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Supplementary text

Evidence lower bound (ELBO)
For a single subject, the observations contain the time series from all n regions, Y = (y1, . . . ,yn) ∈ Rn nt ,

where nt is the number of time points. They are complemented by the region time series for the network
input, U = (u1, . . . ,un) ∈ Rn nt , and the one-hot vector c ∈ Rnsub encoding the subject identity. The latent
variables Z contain the state time series xj ∈ Rnsnt for all regions j (where ns is the dimension of the state
space), region-specific parameters θr

j ∈ Rmr , subject specific parameters θs ∈ Rms , and time series of the
external input uext ∈ Rnt . The latent variables can be thus written as Z = (x1, . . . ,xn,θr

1, . . . ,θr
n,θs,uext).

Our goal is to minimize the Kullback-Leibler divergence between the approximate and true posterior, which
can be rewritten as a sum of subject ELBO and evidence itself,

KL(q(Z|Y ,U , c) || p(Z|Y ,U , c)) = Eq[log q(Z|Y ,U , c)]− Eq[log p(Z|Y ,U , c)]
= Eq[log q(Z|Y ,U , c)]− Eq[log p(Y |Z,U , c)]− Eq[log p(Z|U , c)]︸                                                                                         ︷︷                                                                                         ︸

−Lsubject

+Eq[log p(Y |U , c)].

Maximizing the ELBO then minimizes the KL divergence. We can factorize all terms of the ELBO across
n brain regions: the approximate posterior,

q(Z|Y ,U , c) =
n∏

j=1
q(xj |yj ,uj , c)

n∏
j=1

q(θr
j |yj ,uj , c) q(θs|c) q(uext|c),

the data likelihood,

p(Y |Z,U , c) =
n∏

j=1
p(yj |xj ,θr

j ,θs,uext,uj , c),

and the prior,

p(Z|U , c) = p(x1, . . . ,xn|θr
1, . . . ,θr

n,θs,uext,U , c) p(θr
1, . . . ,θr

n,θs,uext|U , c)

=
n∏

j=1
p(xj |θr

j ,θs,uext,uj , c)
n∏

j=1
p(θr

j |uj , c) p(θs|c) p(uext|c).

We require that the data likelihood and priors depend on the subject identity only through the latent
variables, so we remove the dependence on c. We also require that the priors of θr

j do not depend on the
external input uj . Then we define the region ELBO as

Lj = Eq[log p(yj |xj ,θr
j ,θs,uext,uj)]

+ Eq[log p(xj |θr
j ,θs,uext,uj)] + Eq[log p(θr

j)] + 1
n
Eq[log p(θs)] + 1

n
Eq[log p(uext)]

− Eq[log q(xj |yj ,uj , c)]− Eq[log q(θr
j |yj ,uj , c)]− 1

n
Eq[log q(θs|c)]− 1

n
Eq[log q(uext|c)] (1)

so that the subject ELBO is the sum of region ELBOs, Lsubject =
∑n

j=1 Lj .



Hopf
model

validation

pMFM
validation

Application
on HCP

data
State space dimension ns 2 2 3
Number of region-specific parameters mr 2 2 3†
Number of subject-specific parameters ms 1 1 0
Number of hidden units in f 32 32 32
Number of LSTM units in h1 and h2 32 32 32
Batch size 16 16 64
Samples over the approximate posterior 8 8 8
External input No No Yes
Number of subjects 8 8 100
Number of regions 68 68 68
Time series length nt 180 1200 1200
Number of model parameters 18737 18737 19128
Number of additional parameters per subject 514 514 2914

Table S1: Method parameters used in the test cases on synthetic data and for the application on HCP resting-state fMRI
data. †Or varying.
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Figure S1: Overview of the method architecture visualized for one brain region. In the sketches we drop the region indices for
simplicity, and keep only the time indices. (A) Generative model. With known functions f and g, and given initial conditions
x0, parameters θr and θs and time-varying external input uext, the model can be simulated in forward fashion, influenced by
the system noise η and observation noise ν. The network input for region j at time k is calculated on the fly from the current
states of other regions, uj,k =

