# Science Advances

## Supplementary Materials for

### Ventilation of the deep Gulf of Mexico and potential insights to the Atlantic Meridional Overturning Circulation

Rainer M.W. Amon et al.

Corresponding author: Rainer M.W. Amon, amonr@tamu.edu

*Sci. Adv.* **9**, eade1685 (2023) DOI: 10.1126/sciadv.ade1685

#### The PDF file includes:

Supplementary Text Figs. S1 to S6 Tables S1 to S3 Legends for data S1 to S3

#### Other Supplementary Material for this manuscript includes the following:

Data S1 to S3



Supplemental Figure 1. Mean density (sigmao) profiles at the Yucatan Channel Sill (red) and at the deep interior of the Gulf of Mexico (blue). CTD data are from XIXIMI-6 (2017, blue) and CANEK-42 (2018, red).

Box model for deep GoM residence time calculation



Supplemental Figure 2. Schematic of the box model used to derive residence times from volume transport measurements. Delta rho  $(\Delta \rho)$  represents an increment in density, rho  $(\rho)$  is the density of

the reference volume and rho prime ( $\rho$ ) represents a density anomaly needed to calculate the turbulent exchange in the upper boundary. U is the horizontal current at Yucatan Channel, a is the cross-sectional area, w is the vertical velocity (upwelling) in the interior of the GoM and A stands for the surface area of a particular isopycnal. The solid line represents the isopycnal that defines the upper boundary of the reference volume. The dashed line is a contiguous isopycnal, with slightly lower density, between which turbulent exchanges are possible. The red curvy line represents those exchanges.

In order to have a 'model' from which 'residence times' can follow it is necessary to include:

1) diapycnal mixing and

2) upwelling.

Consider

i) the inflow of waters heavier than some reference sigma\_0 (say sigma\_0A),

ii) the outflow (towards the Caribbean Sea) of same type of waters, and

iii) the outflow as upwelling through the reference isopycnal surface.

In this model the inflowing waters mix with lighter waters, hence the isopycnal surface is far from a material surface, nonetheless the 'box', defined via isopycnals, is well defined, and in this 'model' the only inflow is through the Yucatan Channel (red profiles in Fig. 4) and there are two outflows in order for the volume to be conserved and balance the inflow (i.e. a long-term steady density field is assumed). One outflow component is the horizontal current towards the Caribbean Sea (green profiles in Fig 4) and the other outflow component is "diapycnal" upwelling through the reference isopycnal surface.

For the water below a reference density to remain with such density, turbulent exchange with waters above is called for, and the upwelling removes the excess volume that results from the unbalanced horizontal exchange (i.e. along isopycnals) in the Yucatan Channel. The residence time is the time it takes to fill a volume below a certain reference density by the inflow through YC (the same volume is provided by the two outflows). Considering that for this steady state model, mass and volume remain unchanged in the box, there is the compromise for turbulent exchanges to balance the 'mass excess input', this does not seem far-fetched as the isopycnal surface in contact with lighter waters is large.

In relation to the schematic model in Supplemental Figure 2:

Conservation of volume in the model domain,

 $\nabla \cdot \underline{u} = 0, \quad ua + wA = 0 \tag{1}$ 

where u is the horizontal current at Yucatan Channel, a the cross-sectional area, w the vertical velocity (upwelling) in the interior of the GoM and A stands for the surface area of a particular isopycnal.

Conservation of mass,

$$\frac{\partial}{\partial t}(\rho + \rho') + \nabla \cdot \left[\rho(\underline{u} + \underline{u'})\right] = 0$$

where  $\rho$  is a reference density and prime quantities are anomalies. On average this gives:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \underline{u} + \nabla \cdot \overline{\rho' \underline{u'}} = 0$$

in steady state conditions  $\frac{\partial \rho}{\partial t} = 0$ , therefore

$$(\rho + \Delta \rho) ua + \rho wA + \overline{\rho' w'} A = 0 \qquad (2)$$

(1) & (2) => 
$$\Delta \rho \, ua + \overline{\rho' w'} A = 0$$
 (3)

The *excess* inflowing mass ( $\Delta \rho \, ua$ ) is released via turbulent mixing ( $\overline{\rho'w'}A$ ) plus mass outflow. The turbulent vertical interchange ( $\overline{\rho'w'}A$ ) does not contribute to the upwelling, the upwelling is w in equation (1).

The net mass transport associated with the volume transport ua is made up of INFLOW (say  $\rho_1 u_1 a_1$ ) and outflow towards the Caribbean Sea ( $\rho_2 u_2 a_2$ ),

i.e.,  $(\rho + \Delta \rho) ua = \rho_1 u_1 a_1 + \rho_2 u_2 a_2$  where in Figure 4  $u_1 a_1$  and  $u_2 a_2$  corresponds to the red trace and green traces respectively.

