Supplemental Information

PROTAC Linkerology Leads to an Optimized Bivalent Chemical Degrader of Polycomb Repressive Complex 2 (PRC2) Components

Frances M. Potjewyd¹, Caroline A. Foley¹, Han-Wee Ong¹, Justin M. Rectenwald¹, Ronan P. Hanley¹, Jacqueline L. Norris-Drouin¹, Stephanie H. Cholensky¹, Christine A. Mills², Kenneth H. Pearce¹, Laura E. Herring², Dmitri Kireev¹, Stephen V. Frye¹, Lindsey I. James^{1,3}*.

- 1. Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- 2. UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA.
- 3. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.

Chemistry

1.1 General Chemistry Procedures	1
1.2. Analysis of Products	2
1.3. Synthetic Schemes	2 – 6
1.4. Chemistry Experimental and spectra	7 – 88
References	88

^{*}Correspondence: ingerman@email.unc.edu

1.1. General Chemistry Procedures

All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. Reactions were carried out using conventional glassware and room temperature was generally 22 °C. Reactions were carried out at elevated temperatures using a temperature regulated hot plater-stirrer. Thin layer chromatography (TLC) was carried out using Merck silica plates coated with fluorescent indicator UV254. TLC plates were analysed under 254 nm UV light. Analytical LCMS data for all compounds was acquired using an Agilent 6110 Series system with the UV detector set to 254 nm. Samples were injected (<10 μL) onto an Agilent Eclipse Plus 4.6×50 mm, 1.8 μ m, C18 column at room temperature. Mobile phases A ($H_2O + 0.1\%$ acetic acid) and B (MeCN + 0.1% acetic acid) were used with a linear gradient from 10% to 100% B in 5.0 min, followed by a flush at 100% B for another 2 minutes with a flow rate of 1.0 mL/min. Mass spectra (MS) data were acquired in positive ion mode using an Agilent 6110 single quadrupole mass spectrometer with an electrospray ionization (ESI) source. Normal phase column chromatography was performed with a Teledyne Isco CombiFlash®R_f 200 using RediSep®R_f SILICA columns with the UV detector set to 254 nm and 280 nm. Reverse phase column chromatography was performed with a Teledyne Isco CombiFlash®R_f 200 using C18 RediSep®R_f Gold columns with the UV detector set to 220 nm and 254 nm. Preparative HPLC was performed using an Agilent Prep 1200 series with the UV detector set to 220 nm and 254 nm. Samples were injected onto either a Phenomenex Luna 250 \times 30 mm (5 μ m) C18 column or a Phenomenex Luna 75 x 30 mm (5 μm) C18 column at room temperature. Analytical LCMS (at 254 nm) was used to establish the purity of targeted compounds. All compounds that were evaluated in biochemical and biophysical assays had >95% purity as determined by LCMS.

1.2. Analysis of products

 1 H and 13 C NMR spectra were obtained on a Bruker AV 400 at 400 MHz, 101 MHz respectively. Chemical shifts are reported in parts per million (ppm) and coupling constants (J values) are reported in hertz (Hz) with CDCl₃ referenced at 7.26 (1 H) and 77.1 ppm (13 C), DMSO- d_6 referenced at 2.50 (1 H) and 39.5 ppm (13 C), acetone- d_6 referenced at 2.05 (1 H) and 29.8 ppm (13 C), and CD₃OD- d_4 referenced at 3.31 (1 H) and 49.0 ppm (13 C). The multiplicities are included as: singlet (s), doublet (d), doublet of doublets/triplets/quartets (dd/dt/dq), triplet (t), triplet of doublets/triplets (td/tt), quartet (q), quartet of doublets (qd), pentent (p), and multiplet (m).

1.3. Synthetic Schemes

Scheme S1. Synthesis of R-VHL building blocks $\mathbf{1} - \mathbf{7}$. a) The corresponding *N*-Boc-R-CO2H precursor (1.0 equiv), TBTU (1.3 equiv), VHL-amine ligand (1.0 equiv), DIPEA (3.2 equiv), DMF, 16 hr; b) 20% TFA in CH₂Cl₂.

Scheme S2. Synthesis of an amide series of EED-targeted degraders. a) Triazolo[4,3-c]pyrimidin-5-amine (8) (1.0 equiv), Pd(dppf)Cl₂.CH₂Cl₂ (0.2 equiv), methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1.5 equiv), and sodium bicarbonate (2.5 equiv), N₂, THF (4 mL), H₂O (2 mL), 110 °C, 18 hr; b) LiOH (3.0 equiv), THF, H₂O, 50 °C, 16 hr; c) **9** (1.0 equiv), **1** – **7** (1.0 equiv), TBTU (1.3 equiv), DIPEA (3.0 equiv), DMF.

Scheme S3. Synthesis of a primary and secondary amine series of EED-targeted degraders and chlorotagged compounds. a) To a microwave vial was added 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzaldehyde (1.5 equiv), **8** (1.0 equiv), Pd(dppf)Cl₂.CH₂Cl₂ (0.2 equiv), sodium bicarbonate (2.5 equiv), THF and H₂O, 90 °C, 16 hr; b) Amine (1.1 equiv), **10** (1.0 equiv), sodium sulfate (1.1 equiv), DIPEA (2.1 equiv), CH₂Cl₂, 40 °C for 1hr. Followed by MeOH, sodium tetrahydroborate (1.2 equiv), rt, 16 hr; c) **11** – **12** (1.0 equiv), CH₂Cl₂, Boc anhydride (1.1 equiv), NEt₃ (2.5 equiv), rt, 16 hr; d) **13** – **15** (1.0 equiv), LiOH.H₂O (3.0 equiv), H₂O, THF, rt, 16 hr; e) **16**, **18** (1.0 equiv), DIPEA (3.0 equiv), TBTU (1.3 equiv), DMF, 16 hr; f) 20% TFA in CH₂Cl₂.

Scheme S4. Synthesis of a sulfonamide series of EED-targeted degraders and ct compounds. a) 1-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)sulfonyl)piperidine-4-carboxylate (1.5 equiv), 8 (1.0 equiv), Pd(dppf)Cl₂.CH₂Cl₂ (0.2 equiv), sodium bicarbonate (2.5 equiv), THF, H₂O, 90 °C, 16 hr; b) 19 (1.0 equiv), LiOH.H₂O (3.0 equiv), THF, H₂O, rt, 16 hr; c) 20 (1.0 equiv), DIPEA (3.0 equiv), TBTU (1.3 equiv), DMF, amine (1.1 equiv), rt, 16 hr.