∑n

i=1 wjiyi,k. (B) Inference model. The data (observation time series y, precomputed network
input time-series u and one-hot vector c identifying the subject) are mapped through the encoder functions h1, h2, h3, and h4
onto the system states x, region-specific parameters θr, subject-specific parameters θs, and external input uext respectively.
The observation function g appears in the likelihood function, while the system evolution function f enters the prior on the
states. The noise η and ν is present only implicitly via the likelihood and the prior functions. The inference problem amounts
to the maximization of the resulting ELBO over the parameters of the generative model f , g, encoder functions h1, h2, h3, h4,
and variance of the system and observation noise.
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Figure S2: Relation of the original model parameters with inferred parameters for the Hopf model testcase, providing
illustration for the statistics in Fig. 4A in the main text. The three rows shows the bifurcation parameter a, frequency f , and
coupling coefficient G. In the upper two rows, each point represents a parameter of one region (n = 544, 8 subjects each with
68 regions), in the bottom row each point represents one subject (n = 8). The visualised data points shows a single sample
from a posterior distribution. The text indicates Spearman’s nonlinear correlation coefficient ρ. In the upper two rows, the
rightmost panel shows the optimal projection of the parameters identified by multivariate linear regression of the posterior
means. In the center row, data points are colored based on the original value of the bifurcation parameter a and Spearman’s
ρ is reported for both the full data set and the subset for a > 0.
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Figure S3: Relation of the original model parameters with inferred parameters for the pMFM testcase, providing illustration
for the statistics in Fig. reffig:evalE in the main text. The two rows shows the noise strength and coupling coefficient G. In
the upper row, each point represents a parameter of one region (n = 544, 68 regions and 8 subjects), in the bottom row each
point represents one subject (n = 8). The visualised data points shows a single sample from a posterior distribution. The text
indicates Spearman’s nonlinear correlation coefficient ρ. In the upper row, the rightmost panel shows the optimal projection
of the parameters identified by multivariate linear regression of the posterior means.
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Figure S4: Recovery of the region-specific parameters in the Hopf model for different subjects with different coupling coefficient
G. The figure contains the data from Fig. 2A in the main text, separated for the individual subjects.
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Figure S5: Examples of several reconstructed time series from the Hopf model testcase, and of the quantities used for the 
evaluation of the reconstruction quality on Fig. 4 in the main text: cosine similarity of the spectra and signal variance. Apart 
from the original data and an example reconstruction from the trained model, three surrogates are shown: new data generated 
with the original model, spatial reshuffle, and random noise. The spectra are normalized by its maximum for visualization 
purposes.
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Figure S6: Examples of several reconstructed time series from the pMFM testcase, and of the quantities used for the 
evaluation of the reconstruction quality on Fig. 4 in the main text: Wasserstein distance of the probability densities, and 
number of switches on log-scale (bounded by 0). Apart from the original data and an example reconstruction from the trained 
model, three surrogates are shown: new data generated with the original model, spatial reshuffle, and random noise. In the 
leftmost panels, only 200 out of 1200 seconds of the timeseries is shown for visual clarity. In the center panel, the probability 
density of the original data is shaded.



Hopf model, cosine similarity of spectra
P5 Median P95 Mean p-value

Trained model 0.578 0.750 0.908 0.739 -
Original model 0.749 0.904 0.998 0.892 2.4e-103
Spatial reshuffle 0.282 0.708 0.977 0.672 1.2e-09
Noise 0.118 0.319 0.701 0.362 2.5e-184

Hopf model, difference in variance
P5 Median P95 Mean p-value

Trained model 0.011 0.130 0.680 0.211 -
Original model 0.010 0.059 0.172 0.070 6.2e-49
Spatial reshuffle 0.019 0.761 3.196 1.106 4.5e-71
Noise 0.112 0.784 2.329 0.885 4.2e-94

pMFM, Wasserstein distance
P5 Median P95 Mean p-value

Trained model 0.009 0.029 0.307 0.077 -
Original model 0.034 0.064 0.345 0.110 4.1e-08
Spatial reshuffle 0.041 0.597 2.371 0.919 5.7e-85
Noise 0.286 0.752 1.789 0.824 1.2e-155

pMFM, difference in number of switches
P5 Median P95 Mean p-value

Trained model 0.000 0.272 1.587 0.480 -
Original model 0.000 0.243 1.290 0.393 1.8e-03
Spatial reshuffle 0.000 1.946 4.651 2.047 7.7e-72
Noise 0.736 4.348 5.529 3.754 3.0e-153