The residence time is therefore the amount of time that transport  $u_1a_1$  (inflowing transport) takes to fill the volume below a given isopycnal. This time is the same as the time it takes for  $u_2a_2 + wA$  to release the same volume, i.e.  $u_1a_1 + u_2a_2 + wA = 0$ 

Once this 'model' is assumed, residence times can be computed (as shown in Figure 6, main text; also see Ochoa et al. 2021 (26) for a related discussion).

#### Ventilation of the Venezuelan Basin

Earlier work suggested a residence time of 540 years (98) and 55 years (85), respectively, for the deep Venezuela Basin (>2500m). The large difference of these estimates is based on the inclusion of entrainment in one of the estimates (98) and a low volume transport of 0.1 Sv through the double sill in the Anegada-Jungfern Passage Complex (85). The  $\Delta^{14}$ C offset of ~18‰ between NADW (~1800m) and the deep waters in the Venezuela Basin (85) is similar to the 15‰ difference reported here (main text, Table 1). The dissolved oxygen distribution suggests that the Venezuela Basin cannot be solely ventilated through the Anegada-Jungfern Passage on a timescale of 540 or 55 years (98, 85) because the DO concentrations in the deep basin are either too low or too high. Considering that the DO concentration of inflowing NADW is around 260 µM and assuming an average oxygen consumption in deep waters around 0.15 µM yr<sup>-1</sup> for UNADW (99) then deep water with an average residence time of 540/55 years should have DO concentrations closer to 180/250 µM, but not the 215 µM observed in the deep Venezuela Basin (Figure 7a). This indicates a different residence time for deep waters in the Venezuela Basin and/or deep-water exchanges with the Cayman Basin through the Colombian Basin. DO concentrations and the radiocarbon content in the different deep basins suggest that the residence time of the deep Venezuelan Basin should be between the values proposed for the Yucatan Basin (~45 years) and the GoM (~100 years). Assuming a linear relationship between DO concentrations, radiocarbon values and residence times, the waters of the deep Venezuelan Basin should be replaced about every 70-80 years on average.



Supplemental Figure 3: Relationship between dissolved oxygen concentrations and radiocarbon in deep waters of the GoM, the Caribbean and the North Atlantic (near Anegada-Jungfern Passage). The red dot

radiocarbon profile (36).

represents the 3000 m sample from the 1978

Output from the Total Matrix Intercomparison based on WOCE data



Supplemental Figure 4: Results of the Total Matrix Intercomparison (TMI) method indicating the major surface water sources of deep waters (3500m) in the GoM.





Dissolved Oxygen profiles and bottom distribution in the Gulf of Mexico

Supplemental Figure 5: Oxygen depth profiles (1600m-bottom) at station A10 (easternmost station in the GoM in red) showing intrusions of high oxygen waters from the Yucatan Channel at different depth levels, and at a station in the central GoM (blue) showing a mid-depth DO maximum and general DO decline towards the bottom.



Supplemental Figure 6: Bottom water oxygen distribution during XIXIMI-7, 2019 suggesting a cyclonic bottom water flow from the Yucatan Strait sill towards the north to the Sigsbee Escarpment following the topography to the west and ultimately to the south consistent with bottom water flows (gray arrow). All stations are deeper than 3000m except Yucatan Strait.

| Water mass within the<br>GoM       | Common<br>abbreviation | Density σ <sub>θ</sub><br>(kg/m <sup>3</sup> ) | Pot. Temp.  | Salinity<br>S <sub>A</sub> | Depth<br>Range |  |
|------------------------------------|------------------------|------------------------------------------------|-------------|----------------------------|----------------|--|
|                                    |                        |                                                |             |                            | (m)            |  |
| Surface waters –                   | SW                     |                                                |             |                            |                |  |
| Gulf Common Water,                 | GCW,                   | 24.0-26.30                                     | 20.00-22.50 | <36.80                     | <150           |  |
| Caribbean SW                       | CSW                    | <22.90                                         | 22.00-28.00 | <36.70                     |                |  |
|                                    |                        |                                                |             |                            |                |  |
| Subtropical underwater             | SUW                    | 25.43-25.68                                    | 20.00-25.00 | >36.80                     | 150-250        |  |
| Eighteen-degree water              | 18°C water             | 26.20-26.65                                    | 17.00-19.00 | 36.20-36.70                | 105-320        |  |
| North Atlantic Central<br>Water    | NACW                   | 26.70-26.96                                    | 8.58-14.30  | 35.22-36.00                | 300-560        |  |
| South Atlantic Central<br>Water    | SACW                   | 26.96-27.34                                    | 6.95-8.55   | 35.10-35.22                | 560-700        |  |
| Antarctic Intermediate<br>Water    | AAIW                   | 27.38-27.45                                    | 5.50-6.50   | 35.05-35.10                | 740-900        |  |
| Upper North Atlantic Deep<br>water | UNADW                  | >27.76                                         | <4.60       | >35.12                     | >1200          |  |