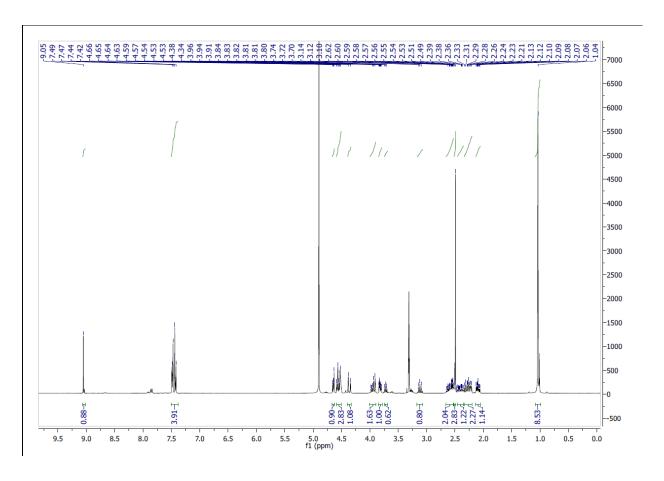
Scheme S5. Synthesis of amide linked EED-R-ct compounds. a) 9 (1.0 equiv), DIPEA (3.0 equiv), TBTU (1.3 equiv), DMF, amine (1.1 equiv), rt, 16 hr; b) 21 - 22 (1.0 equiv), LiOH.H₂O (3.0 equiv), THF, H₂O, rt, 16 hr; c) 23 - 24 (1.0 equiv), DIPEA (3.0 equiv), TBTU (1.3 equiv), DMF, amine (1.1 equiv), rt, 16 hr. 25 - 26 synthesized via a) and b) over two steps.

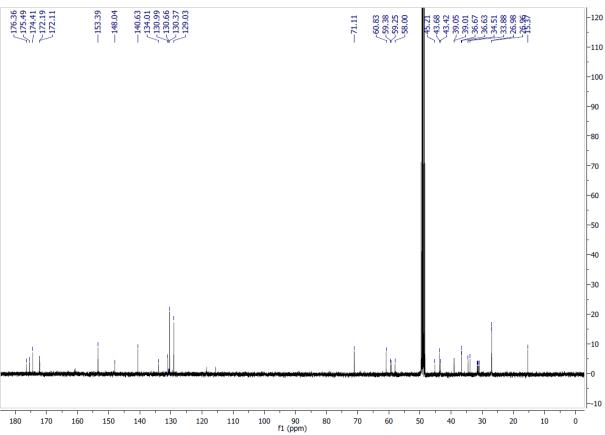
Scheme S6. Synthesis of a negative control degrader UNC7971. a) **25** (1.1 equiv), DIPEA (3.2 equiv), TBTU (1.3 equiv), DMF, amine (1.0 equiv), rt, 16 hr.

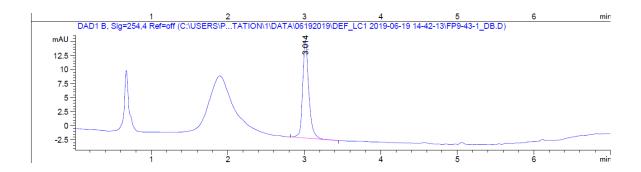
Scheme S7. Synthesis of PROTAC-O-ct compounds for the CAPA assay. a) tert-butyl ((S)-1-((2S,4R)-4-hydroxy-2-((2-hydroxy-4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)carbamate (1.0 equiv), Cs_2CO_3 (1.5 equiv), followed by 2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl 4-methylbenzenesulfonate (1.3 equiv), DMF, rt, 16 hr; b) 20% TFA in CH_2Cl_2 ; c) **23**, **25**, **26** (1.1 equiv), TBTU (1.30 equiv), DIPEA (3.2 equiv), **28** (1.0 equiv), DMF, rt, 16 hr.

Scheme S8. Synthesis of *cis*- and *trans*- EED-R-ct cyclobutane isomers for the CAPA assay. a) Corresponding carboxylic acid (1.0 equiv), TBTU (1.3 equiv), DIPEA (3.2 equiv), 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (1.0 equiv), DMF, rt, 16 hr; b) 20% TFA in CH₂Cl₂; c) **9** (1.0 equiv), TBTU (1.3 equiv), DIPEA (3.2 equiv), **29** – **30** (1.0 equiv), DMF, rt, 16 hr.

Abbreviations

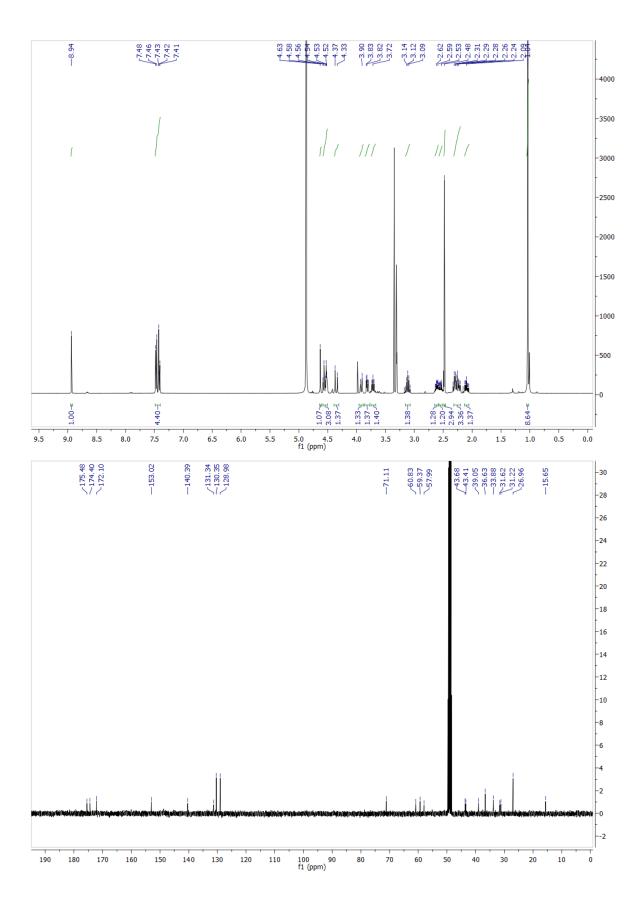

Trifluoroacetic acid (TFA), N,N-Diisopropylethylamine (DIPEA), Dimethyl formamide (DMF), Tetrahydrofuran (THF), 2-(1H-benzo[d][1,2,3]triazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), trifluoroacetic acid (TFA), chloroalkane tag (ct).

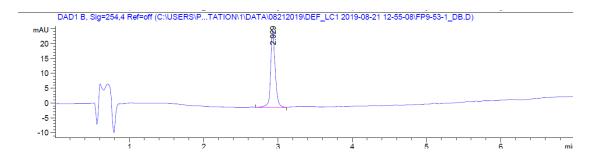

1.4. Chemistry Experimental and Spectra


(2S,4R)-1-((S)-2-(3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (1)

To a flask was added 3-((tert-butoxycarbonyl)amino)cyclobutane-1-carboxylic acid (20 mg, 92 µmol, 1.0 equiv), DIPEA (51 µL, 0.29 mmol, 3.2 equiv), and TBTU (38 mg, 0.12 mmol, 1.3 equiv) in DMF (1.0 mL), followed by addition of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (50 mg, 92 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by column chromatography (silica, 0-10% MeOH in CH_2Cl_2). The reaction was telescoped into the N-Boc deprotection with 20% TFA in CH_2Cl_2 (2 mL), concentrated *in vacuo* and purified by reverse phase column chromatography (C18, 0-100% MeCN in H_2O , 0.1% TFA). The product was concentrated to yield the desired product as a clear oil (2S,4R)-1-((S)-2-(3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (1) (34 mg, 58 %) over two steps.