Table S2: Numerical values and results of statistical testing for data presented in Fig. 4 in the main text. The columns show
the 5-percentile, median, 95-percentile, mean of the distribution, and the p-value from comparison with the data from the
trained model (two-sided t-test for related samples).
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Figure S7: Structural and functional connectivity matrices for all subjects in the Hopf model test case. First row: structural 
connectivity. Second row: Functional connectivity of the original data used for the training. Third row: Functional connectivity 
of the example data generated with the trained model. Fourth row: Functional connectivity of the data generated with the 
trained model, averaged over 50 samples.
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Figure S9: Effect of the connectome perturbation. (A) Spearman’s correlation coefficient for the recovery of the noise 
parameter for the log-scaled connectome (blue), original connectome (red), and five p erturbed c onnectomes ( black). (B) 
Spearman’s correlation coefficient for the recovery of the coupling parameter G. (C) Wasserstein distance of the distributions 
in the observation space of the original data and the data generated by the trained model. (D) Difference of the logarithm of 
number of switches between down- and up-state of the regional timeseries. (E) Relative FC fit, that i s, normalized Pearson’s 
correlation coefficient between the non-diagonal elements of the original FC and the FC generated by the trained model. The 
normalization is performed by dividing the coefficients by the mean of values obtained for the true connectome for every 
subject separately. The normalization is done in order to make the values comparable across subjects. For all panels, data 
were generated using four different connectome perturbations for each magnitude value, and one connectome for the original 
and log-scaled connectome. In panels A and B, 100 samples were drawn from the parameter distributions for each trained 
model. In panels C-E 50 simulations were performed to calculate the measures of goodness-of-fit f or each m odel. These were 
then aggregated across all subjects (and across regions apart from panels B and E). Each line represents the 5 to 95 percentile 
range, with the dot representing the median.
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Figure S10: Illustration of the convergence of the regional and subject parameters during training on 100 subject data set 
from Human Connectome Project. The upper two rows show four out of five r egional p arameters d uring 1 000 e pochs f or a 
model with mr = 5 and ms = 0. Each cross represents the means and standard deviations of the inferred parameters of one 
region; for clarity, parameters of only one subject out of hundred are shown. The lower two rows show four out of five subject 
parameters for a model with mr = 3 and ms = 5. Each cross correspond to parameters of one subject. Blue circle represents 
the prior standard normal distribution. As expected and desired with variational autoencoders, the regional parameters after
the training are roughly covering the support of the prior distribution, and in some unused dimensions (here θ4

r ) are closely 
matching the prior distribution N(0, 1), exhibiting the posterior collapse phenomenon. Such behavior is however not observed 
for the subject parameters, which neither fully cover the prior distribution, nor do they exhibit posterior collapse in any 
dimension. While these inferred subject parameters might contain some information about the intersubject differences (as in 
the synthetic test cases on Fig. 2 and Fig. 3), this convergence failure limits their interpretability, as it is not guaranteed that 
non-collapsed parameters have any effect on the dynamics.



Train set
(n = 5440)

Test set
(n = 1360)

1750

1500

1250

1000

750

D
at

ap
oi

nt
 E

LB
O

Figure S11: Assessment of the overfitting of the model trained on the Human Connectome Project data set. When training
the model, all 100 subjects are used, but randomly selected 20% of regional time series are left out to assess the possible
overfitting. To do so, we evaluate the datapoint ELBO (Eg. 1 in this SI) for the regions in the train and test sets. The
overlapping distributions indicate that overfitting is not a major issue.

6 27
Region

0.0

0.1

0.2

0.3

0.4

D
is

ta
nc

e 
be

tw
ee

n 
th

e 
st

ab
le

fix
ed

 p
oi

nt
s

A
x1
x2
x3

0 100 200 300 400
Time [s]

x2, 27

x2, 6

B

1 0 1
x2, 6

1

0

1

x 2
,2

7

C

Figure S12: Example of a subject with discovered multistability. Subject 45 was among the six subjects having multiple 
stable fixed p oints (Fig.6). The s earch f or the fixed po ints di scovered two st able and one unstable fixed poi nts. (A)  Distance 
between the stable fixed p oints i n t he s tate s pace. The fixed po ints were separated ma inly in  th e st ate space of  re gion 6 and 
27, on which we focus in the following panels. (B) Simulated activity in the two selected nodes. The full lines indicate the 
position of the stable fixed points, the dashed line the position of the unstable fixed po int. (C) Probability density of  the states 
of the two example regions across time. The stable fixed p oints a re r epresented by t he b lack-faced c ircles, t he unstable with 
the white-faced circle. Neither from the panel B or C does the existence of the multiple stable fixed p oint s eem t o affect the 
generated activity, as no multimodality is immediately visible; the presence of the noise play the dominant role.



r
1

r
2

r
3

Low-freq. power

Corr. with uext

Corr. with u

-0.83

p < 1e-10

-0.04

p = 1.1e-02

-0.10

p = 2.0e-08

-0.12

p < 1e-10

0.88

p < 1e-10

-0.05

p = 7.8e-05

0.69

p < 1e-10

0.04

p = 1.1e-02

0.50

p < 1e-10

Figure S13: Results of the multivariate regression between the regional parameters and three timeseries features from Fig. 7
in the main text. In each cell, upper row gives the weight of the parameter, the bottom row the p-value.

