R) using eq. 2 in the main text. Errors are propagated from the obtained MSE of the
CNN model on the randomized test set with the error of the charge correction zσcz , such that

σadj =
√

MSE + (zσcz )
2. Free energies are given in kJ mol−1. Non-binder: Pm < 0.05; Sensor:

0.05 ≤ Pm ≤ 0.95; Binder: Pm > 0.95.

Peptide ∆∆Fadj ∆Fsm(R = 50) Pm Pred. classification Exp. classification Correct?

aSyn2 −4.36± 3.18 −5.49 0.00 Non-binder Sensor [11] no
ALPS GMAP-210 (L12D) −4.73± 1.93 −6.99 0.00 Non-binder Non-binder [25] yes

aSyn1 (Mut5) −5.38± 1.71 −8.51 0.01 Non-binder Non-binder [9] yes
aSyn1 −5.59± 2.47 −10.50 0.01 Non-binder Sensor [9] no

ALPS2 ArfGAP1 −5.97± 2.47 −12.04 0.02 Non-binder Sensor [32] no
ALPS1 ArfGAP1 (3A) −6.20± 1.71 −12.98 0.03 Non-binder Non-binder [23] yes

ALPS Osh4 −6.65± 1.71 −14.81 0.07 Sensor Sensor [23] yes
ALPS GMAP-210 (inv) −7.07± 1.71 −16.52 0.13 Sensor Sensor [25] yes

ALPS GMAP-210 −7.16± 1.71 −16.89 0.15 Sensor Sensor [24] yes
ALPS Synapsin −8.23± 1.93 −21.25 0.50 Sensor Sensor [53] yes
ALPS Pah1p −9.30± 2.47 −25.60 0.85 Sensor Sensor [35] yes
ALPS Vps41 −9.44± 1.93 −26.17 0.88 Sensor Sensor [34] yes
aSyn2 (T6) −9.52± 3.18 −26.50 0.89 Sensor Binder [11] no
ALPS Barkor −9.83± 1.93 −27.76 0.93 Sensor Sensor [33] yes

ALPS1 ArfGAP1 −10.85± 1.71 −28.33 0.95 Sensor Sensor [8] yes

ALPS Nup133 −11.77± 2.47 −35.66 1.00 Binder Sensor [54] no
aSyn1 (Mut3) −12.11± 3.93 −37.05 1.00 Binder Binder [9] yes

ALPS1 ArfGAP1 (2Ki) −12.20± 2.47 −37.41 1.00 Binder Binder [23] yes
ALPS GMAP-210 (cond) −13.09± 1.71 −46.69 1.00 Binder Binder [25] yes



12 Correlation between ∆Fsm and Eisenberg
parameters

The Eisenberg parameters mean hydrophobicity ⟨H⟩ and hydrophobic moment
µH [13] are often used to characterize amphipathic helical peptides. For a given
sequence, ⟨H⟩ and µH can be calculated from a hydrophobicity scale [56] of
the individual amino acids. ⟨H⟩ is simply the average value of the individual
hydrophobicities in the sequence. µH is the mean vector sum of the individual
hydrophobicities, such that it is a measure for the segregation of polar and
apolar residues in a helical orientation.

We plotted the partitioning free energy between a curved membrane and
solvation ∆Fsm(R = 50) against ⟨H⟩ and µH for our set of example peptides
and found that they both weakly correlate (Fig. S8). Despite this correlation,
reliable ranking and classification like we have done with our free-energy based
thermodynamic Fermi-Dirac model (Fig. 4 in main text) would have been
impossible with the crude (but more readily calculated) Eisenberg descriptors
⟨H⟩ and µH.

Fig. S8 Correlation between membrane binding free energy and Eisenberg parame-
ters. A) Correlation between the curved membrane binding free energy ∆Fsm(R = 50) and mean
hydrophobicity ⟨H⟩. B) Correlation between ∆Fsm(R = 50) and hydrophobic moment µH.



13 Supplementary movies: evolution of
consensus sequences

Supplementary movie S1-3 show the evolution of the consensus sequence logos
over the course of three independent Evo-MD runs (Fig. 2B in main text).
The final frames in movie S1-3 correspond to the consensus sequences in Fig.
2C-E, respectively.
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