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.05 (s, 1H), 7.50 – 7.41 (m, 4H), 4.67- 4.62 (m, 1H), 4.60 – 4.51 (m, 3H), 4.36 (d, J = 15.6 Hz, 1H), 4.00 – 3.90 (m, 2H), 3.82 (dt, J = 10.9, 3.4 Hz, 1H), 3.75 – 3.68 (m, 1H), 3.17 – 3.07 (m, 1H), 2.66 – 2.53 (m, 2H), 2.49 (s, 3H), 2.46 – 2.35 (m, 1H), 2.34 – 2.20 (m, 2H), 2.13 – 2.05 (m, 1H), 1.04 (s, 9H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 176.36, 175.49, 174.41, 172.19, 172.11, 153.39, 148.04, 140.63, 134.01, 130.99, 130.37, 129.03, 71.11, 60.83, 59.38, 59.25, 58.00, 45.21, 43.68, 43.42, 39.05, 39.01, 36.67, 36.63, 34.51, 33.88, 31.62, 31.39, 31.22, 30.96, 26.98, 26.96, 15.37. Extra carbon peaks observed due to diasteromeric mixture. LCMS: expected mass for [M+H]⁺ (C₂₇H₃₈N₅O₄S) requires 528.26 m/z, found 528.20 m/z.

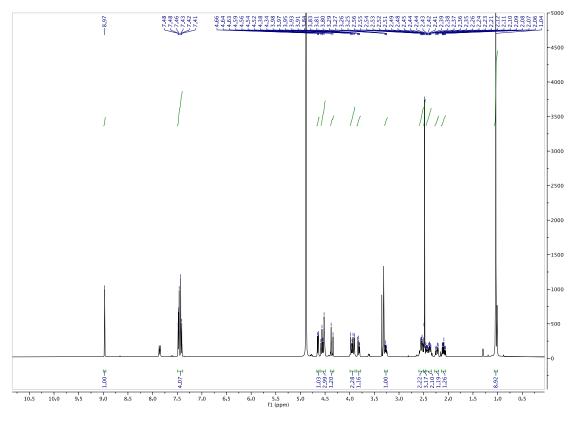


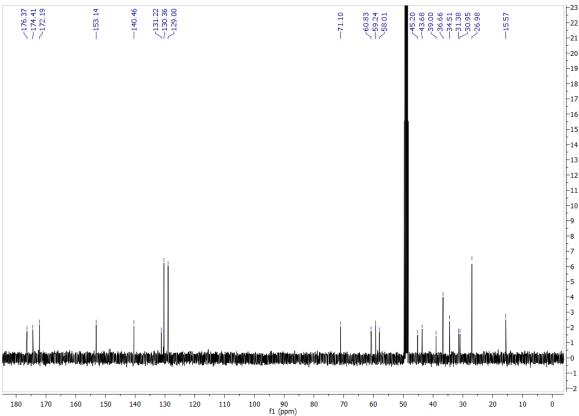


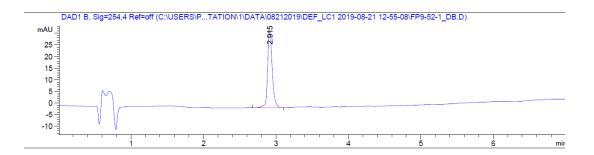
(2S,4R)-1-((S)-2-((1S,3R)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (2)

To a flask was added (1*S*,3*S*)-3-((*tert*-butoxycarbonyl)amino)cyclobutane-1-carboxylic acid (9.9 mg, 46 μ mol, 1.0 equiv), DIPEA (26 μ L, 0.15 mmol, 3.2 equiv), and TBTU (19 mg, 60 μ mol, 1.3 equiv) in DMF (1.0 mL), followed by addition of (2*S*,4*R*)-1-((*S*)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (25 mg, 46 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by column chromatography (silica, 0-10% MeOH in CH₂Cl₂). The reaction was telescoped into the *N*-Boc deprotection with 20% TFA in CH₂Cl₂ (2 mL), concentrated *in vacuo* and purified by reverse phase column chromatography (C18, 0-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a clear oil (2*S*,4*R*)-1-((*S*)-2-((1*S*,3*R*)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (2) (13 mg, 43 %) over two steps.

 1 H NMR (CD₃OD- 2 d₄, 400 MHz): δ 8.94 (s, 1H), 7.49 – 7.40 (m, 4H), 4.63 (s, 1H), 4.59 – 4.50 (m, 3H), 4.35 (d, 1 J = 15.53 Hz, 1H), 3.92 (d, 1 J = 11.04 Hz, 1H), 3.81 (dd, 1 J = 3.85, 10.95 Hz, 1H), 3.76 – 3.66 (m, 1H), 3.16 – 3.07 (m, 1H), 2.65 – 2.58 (m, 1H), 2.57 – 2.52 (m, 1H), 2.48 (s, 3H), 2.33 – 2.20 (m, 3H), 2.09 (ddd, 1 J = 4.42, 9.21, 13.33 Hz, 1H), 1.04 (s, 9H). 13 C NMR (CD₃OD- 1 d₄, 101 MHz): δ 175.49, 174.41, 172.11, 153.03, 140.40, 131.35, 130.36, 128.99, 71.12, 60.84, 59.37, 58.00, 43.69, 43.41, 39.05, 36.64, 33.88, 31.62, 31.22, 26.96, 15.65. LCMS: expected mass for [M+H]⁺ (C₂₇H₃₈N₅O₄S) requires 528.26 m/z, found 528.20 m/z.