Supplemental Table 1. Water mass characteristics (TEOS-10)

#### Supplemental Table 2. CMIP6 GCM ensemble and its references and data parameters

| Model             | reference                                                | experiment id      | member<br>id | deep GOM (z) | (m)  |
|-------------------|----------------------------------------------------------|--------------------|--------------|--------------|------|
| CanESM5           | Swart et al., 2019 (89)                                  | historical, ssp585 | rlilplfl     | 29           | 2054 |
| CNRM-<br>ESM2-1   | Séférian et al., 2016 (90)                               | historical, ssp585 | rlilp1f2     | 53           | 1945 |
| GFDL-CM4          | Held et al., 2019 (91)                                   | historical, ssp585 | rlilplfl     | 25           | 2000 |
| GFDL-<br>ESM4     | Dunne et al., 2020 (92)                                  | historical, ssp585 | rlilplfl     | 25           | 2062 |
| IPSL-<br>CM6A-LR  | Boucher et al., 2020 (93)                                | historical, ssp585 | rlilplfl     | 53           | 1945 |
| MIROC-<br>ES2L    | Hajima et al., 2020 (94)                                 | historical, ssp585 | rlilp1f2     | 46           | 1990 |
| MPI-ESM1-<br>2-HR | Müller et al., 2018 (95);<br>Mauritsen et al., 2019 (96) | historical, ssp585 | r2i1p1f1     | 29           | 2080 |
| MRI-<br>ESM2-0    | Yukimoto et al., 2019 (97)                               | historical, ssp585 | rli2p1f1     | 47           | 2000 |

Supplemental Table 3. Station location and depth of radiocarbon samples (DIC) along with hydrographic data, nutrients, dissolved inorganic carbon (DIC) and alkalinity.

| Station | Longitude | Latitude | Depth | Date       | Θ     | Salinity | $\sigma_0$         | Nitrate | Silicate | AT   | DIC    | DO     | $\Delta^{14}C$ |
|---------|-----------|----------|-------|------------|-------|----------|--------------------|---------|----------|------|--------|--------|----------------|
|         | °W        | °N       | m     |            | °C    |          | kg m <sup>-3</sup> | µmoles  | µmoles   |      | µmoles | µmoles | ‰              |
|         |           |          |       |            |       |          |                    | kg⁻¹    | kg⁻¹     |      | kg⁻¹   | kg⁻¹   |                |
| C23     | 93.000    | 23.000   | 10    | 09/02/2017 | 29.98 | 36.62    | 22.947             | 0.50    | 1.90     | 2390 | 2051   | 190.05 | 43.63          |
| C23     | 93.000    | 23.000   | 50    | 09/02/2017 | 26.83 | 36.48    | 23.887             | 0.10    | 1.50     | 2391 | 2055   | 218.97 | 40.78          |
| C23     | 93.000    | 23.000   | 102   | 09/02/2017 | 23.32 | 36.35    | 24.865             | 0.20    | 1.60     | 2455 | 2098   | 191.49 | 44.22          |
| C23     | 93.000    | 23.000   | 150   | 09/02/2017 | 20.75 | 36.58    | 25.766             | 5.80    | 3.30     | 2388 | 2159   | 126.30 | 53.75          |
| C23     | 93.000    | 23.000   | 445   | 09/02/2017 | 10.11 | 35.242   | 27.127             | 20.07   | 12.79    | 2304 | 2208   | 104.83 | -9.64          |
| C23     | 93.000    | 23.000   | 600   | 09/02/2017 | 7.87  | 34.995   | 27.292             | 24.07   | 19.04    | 2302 | 2208   | 112.59 | -55.81         |
| C23     | 93.000    | 23.000   | 800   | 09/02/2017 | 6.1   | 34.916   | 27.479             | 22.47   | 23.13    | 2313 | 2218   | 138.19 | -86.16         |
| C23     | 93.000    | 23.000   | 1200  | 09/02/2017 | 4.52  | 34.95    | 27.699             | 24.00   | 24.76    | 2296 | 2198   | 185.66 | -94.94         |
| C23     | 93.000    | 23.000   | 2500  | 09/02/2017 | 4.09  | 34.98    | 27.762             | 22.39   | 25.41    | 2326 | 2191   | 202.99 | -97.53         |
| C23     | 93.000    | 23.000   | 3731  | 09/02/2017 | 4.07  | 34.98    | 27.765             | 22.31   | 25.41    | 2336 | 2193   | 200.65 | -96.46         |
| F37     | 95.000    | 21.000   | 50    | 08/29/2017 | 27.75 | 36.47    | 23.582             | 0       | 1.90     | 2391 | 2062   | 215.21 | 41.23          |
| F37     | 95.000    | 21.000   | 88    | 08/29/2017 | 22.78 | 36.40    | 25.059             | 0       | 1.70     | 2392 | 2106   | 177.78 | 46.01          |
| F37     | 95.000    | 21.000   | 150   | 08/29/2017 | 19.01 | 36.50    | 26.168             | 12.70   | 4.40     | 2372 | 2179   | 113.93 | 57.89          |
| F37     | 95.000    | 21.000   | 399   | 08/29/2017 | 10.28 | 35.282   | 27.114             | 26.71   | 14.07    | 2301 | 2211   | 104.29 | -6.92          |