2 0 2
r
1

0.6

0.4

0.2

m
ax

 (R
e(

))

A

2 0 2

0.025

0.000

0.025

0.050

f 1
/

u e
xt

B

2 0 2

0.02

0.00

0.02

f 1
/

u

C

2 0 2
0.2

0.1

0.0

0.1

f 2
/

u e
xt

2 0 2

0.1

0.0

0.1

f 2
/

u

2 0 2
r
2

0.050

0.025

0.000

0.025

f 3
/

u e
xt

2 0 2
0.69 r

1 + 0.50 r
3

0.050

0.025

0.000

0.025

f 3
/

u

Figure S14: Analysis the role of the regional parameters θr in the dynamical system ẋ(t) = f (x(t), θr , θs, uext(t), u(t)) + η(t), 
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Figure S15: Human resting-state fMRI: Relation between the inferred parameters and features from individual data. Each 
dot corresponds to one region of one subject. The position corresponds to the inferred mean of regional parameters, the 
variances are not visualized. The fourth column shows the optimal direction identified by t he multivariate l inear regression 
(as in Tab. 2). In the rightmost column are the p-values from the multivariate linear regression (two-sided t-test, uncorrected 
values) and R2 coefficient of determination. The analysis is performed on n = 6800 data points (100 subject, 68 regions each). 
For the purpose of visualization only, the number of data point is randomly downsampled by a factor of 5 (6800 to 1360).
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Figure S16: Human resting-state fMRI: Relation between the inferred regional parameters and features from external data. 
Each dot corresponds to one region of one subject. The position corresponds to the inferred mean of regional parameters, the 
variances are not visualized. The fourth column shows the optimal direction identified by t he multivariate l inear regression 
(as in Tab. 2). In the rightmost column are the p-values from the multivariate linear regression (two-sided t-test, uncorrected 
values) and R2 coefficient of determination. The analysis is performed on n = 6800 data points (100 subject, 68 regions each). 
For the purpose of visualization only, the number of data point is randomly downsampled by a factor of 5 (6800 to 1360). The 
horizontal bands are caused partly by the limited precision of the data obtained from other studies, and partly by the fact that 
the feature maps of 68 regions are not individual, therefore there are at most 68 different values on the vertical axis.
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Figure S17: Effect of the modified connectome on the generated functional connectivity. The fit is evaluated in terms of
similarity of functional connectivity, measured by the Pearson correlation of the FC elements. Results are shown for the variants
without and with external input, and for four variants of structural connectomes: standard (Std), standard with homotopic
connections added (Std+hom), log-scaled (Log), and log-scaled with homotopic connections added (Log+hom). Each boxplot
is constructed from n = 2000 data points (100 subjects, 20 simulations each). The box extends from the first quartile to the
third quartile of the data, with a solid line at the median and dashed line at mean. The whiskers extend from the box by
1.5x the inter-quartile range. Fliers are not shown. Right panel shows the p-values (two-sided t-test, not corrected for multiple
comparison) between all variants.
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Figure S18: Functional connectivity dynamics (FCD) in the original and simulated data. FCD refers to the time-varying
changes in functional connectivity; we quantify and visualize these changes with the FCD matrices, in which the (i,j) element
is the Pearson correlation between the functional connectivity matrices at times i and j. These FC matrices are calculated
with a sliding window of 60 seconds. (A-C) Three examples, showing the original FCD (upper panel), FCD in the simulated
data (middle panel), and the distributions of FCD elements in the original and simulated data, and the Kolgomorov-Smirnov
distance DKS between them. Perfect overlap of the two distributions, and DKS close to zero would indicate that the FCD
structure is well reproduced; this is however not the case in the examples. (D) Evaluation of FCD fit for all subjects, quantified
with the Kolgomorov-Smirnov distance. The box extends from the first quartile to the third quartile of the data, with a solid
line at the median. The values far from zero indicate that the model is not capable of reproducing the FCD structure well.



Data S1. (separate file)
Data references on EBRAINS portal for layer-specific distributions of segmented cells in the BigBrain model.
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