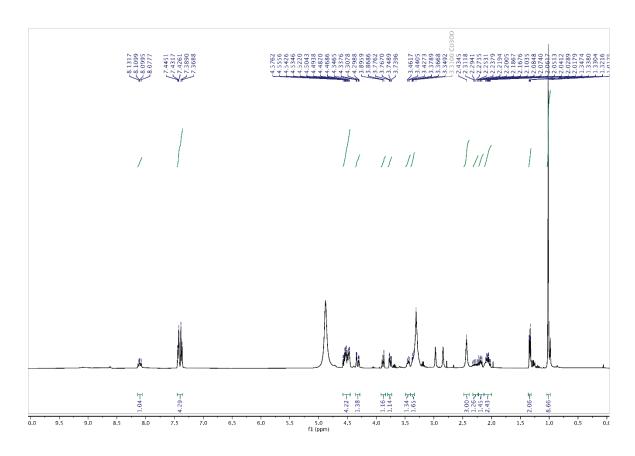


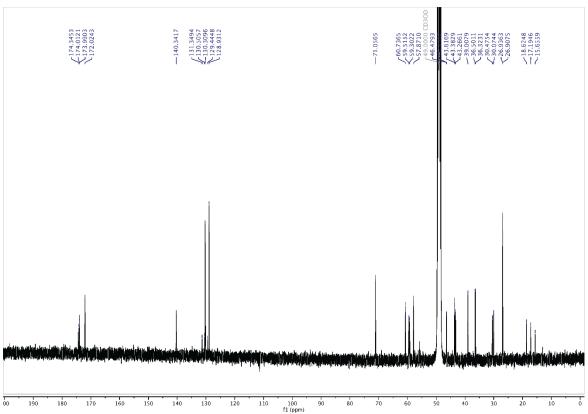

(2S,4R)-1-((S)-2-((1R,3S)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (3)

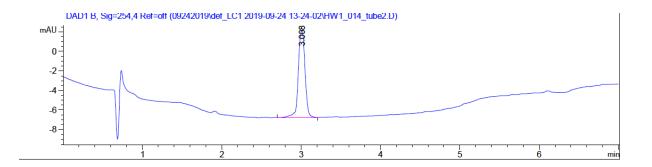

$$H_2N$$
 H_2N
 H_2N
 H_3N
 H_4N
 H_5N
 H_5N

To a flask was added (1R,3R)-3-((tert-butoxycarbonyl)amino)cyclobutane-1-carboxylic acid (9.9 mg, 46 µmol, 1.0 equiv), DIPEA (26 µL, 0.15 mmol, 3.2 equiv), and TBTU (19 mg, 60 µmol, 1.3 equiv) in DMF (1.0 mL), followed by addition of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (25 mg, 46 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by column chromatography (silica, 0-10% MeOH in CH_2Cl_2). The reaction was telescoped into the N-Boc deprotection with 20% TFA in CH_2Cl_2 (2 mL), concentrated *in vacuo* and purified by reverse phase column chromatography (20% 20% MeCN in 20% 20% TFA). The product was concentrated to yield the desired product as a clear oil (2S,4R)-1-(

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 8.97 (s, 1H), 7.49 – 7.39 (m, 4H), 4.64 – 4.62 (m, 1H), 4.60 – 4.49 (m, 3H), 4.36 (d, J = 15.51 Hz, 1H), 3.98 – 3.90 (m, 2H), 3.82 (dd, J = 3.86, 10.96 Hz, 1H), 3.29 – 3.23 (m, 1H), 2.54 – 2.51 (m, 2H), 2.48 (s, 3H), 2.46 – 2.35 (m, 2H), 2.23 (dd, J = 7.65, 13.15 Hz, 1H), 2.12 – 2.06 (m, 1H), 1.04 (s, 9H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 176.37, 174.41, 172.19, 153.14, 140.46, 131.22, 130.36, 129.00, 71.10, 60.83, 59.24, 58.01, 45.20, 43.68, 39.00, 36.66, 34.51, 31.38, 30.95, 26.98, 15.57. LCMS: expected mass for [M+H]⁺ (C₂₇H₃₈N₅O₄S) requires 528.26 m/z, found 528.20 m/z.

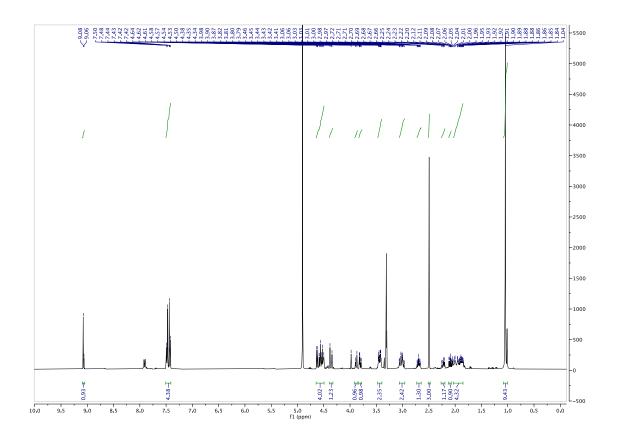


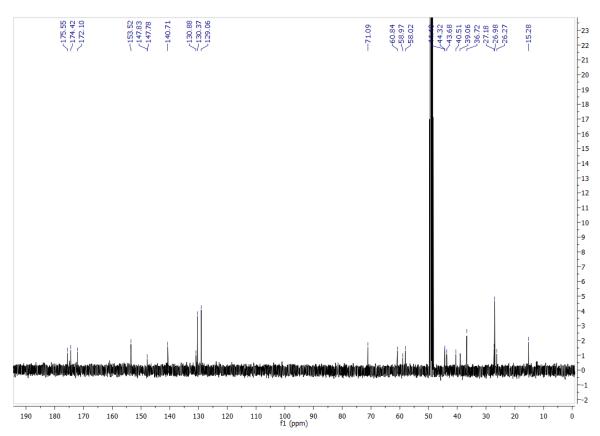


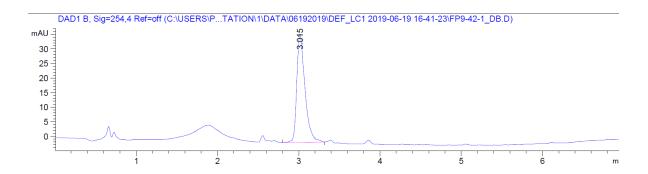

(2S,4R)-1-((2S)-3,3-dimethyl-2-(pyrrolidine-3-carboxamido)butanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate, (4)

To a flask was added 1-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid (20.7 mg, 96 μ mol, 2.0 equiv), DIPEA (24 μ L, 0.14 mmol, 2.9 equiv), TBTU (24 mg, 74 μ mol, 1.6 equiv) in DMF (0.55 mL), followed by addition of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (26 mg, 47 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by column chromatography (silica, 0-10% MeOH in CH_2Cl_2). The reaction was telescoped into the N-Boc deprotection with 20% TFA in CH_2Cl_2 (2 mL), concentrated *in vacuo* and purified by reverse phase column chromatography (C18, 0-100% MeCN in H_2O , 0.1% TFA). The product was concentrated to yield the desired product as a clear oil (2S,4R)-1-((2S)-3,3-dimethyl-2-(pyrrolidine-3-carboxamido)butanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (4) (12.1 mg, 40.3%) over two steps.