| F37  | 95.000 | 21.000 | 600   | 08/29/2017 | 7.67  | 34.978  | 27.313 | 15.99   | 10.25    | 2337  | 2172     | 115.13 | -6.47  |
|------|--------|--------|-------|------------|-------|---------|--------|---------|----------|-------|----------|--------|--------|
| F37  | 95.000 | 21.000 | 800   | 08/29/2017 | 5.93  | 34.916  | 27,502 | 28.69   | 23.81    | 2300  | 2218     | 143.56 | -87.09 |
| F37  | 95 000 | 21 000 | 1200  | 08/29/2017 | 4.38  | 34 96   | 27 720 | 24.08   | 25.27    | 2331  | 2206     | 191.65 | -97 75 |
| F37  | 05.000 | 21.000 | 3165  | 08/20/2017 | 1.00  | 34.08   | 27.765 | 27.00   | 25.17    | 2327  | 2180     | 201.48 | 06.18  |
| F37  | 95.000 | 21.000 | 3105  | 00/29/2017 | 4.07  | 34.90   | 27.703 | 22.30   | 20.17    | 2321  | 2109     | 201.40 | -90.10 |
| A10  | 87.051 | 24.921 | 10    | 09/07/2017 | 30.22 | 30.34   | 22.657 | 0       | 1.50     | 2360  | 2027     | 191.54 | 38.48  |
| A10  | 87.051 | 24.921 | 50    | 09/07/2017 | 29.23 | 36.24   | 22.922 | 0       | 1.30     | 2355  | 2023     | 202.40 | 37.85  |
| A10  | 87.051 | 24.921 | 114   | 09/07/2017 | 26.92 | 36.43   | 23.823 | 0       | 1.30     | 2357  | 2056     | 198.25 | 41.05  |
| A10  | 87.051 | 24.921 | 150   | 09/07/2017 | 26.06 | 36.67   | 24.266 | NA      | NA       | NA    | NA       | 178.16 | 54.99  |
| A10  | 87.051 | 24.921 | 344   | 09/07/2017 | 17.52 | 36.434  | 26.445 | 8.19    | 2.75     | 2386  | 2152     | 155.81 | 27.14  |
| A10  | 87 051 | 24 921 | 600   | 09/07/2017 | 946   | 35 156  | 27 005 | 11 01   | 5.68     | 2353  | 2157     | 121 72 | 60.51  |
| A10  | 87.051 | 24.021 | 800   | 00/07/2017 | 7.01  | 34.070  | 27.265 | 28.18   | 17.80    | 2314  | 2216     | 116.12 | 45.37  |
| A10  | 07.001 | 24.921 | 4000  | 09/07/2017 | 1.31  | 34.970  | 27.203 | 20.10   | 17.00    | 2014  | 2210     | 110.12 | -40.07 |
| A10  | 87.051 | 24.921 | 1200  | 09/07/2017 | 4.//  | 34.95   | 27.647 | 25.84   | 25.07    | 2321  | 2208     | 174.60 | -94.07 |
| A10  | 87.051 | 24.921 | 2500  | 09/07/2017 | 4.08  | 34.98   | 27.764 | 21.91   | 23.88    | 2319  | 2196     | 204.09 | -93.31 |
| A10  | 87.051 | 24.921 | 3350  | 09/07/2017 | 4.07  | 34.98   | 27.767 | 22.13   | 23.33    | 2328  | 2189     | 206.23 | -93.49 |
| Y7   | 85.944 | 21.670 | 10    | 09/06/2017 | 29.74 | 36.19   | 22.707 | 0.90    | 2.90     | 2363  | 2014     | 192.09 | 39.00  |
| Y7   | 85.944 | 21.670 | 50    | 09/06/2017 | 28.95 | 36.32   | 23.076 | 0       | 1.40     | 2330  | 2031     | 198.95 | 39.61  |
| Y7   | 85.944 | 21.670 | 90    | 09/06/2017 | 27.22 | 36.49   | 23.770 | 0       | 1.30     | 2377  | 2058     | 197.16 | 41.66  |
| Y7   | 85,944 | 21,670 | 150   | 09/06/2017 | 23.42 | 36.96   | 25,300 | 2.60    | 1.40     | NA    | 2128     | 161.25 | 50.09  |
| ¥7   | 85 944 | 21.670 | 450   | 09/06/2017 | 12 12 | 35 524  | 26.934 | 20.49   | 9.07     | 2336  | 2210     | 127 79 | 26.46  |
| V7   | 95.044 | 21.670 | 600   | 00/06/2017 | 0.22  | 25.000  | 20.304 | 20.40   | 15.07    | 2000  | 2210     | 116 70 | £0.40  |
| 17   | 05.944 | 21.070 | 000   | 09/00/2017 | 9.22  | 35.090  | 27.140 | 27.40   | 10.37    | 2314  | 2100     | 110.70 | -32.70 |
| Y /  | 85.944 | 21.670 | 800   | 09/06/2017 | 6.45  | 34.857  | 27.378 | 28.32   | 21.13    | 2290  | 2208     | 131.34 | -/3.// |
| Y7   | 85.944 | 21.670 | 1000  | 09/06/2017 | 4.97  | 34.93   | 27.622 | 26.04   | 23.98    | 2315  | 2204     | 172.85 | -91.32 |
| Y7   | 85.944 | 21.670 | 1200  | 09/06/2017 | 4.47  | 34.96   | 27.705 | 23.9    | 24.56    | 2327  | 2196     | 190.98 | -94.39 |
| Y7   | 85.944 | 21.670 | 1892  | 09/06/2017 | 4.11  | 34.98   | 27.760 | 22.26   | 23.41    | 2326  | 2186     | 208.45 | -92.63 |
| Y9   | 85.621 | 20.916 | 50    | 09/06/2017 | 29.32 | 36.27   | 22.915 | 0.10    | 1.50     | 2367  | 2024     | 193.51 | 40.66  |
| Y9   | 85.621 | 20.916 | 99    | 09/06/2017 | 27.40 | 36.47   | 23.700 | 0.10    | 1.30     | 2379  | NA       | 194.84 | 40.26  |
| Y9   | 85 621 | 20.916 | 150   | 09/06/2017 | 25.20 | 36.85   | 24 678 | NA      | NA       | NA    | 2048     | 176 43 | 49.91  |
| Ya   | 85 621 | 20.016 | 310   | 09/06/2017 | 17 03 | 36.40   | 26 433 | 9.70    | 3 30     | NΔ    | NΔ       | 150 17 | 57 55  |
| VO   | 95.021 | 20.910 | 600   | 00/06/2017 | 0.46  | 35 105  | 20.+00 | 20 10   | 16 10    | 2017  | 2007     | 110.17 | 01.00  |
| 19   | 05.021 | 20.910 | 000   | 09/00/2017 | 9.40  | 33.125  | 21.090 | 20.10   | 10.12    | 2317  | 2207     | 110.04 | -24.00 |
| Y9   | 85.621 | 20.916 | 842   | 09/06/2017 | 0.52  | 34.869  | 21.374 | 29.44   | 22.16    | 2307  | 2209     | 131.46 | -/3./3 |
| Y9   | 85.621 | 20.916 | 1200  | 09/06/2017 | 4.64  | 34.95   | 27.683 | 24.36   | 24.04    | 2305  | 2196     | 187.54 | -96.91 |
| Y9   | 85.621 | 20.916 | 2000  | 09/06/2017 | 4.08  | 34.99   | 27.771 | 20.59   | 18.8     | 2316  | 2175     | 224.44 | -81.15 |
| Y9   | 85.621 | 20.916 | 2500  | 09/06/2017 | 3.97  | 34.99   | 27.784 | 18.8    | 16.14    | 2322  | 2170     | 232.19 | -76.57 |
| Y9   | 85.621 | 20.916 | 3100  | 09/06/2017 | 3.92  | 34.99   | 27,788 | 18.13   | 16.69    | 2324  | 2167     | 231.12 | -80.47 |
| F1   | 94 766 | 23,960 | 20    | 04/24/2017 | 25.49 | 36.42   | 24 263 | NΔ      | NΔ       | NΔ    | NΔ       | 198 94 | 39.27  |
|      | 04.766 | 22.060 | 100   | 04/24/2017 | 20.40 | 26.21   | 24.071 | NIA     | NA       | NIA   | NA       | 190.44 | 20.47  |
|      | 94.700 | 23.900 | 100   | 04/24/2017 | 22.07 | 30.31   | 24.971 | NA NA   | NA<br>NA | N/A   | NA<br>NA | 109.44 | 59.47  |
| E1   | 94.766 | 23.960 | 150   | 04/24/2017 | 20.76 | 36.62   | 25.801 | NA      | NA       | NA    | NA       | 127.24 | 54.89  |
| E1   | 94.766 | 23.960 | 330   | 04/24/2017 | 12.71 | 35.58   | 26.903 | NA      | NA       | NA    | NA       | 105.94 | 26.64  |
| E1   | 94.766 | 23.960 | 450   | 04/24/2017 | 10.27 | 35.24   | 27.095 | NA      | NA       | NA    | NA       | 101.89 | -6.68  |
| E1   | 94.766 | 23.960 | 510   | 04/24/2017 | 9.25  | 35.28   | 27.172 | NA      | NA       | NA    | NA       | 102.99 | -25.42 |
| E1   | 94.766 | 23.960 | 810   | 04/24/2017 | 6.09  | 35.08   | 27.475 | NA      | NA       | NA    | NA       | 135.02 | -85.50 |
| E1   | 94.766 | 23,960 | 1200  | 04/24/2017 | 4.54  | 34.95   | 27.693 | NA      | NA       | NA    | NA       | 179.77 | -99.36 |
| F1   | 94 766 | 23,960 | 2500  | 04/24/2017 | 4 09  | 34.98   | 27 762 | NA      | NA       | NA    | NA       | 197 97 | -94 84 |
| E1   | 94 766 | 23,960 | 3600  | 04/24/2017 | 1.00  | 3/ 08   | 27.766 | NA      | NA       | NA    | NA       | 196.05 | _07.05 |
|      | 94.700 | 23.900 | 5000  | 04/24/2017 | 4.00  | 34.90   | 21.100 |         | NA<br>NA |       | NA<br>NA | 190.03 | -97.90 |
| E13  | 94.376 | 24.923 | 50    | 04/27/2017 | 25.00 | 30.43   | 24.427 | INA NIA | NA<br>NA | NA NA | NA<br>NA | 197.75 | 43.33  |
| E13  | 94.378 | 24.923 | 125   | 04/27/2017 | 24.43 | 36.42   | 24.591 | NA      | NA       | NA    | NA       | 190.34 | 40.25  |
| E13  | 94.378 | 24.923 | 200   | 04/27/2017 | 20.37 | 36.55   | 25.851 | NA      | NA       | NA    | NA       | 121.52 | 52.98  |
| E13  | 94.378 | 24.923 | 390   | 04/27/2017 | 12.62 | 35.56   | 26.909 | NA      | NA       | NA    | NA       | 105.90 | 26.04  |
| E13  | 94.378 | 24.923 | 500   | 04/27/2017 | 10.13 | 35.22   | 27.110 | NA      | NA       | NA    | NA       | 102.08 | -8.74  |
| E13  | 94.378 | 24.923 | 600   | 04/27/2017 | 8.94  | 35.07   | 27.188 | NA      | NA       | NA    | NA       | 104.15 | -33.69 |
| E13  | 94.378 | 24,923 | 840   | 04/27/2017 | 6.26  | 34.9    | 27,449 | NA      | NA       | NA    | NA       | 131.36 | -81.26 |
| E13  | 94,378 | 24,923 | 1200  | 04/27/2017 | 4.68  | 34 94   | 27.671 | NA      | NA       | NA    | NA       | 173 76 | -97 02 |