¹H NMR (CD₃OD- d_4 , 400 MHz) δ 8.10 (dd, J = 12.9, 8.7 Hz, 1H), 7.47 – 7.35 (m, 4H), 4.60 – 4.43 (m, 4H), 4.32 (dd, J = 15.5, 3.6 Hz, 1H), 3.88 (d, J = 10.9 Hz, 1H), 3.76 (dd, J = 10.9, 3.7 Hz, 1H), 3.50 – 3.40 (m, 1H), 3.40 – 3.33 (m, 2H), 2.43 (s, 3H), 2.35 – 2.22 (m, 1H), 2.24 – 2/15 (m, 1H), 2.14 – 2.00 (m, 2H), 1.36 – 1.32 (m, 2H), 1.02 (s, 9H). ¹³C NMR (CD₃OD- d_4 , 101 MHz) δ 174.35, 174.01, 173.99, 172.02, 140.34, 131.35, 130.51, 130.31, 129.44, 128.93, 71.06, 60.74, 59.52, 59.30, 57.87, 46.48, 46.40, 43.62, 43.38, 43.27, 39.01, 36.50, 36.32, 30.48, 30.07, 26.94, 26.91, 18.62, 17.19, 15.66. Extra carbon peaks observed due to diasteromeric mixture. LCMS: expected mass for [M+H]⁺ (C₂₇H₃₈N₅O₄S) requires 528.26 m/z, found 528.20 m/z.

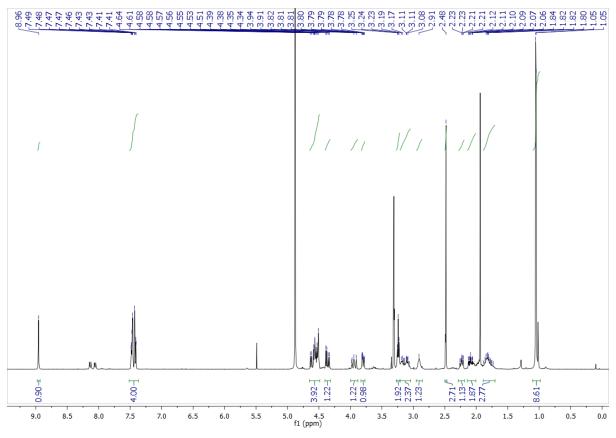


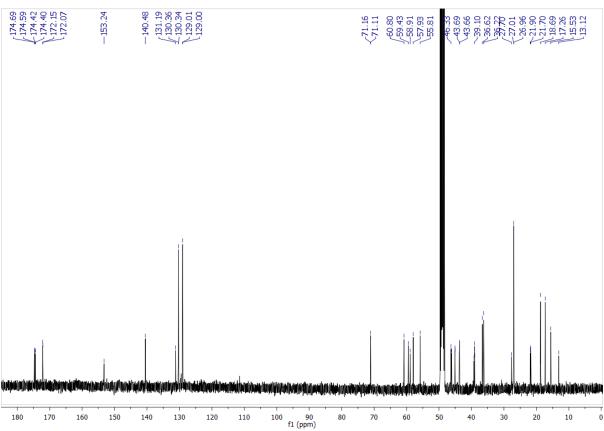


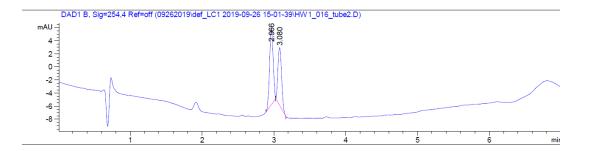

N-((*S*)-1-((2*S*,4*R*)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide 2,2,2-trifluoroacetate (5)

To a flask was added 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (21 mg, 92 μ mol, 1.0 equiv), DIPEA (51 μ L, 0.29 mmol, 3.2 equiv), and TBTU (38 mg, 0.12 mmol, 1.3 equiv) in DMF (1.0 mL), followed by addition of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (50 mg, 92 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by column chromatography (silica, 0-10% MeOH in CH_2Cl_2). The reaction was telescoped into the N-Boc deprotection with 20% TFA in CH_2Cl_2 (2 mL), concentrated *in vacuo* and purified by reverse phase column chromatography (C18, 0-100% MeCN in H_2O , 0.1% TFA). The product was concentrated to yield the desired product as a clear oil N-((S)-1-((S,4R)-4-hydroxy-2-((S-4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide 2,2,2-trifluoroacetate (S) (35 mg, 58 %) over two steps.

 1 H NMR (CD₃OD- 2 OD, 4, 400 MHz): δ 9.08 (s, 1H), 7.51 – 7.41 (m, 4H), 4.64 – 4.49 (m, 4H), 4.36 (d, 2 = 15.53 Hz, 1H), 3.88 (d, 2 = 11.08 Hz, 1H), 3.81 (dd, 2 = 3.82, 10.97 Hz, 1H), 3.47 – 3.40 (m, 2H), 3.02 (qd, 2 = 12.9, 3.3 Hz, 2H), 2.74 – 2.65 (m, 1H), 2.50 (s, 3H), 2.27 – 2.19 (m, 1H), 2.13 – 2.04 (m, 1H), 2.03 – 1.83 (m, 4H), 1.04 (s, 9H). 13 C NMR (CD₃OD- 2 OD- 2

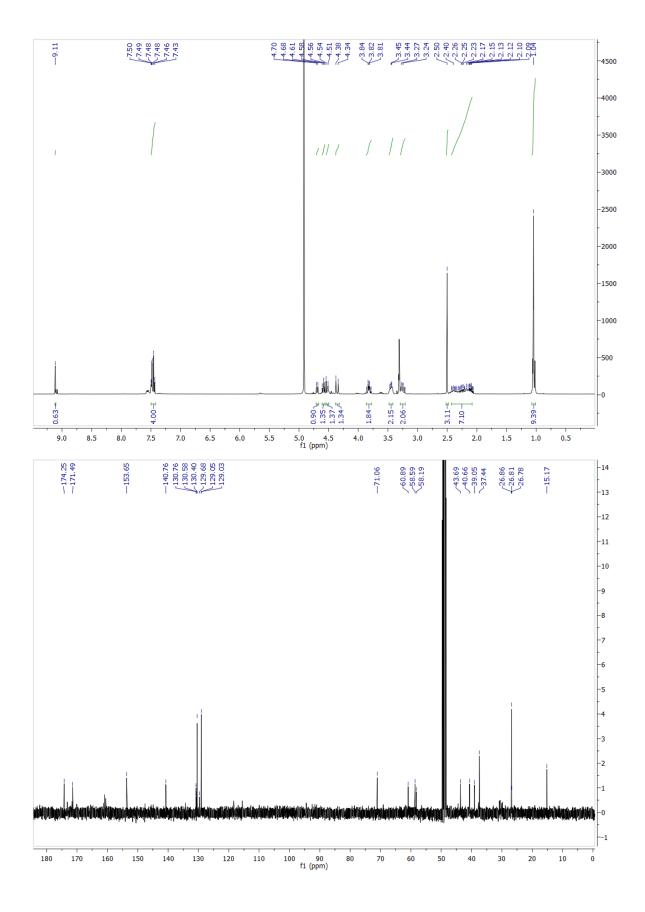


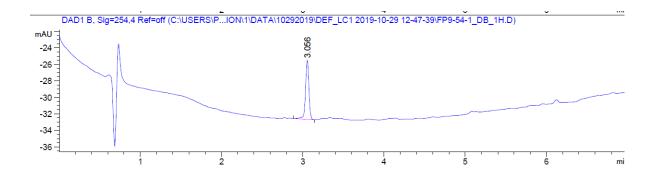



N-((*S*)-1-((2*S*,4*R*)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-3-carboxamide 2,2,2-trifluoroacetate (6)