| F13  | 94 378 | 24 923 | 2500  | 04/27/2017 | 4 00  | 34 97   | 27 761 | NA      | NA.      | NA    | NA.      | 197 47 | -96 73 |
| E13  | 0/ 279 | 24 022 | 3600  | 04/27/2017 | 1.00  | 3/ 09   | 27 766 | NA      | N/A      | N/A   | N/A      | 106.49 | _0/ /6 |
| L 10 | 07.000 | 24.323 | 40    | 06/02/2017 | +.00  | 26.04   | 21.100 |         | 11/1     | 0005  | 2024 5   | 100.40 | -34.40 |
| A10  | 07.002 | 25.000 | 10    | 00/02/2019 | 20.02 | 30.24   | 23.12  | 0.04    | 1.07     | 2000  | 2034.3   | 193.03 | 33.1   |
| A10  | 87.002 | 25.000 | 00    | 06/02/2019 | 28.30 | 30.23   | 23.224 | 0.02    | 1.57     | 2334  | 2044.5   | 194.75 | 32.4   |
| A10  | 87.002 | 25.000 | 120   | 06/02/2019 | 26.54 | 36.39   | 23.916 | 0.10    | 1.36     | 2363  | 2054.2   | 184.66 | 32.6   |
| A10  | 87.002 | 25.000 | 150   | 06/02/2019 | 26.19 | 36.49   | 24.102 | 0.85    | 1.34     | 2388  | 2082.2   | 178.97 | 38.5   |
| A10  | 87.002 | 25.000 | 240   | 06/02/2019 | 22.35 | 36.91   | 25.575 | 4.40    | 1.74     | 2398  | 2222.5   | 156.35 | 43.7   |
| A10  | 87.002 | 25.000 | 345   | 06/02/2019 | 18.05 | 36.50   | 26.416 | 10.11   | 3.43     | 2383  | 2208.4   | 148.92 | 53.0   |
| A10  | 87.002 | 25.000 | 500   | 06/02/2019 | 13.52 | 35.75   | 26.872 | 29.72   | 18.61    | 2310  | 2219.7   | 124.16 | 31.6   |
| A10  | 87,002 | 25,000 | 600   | 06/02/2019 | 11.04 | 35.36   | 27.054 | 19,22   | 8,13     | 2337  | 2211     | 117.16 | 5.3    |
| A10  | 87 002 | 25 000 | 726   | 06/02/2019 | 8 4 8 | 35.03   | 27 228 | 24 90   | 12 55    | 2321  | 2216.9   | 113 33 | -41.2  |
| Δ10  | 87.002 | 25.000 | 800   | 06/02/2010 | 7.45  | 3/ 0/   | 27 212 | 30.50   | 21 12    | 2310  | 2210.0   | 118 71 | -62.4  |
| A10  | 07.002 | 25.000 | 000   | 06/02/2019 | 6.40  | 24.04   | 21.012 | 20.00   | 21.13    | 2010  | 2224     | 122.02 | -03.4  |
| A 10 | 07.002 | 25.000 | 003   | 00/02/2019 | 0.48  | 34.91   | 21.423 | 20.15   | 24.49    | 2317  | 2225.0   | 132.02 | -/ 0.1 |
| A10  | 87.002 | 25.000 | 1000  | 06/02/2019 | 5./8  | 34.92   | 27.52  | 29.53   | 23.02    | 2309  | 2222.5   | 147.31 | -90.2  |
| A10  | 87.002 | 25.000 | 1110  | 06/02/2019 | 5.18  | 34.94   | 27.607 | 26.90   | 25.31    | 2284  | 2230.1   | 164.16 | -91.3  |
| A10  | 87.002 | 25.000 | 1200  | 06/02/2019 | 4.82  | 34.95   | 27.661 | 26.02   | 25.59    | 2317  | 2225.6   | 147.93 | -96.8  |
| A10  | 87.002 | 25.000 | 1617  | 06/02/2019 | 4.22  | 34.97   | 27.747 | 23.27   | 25.15    | 2330  | 2195     | 200.17 | -95.9  |
| A10  | 87.002 | 25.000 | 1820  | 06/02/2019 | 4.16  | 34.98   | 27.755 | 22.95   | 25.06    | 2330  | 2196     | 202.85 | -97.5  |
| A10  | 87 002 | 25 000 | 2023  | 06/02/2019 | 4 13  | 34.98   | 27 760 | 17 66   | 20.08    | 2330  | 2196     | 204 18 | -95.3  |
| A10  | 87 002 | 25 000 | 2531  | 06/02/2010 | 4 09  | 34 98   | 27 765 | 22 40   | 24.83    | 2328  | 2195 9   | 205.41 | _93.1  |
| Δ10  | 87 002 | 25.000 | 30/11 | 06/02/2010 | 1.00  | 3/1 0.9 | 27 769 | 22.10   | 24.44    | 2325  | 2180     | 205.86 | _02.9  |
| A10  | 07.002 | 25.000 | 2200  | 06/02/2019 | +.00  | 24.00   | 27.700 | 24.00   | 24.44    | 2020  | 2109     | 200.00 | -32.0  |
| ATU  | 07.002 | 25.000 | 3302  | 00/02/2019 | 4.08  | 34.98   | 21.109 | 21.90   | 24.2U    | 2320  | 2189     | 200.77 | -90    |
| Y9   | 85.626 | 20.753 | 10    | 06/04/2019 | 28.95 | 36.2    | 22.985 | 0       | 1.64     | 2367  | 2037     | 193.37 | 29.6   |
| Y9   | 85.626 | 20.753 | 50    | 06/04/2019 | 27.86 | 36.12   | 23.289 | 0       | 1.57     | 2339  | 2058     | 203.13 | 33.6   |
| Y9   | 85.626 | 20.753 | 150   | 06/04/2019 | 26.37 | 36.39   | 23.969 | 0.25    | 1.36     | 2363  | 2154     | 181.2  | 36.4   |
| 1/0  | 85 626 | 20 753 | 235   | 06/04/2019 | 24.92 | 36.79   | 24,719 | 3.42    | 1.59     | 2283  | 2171     | 170.31 | 42 1   |

| Y9 | 85.626 | 20.753 | 372  | 06/04/2019 | 19.23 | 36.65 | 26.23  | 7.69  | 2.64  | 2357 | 2168   | 153.69 | 55.7  |
|----|--------|--------|------|------------|-------|-------|--------|-------|-------|------|--------|--------|-------|
| Y9 | 85.626 | 20.753 | 400  | 06/04/2019 | 17.11 | 36.37 | 26.542 | 9.65  | 3.35  | 2365 | 2157   | 153.17 | 55.8  |
| Y9 | 85.626 | 20.753 | 495  | 06/04/2019 | 13.96 | 35.80 | 26.819 | 17.39 | 7.28  | 2303 | 2153   | 126.29 | 38.0  |
| Y9 | 85.626 | 20.753 | 598  | 06/04/2019 | 11.62 | 35.44 | 27.005 | 22.50 | 11.1  | 2315 | 2180   | 119.29 | 13.4  |
| Y9 | 85.626 | 20.753 | 698  | 06/04/2019 | 10.62 | 35.29 | 27.077 | 26.47 | 15.2  | 2282 | 2198   | 117.03 | -20.2 |
| Y9 | 85.626 | 20.753 | 705  | 06/04/2019 | 9.80  | 35.18 | 27.130 | 26.77 | 15.7  | 2303 | 2173   | 115.95 | -16.8 |
| Y9 | 85.626 | 20.753 | 807  | 06/04/2019 | 7.96  | 34.95 | 27.249 | 29.29 | 19.8  | 2304 | 2198   | 117.99 | -48.0 |
| Y9 | 85.626 | 20.753 | 848  | 06/04/2019 | 7.38  | 34.91 | 27.301 | 30.09 | 23.1  | 2395 | 2172   | 122.29 | -74.7 |
| Y9 | 85.626 | 20.753 | 1009 | 06/04/2019 | 5.71  | 34.89 | 27.509 | 27.91 | 24    | 2298 | 2209   | 151.65 | -85.4 |
| Y9 | 85.626 | 20.753 | 1110 | 06/04/2019 | 5.08  | 34.94 | 27.619 | 25.64 | 24.6  |      |        | 173.19 | -92.6 |
| Y9 | 85.626 | 20.753 | 1211 | 06/04/2019 | 4.73  | 34.96 | 27.674 | 24.17 | 24.60 | 2312 | 2212.7 | 181.73 | -93.1 |
| Y9 | 85.626 | 20.753 | 1515 | 06/04/2019 | 4.30  | 34.98 | 27.738 | 22.27 | 23.35 | 2309 | 2207.2 | 203.96 | -90.6 |
| Y9 | 85.626 | 20.753 | 1795 | 06/04/2019 | 4.16  | 34.99 | 27.761 | 20.58 | 20.47 | 2316 | 2201.1 | 214.06 | -81   |
| Y9 | 85.626 | 20.753 | 1921 | 06/04/2019 | 4.10  | 34.99 | 27.770 | 20.75 | 20.52 | 2309 | 2193.4 | 218.24 | -85   |
| Y9 | 85.626 | 20.753 | 2030 | 06/04/2019 | 4.06  | 34.99 | 27.777 | 20.36 | 19.48 | 2327 | 2191.9 | 220.67 | -78.6 |
| Y9 | 85.626 | 20.753 | 2150 | 06/04/2019 | 4.04  | 35.00 | 27.781 | 19.86 | 17.85 | 2301 | 2178.5 | 228.18 | -73.3 |
| Y9 | 85.626 | 20.753 | 2610 | 06/04/2019 | 3.95  | 34.99 | 27.789 | 19.76 | 17.56 | 2306 | 2177.4 | 231.60 | -76.4 |
| Y9 | 85.626 | 20.753 | 4350 | 06/04/2019 | 3.91  | 34.99 | 27.790 | 19.84 | 18.13 | 2330 | 2172.6 | 229.03 | -84   |