To a flask was added 1-(tert-butoxycarbonyl)piperidine-3-carboxylic acid (13.8 mg, 60 μ mol, 1.0 equiv), DIPEA (24 μ L, 0.14 mmol, 2.9 equiv), and TBTU (21.5 mg, 67 μ mol, 1.42 equiv) in DMF (0.55 mL), followed by addition of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (25.6 mg, 47 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 21 hr, concentrated *in vacuo* and purified by column chromatography (silica, 0-10% MeOH in CH_2Cl_2). The reaction was telescoped into the N-Boc deprotection with 20% TFA in CH_2Cl_2 (2 mL), concentrated *in vacuo* and purified by reverse phase column chromatography (C18, 0-100% MeCN in H_2O , 0.1% TFA). The product was concentrated to yield the desired product as a clear oil N-((S)-1-((S)-1-((S)-4-hydroxy-2

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 8.96 (s, 1H), 7.51 – 7.39 (m, 4H), 4.64 – 4.49 (m, 4H), 4.36 (dd, J=6.51, 15.52 Hz, 1H), 3.99 – 3.90 (m, 1H), 3.24 (t, J=5.69 Hz, 2H), 3.20 – 3.06 (m, 2H), 3.13 – 3.08 (m, 1H), 2.95 – 2.86 (m, 1H), 2.48 (s, 3H), 2.27 – 2.20 (m, 1H), 2.13 – 2.05 (m, 2H), 1.88 – 1.70 (m, 3H), 1.05 (app d, 9H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 174.69, 174.59, 174.42, 174.40, 172.15, 172.07, 153.24, 140.48, 131.19, 130.36, 130.34, 129.01, 129.00, 71.16, 71.11, 60.80, 59.43, 58.91, 57.93, 55.81, 46.33, 46.10, 45.11, 45.02, 43.76, 43.69, 43.66, 39.22, 39.10, 39.06, 39.00, 36.62, 36.22, 27.70, 27.01, 26.96, 21.90, 21.70, 18.69, 17.26, 15.53, 13.12. Extra carbon peaks observed due to diasteromeric mixture. LCMS: expected mass for [M+H]⁺ (C₂₈H₄₀N₅O₄S) requires 542.27 m/z, found 542.20 m/z. Diasteroisomer A Retention time: 2.966 min; Diasteroisomer B Retention time: 3.080 min.





4-fluoro-*N*-((*S*)-1-((2*S*,4*R*)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide 2,2,2-trifluoroacetate (7)

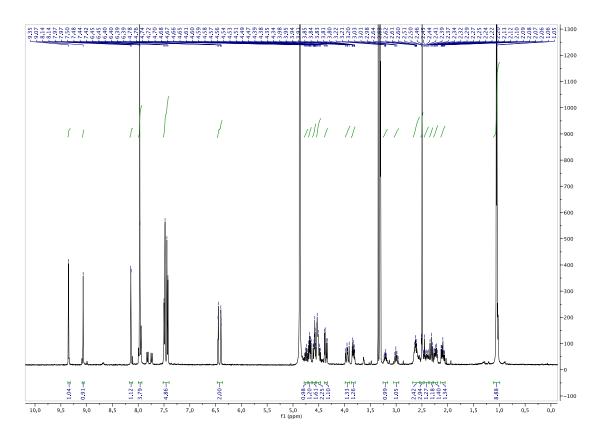
To a flask was added 1-(tert-butoxycarbonyl)-4-fluoropiperidine-4-carboxylic acid (12mg, $50 \mu mol$, 1.1 equiv), DIPEA ($26 \mu L$, 0.15 mmol, 3.2 equiv), and TBTU (19 mg, $60 \mu mol$, 1.3 equiv) in DMF (1 mL), followed by addition of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (25 mg, $46 \mu mol$, 1.0 equiv). The reaction was stirred at room temperature for 21 hr, concentrated *in vacuo* and purified by column chromatography (silica, 0-10% MeOH in CH_2Cl_2). The reaction was telescoped into the N-Boc deprotection with 20% TFA in CH_2Cl_2 (2 mL), concentrated *in vacuo* and purified by reverse phase column chromatography (C18, 0-100% MeCN in H_2O , 0.1% TFA). The product was concentrated to yield the desired product as a clear oil 4-fluoro-N-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide 2,2,2-trifluoroacetate (7) (17.7 mg, 57%) over two steps.

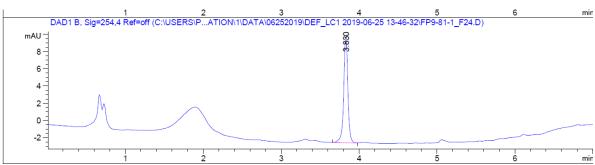
 1 H NMR (CD₃OD- 2 d₄, 400 MHz): δ 9.11 (s, 1H), 7.50 – 7.43 (m, 4H), 4.69 (d, 2 J = 8.55 Hz, 1H), 4.62 – 4.55 (m, 1H), 4.56 – 4.50 (m, 1H), 4.36 (d, 2 J = 15.50 Hz, 1H), 3.87 – 3.78 (m, 2H), 3.49 – 3.41 (m, 2H), 3.29 – 3.20 (m, 2H), 2.50 (s, 3H), 2.45 – 2.06 (m, 7H), 1.04 (s, 9H). 13 C NMR (CD₃OD- 2 d₄, 101 MHz): δ 174.25, 171.49, 153.65, 140.76, 130.76, 130.58, 130.40, 129.68, 129.05, 129.03, 71.06, 60.89, 58.59, 58.19, 43.69, 40.66, 39.05, 37.44, 26.86, 26.81, 26.78, 15.17. LCMS: expected mass for [M+H]⁺ (C₂₈H₃₉N₅O₄S) requires 560.26 m/z, found 560.20 m/z.

8-bromo-N-(furan-2-2-ylmethyl)-[1,2,4]triazolo[4,3-c]pyrimidin-5-amine, 8

Synthesized as previously reported.1

4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid, 9

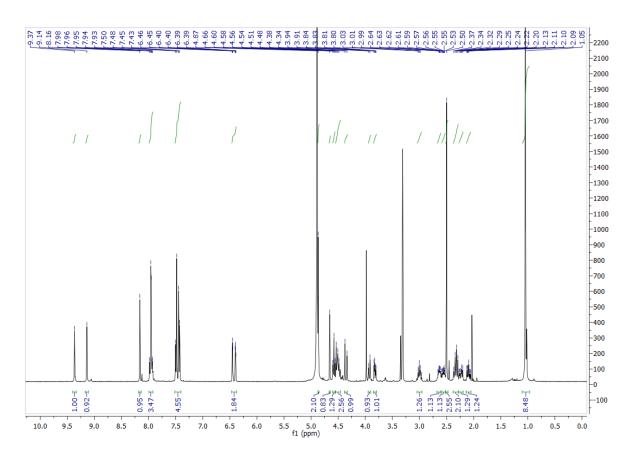

Synthesized as previously reported.1

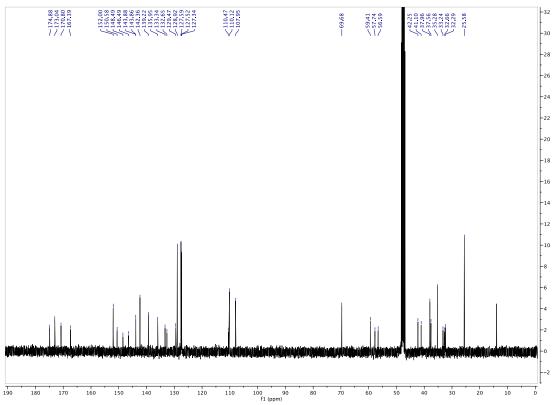

(2*S*,4*R*)-1-((*S*)-2-(3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide, UNC7327

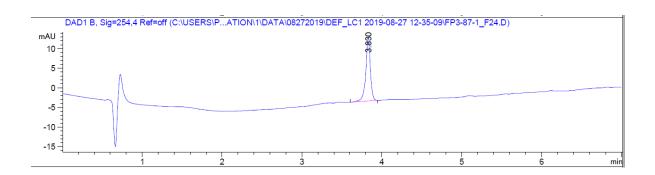
To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (5.8 mg, 15 µmol, 1.0 equiv), DIPEA (7.8 µL, 45 µmol, 3.0 equiv), and TBTU (6.2 mg, 19 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of (2S,4R)-1-((S)-2-(3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (9.6 mg, 15 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 0-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a white

solid (2*S*,4*R*)-1-((*S*)-2-(3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (2.66 mg, 21 %).

 1 H NMR (CD₃OD- 2 OD, 4, 400 MHz): δ 9.35 (s, 1H), 9.07 (s, 1H), 8.14 (d, 2 = 2.76 Hz, 1H), 8.00 – 7.93 (m, 4H), 7.53 – 7.41 (m, 5H), 6.46 – 6.39 (m, 2H), 4.79 – 4.71 (m, 1H), 4.71 – 4.64 (m, 1H), 4.62 – 4.55 (m, 2H), 4.55 – 4.46 (m, 2H), 4.36 (dd, 2 = 4.67, 15.59 Hz, 1H), 3.95 (dd, 2 = 11.27, 16.40 Hz, 1H), 3.86 – 3.79 (m, 1H), 3.25 – 3.17 (m, 1H), 3.03 – 2.95 (m, 1H), 2.67 – 2.54 (m, 2H), 2.50 (s, 3H), 2.46 – 2.37 (m, 1H), 2.35 – 2.28 (m, 1H), 2.27 – 2.19 (m, 1H), 2.14 – 2.05 (m, 1H), 1.05 (app d, 2 = 4.37 Hz, 9H). LCMS: expected mass for [M+H] $^{+}$ (C₄₄H₄₉N₁₀O₆S) requires 845.35 m/z, found 845.20 m/z.

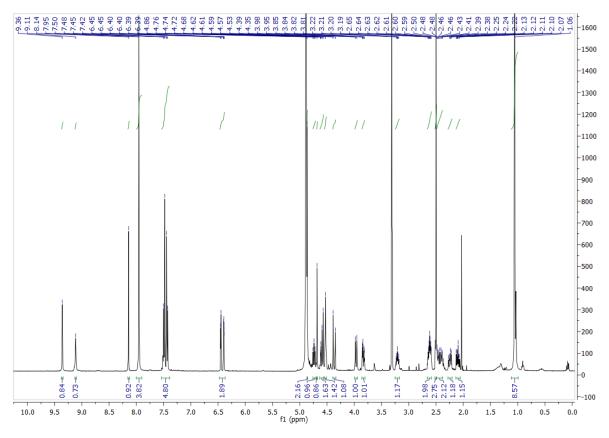


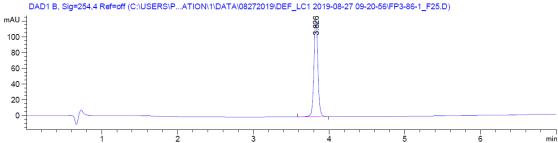



(2*S*,4*R*)-1-((*S*)-2-((1*S*,3*R*)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide, UNC7700

To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (5 mg, 15 µmol, 1.0 equiv), DIPEA (7.8 µL, 45 µmol, 3.0 equiv), and TBTU (6.2 mg, 19 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of (2S,4R)-1-((S)-2-((1S,3R)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (9.6 mg, 15 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 0-100% MeCN in H_2 O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid (2S,4R)-1-((S)-2-((1S,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-C]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (9.54 mg, 76 %).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.37 (s, 1H), 9.14 (s, 1H), 8.16 (s, 1H), 8.00 – 7.91 (m, 4H), 7.52 – 7.40 (m, 5H), 6.47 – 6.38 (m, 2H), 4.87 (s, 2H), 4.66 (s, 1H), 4.61 – 4.55 (m, 1H), 4.55 – 4.46 (m, 3H), 4.36 (d, J = 15.56 Hz, 1H), 3.93 (d, J = 11.00 Hz, 1H), 3.82 (dd, J = 3.86, 10.95 Hz, 1H), 3.05 – 2.95 (m, 1H), 2.67 – 2.61 (m, 1H), 2.58 – 2.53 (m, 1H), 2.50 (s, 3H), 2.36 – 2.28 (m, 2H), 2.27 – 2.19 (m, 1H), 2.15 – 2.04 (m, 1H), 1.05 (s, 9H). ¹³C NMR (CD₃OD- d_4 , 101 MHz) δ 174.88, 173.04, 170.80, 167.39, 152.00, 150.58, 148.49, 146.49, 143.88, 143.86, 142.36, 139.22, 135.95, 133.34, 132.65, 129.47, 128.92, 127.59, 127.52, 127.34, 110.47, 110.12, 107.95, 69.68, 59.41, 57.74, 56.59, 42.25, 41.10, 37.96, 37.56, 35.28, 33.24, 32.66, 32.29, 25.58. LCMS: expected mass for [M+H]⁺ (C₄₄H₄₉N₁₀O₆S) requires 845.35 m/z, found 845.30 m/z.