#### **Captions for data files:**

Data S1 and S2: Volume transport and residence times shown in Figure 5:

A matlab (trademark <u>https://www.mathworks.com</u>) data file (physical\_data\_restimes.mat) and a matlab script (compute\_restimes.m) are included as supplementary data to reproduce Figure 5 from the main manuscript. A README\_FIG5.txt is also included explaining the contents of the data file. The files contain all the information required to reproduce the Figure including two estimates of the mean (normal to the section) velocity structure based on: (1) the mean of an objectively analyzed velocity field produced by matching transports at Yucatan Channel and Florida Straits and another (2) computed using mean values based on series longer than one year (see 27 for details). It also contains mean vertical profiles of temperature, salinity and potential density for the Yucatan Channel and interior of the Gulf of Mexico and estimates of volumes and areas below certain depths within the Gulf of Mexico (see the README\_FIG5.txt for the rest of its contents). The matlab script shows how the calculations to estimate transports and residence times were carried out. The results of these calculations are also included in the data file.

#### Data S3: Hydrographic data shown in Figure 6:

The file "hydrographic\_data" includes the CTD and dissolved oxygen data collected during two research cruises in the Gulf of Mexico and Yucatan Channel on the Mexican R/V Justus Sierra. The XIXIMI-6 cruise was conducted in August 2017 and the XIXIMI-7 cruise was conducted in May 2019. These data are shown in Figure 6 along with the data from the CLIVAR section A22 in 2012 (56).