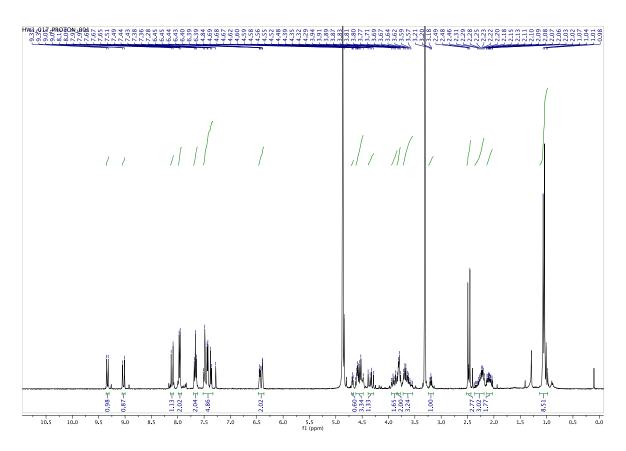


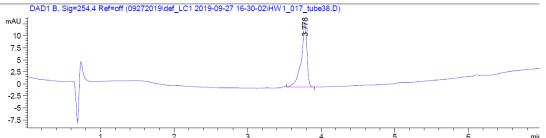


(2*S*,4*R*)-1-((*S*)-2-((1*R*,3*S*)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide, UNC7698

To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (5 mg, 15 µmol, 1.0 equiv), DIPEA (7.8 µL, 45 µmol, 3.0 equiv), and TBTU (6.2 mg, 19 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of (2S,4R)-1-((S)-2-((1R,3S)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (9.6 mg, 15 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 0-100% MeCN in H_2 O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid (2S,4R)-1-((S)-2-((1R,3S)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (8.04 mg, 64 %).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.36 (s, 1H), 9.11 (s, 1H), 8.14 (s, 1H), 7.95 (ap s, 4H), 7.52 – 7.41 (m, 5H), 6.47 – 6.38 (m, 2H), 4.86 (s, 2H), 4.77 – 4.71 (m, 1H), 4.68 (s, 1H), 4.62 – 4.56 (m, 2H), 4.55 – 4.51 (m, 1H), 4.37 (d, J = 15.57 Hz, 1H), 3.97 (d, J = 11.24 Hz, 1H), 3.83 (dd, J = 3.81, 11.00 Hz, 1H), 3.20 (td, J = 4.26, 8.79, 8.51 Hz, 1H), 2.66 – 2.58 (m, 2H), 2.50 (s, 3H), 2.46 – 2.36 (m, 2H), 2.24 (dd, J = 7.61, 13.11 Hz, 1H), 2.10 (ddd, J = 4.46, 9.19, 13.31 Hz, 1H),1.05 (s, 9H). LCMS: expected mass for [M+H]⁺ (C₄₄H₄₉N₁₀O₆S) requires 845.35 m/z, found 845.30 m/z.

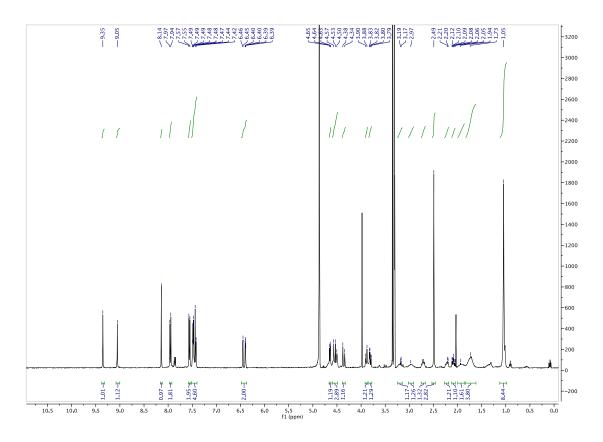


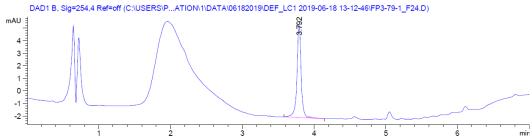

(2*S*,4*R*)-1-((2*S*)-2-(1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzoyl)pyrrolidine-3-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide, UNC7701

To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (6.3 mg, 19 μ mol, 1.0 equiv), DIPEA (9.9 μ L, 57 μ mol, 3.0 equiv), and TBTU (7.8 mg, 25 μ mol, 1.3 equiv) in DMF (0.35 mL), followed by addition of 3-(((S)-1-((S)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)carbamoyl)pyrrolidin-1-ium

2,2,2-trifluoroacetate (12.1 mg, 19 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 0-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid (2*S*,4*R*)-1-((2*S*)-2-(1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)pyrrolidine-3-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (3.28 mg, 21 %).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.33 (d, J = 11.77 Hz, 1H), 9.03 (d, J = 15.05 Hz, 1H), 8.11 (d, J = 14.32 Hz, 1H), 7.96 (d, J = 8.04 Hz, 2H), 7.70 – 7.63 (m, 2H), 7.52 – 7.35 (m, 5H), 6.47 – 6.36 (m, 2H), 4.63 – 4.46 (m, 3H), 4.40 – 4.27 (m, 2H), 3.95 – 3.89 (m, 2H), 3.87 – 3.76 (m, 2H), 3.74 – 3.53 (m, 3H), 3.24 – 3.15 (m, 1H), 2.47 (d, J = 15.49 Hz, 3H), 2.36 – 2.17 (m, 3H), 2.14 – 2.02 (m, 2H), 1.05 (app d, J = 10.20 Hz, 9H). LCMS: expected mass for [M+H] $^+$ (C₄₄H₄₉N₁₀O₆S) requires 845.35 m/z, found 845.25 m/z.



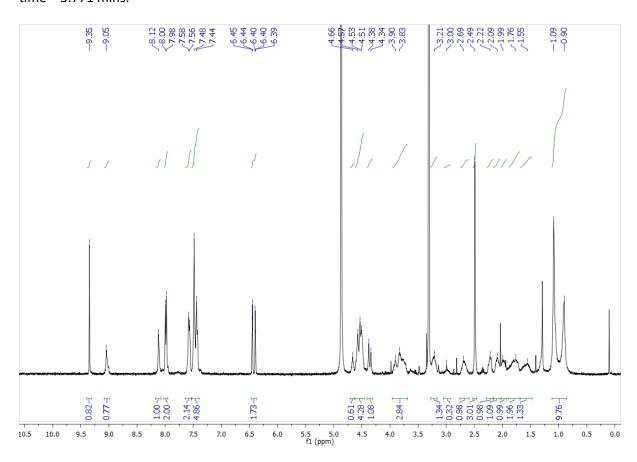


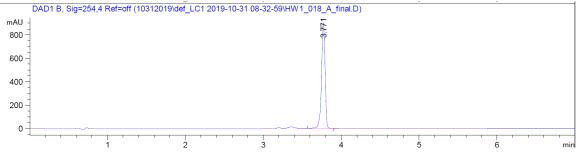
1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)-*N*-((*S*)-1-((2*S*,4*R*)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide, UNC7326

To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (5.0 mg, 15 µmol, 1.0 equiv), DIPEA (7.8 µL, 45 µmol, 3.0 equiv), and TBTU (6.2 mg, 19 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of *N*-((*S*)-1-((2*S*,4*R*)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide 2,2,2-trifluoroacetate (9.0 mg, 15 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 0-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)-*N*-((*S*)-1-((2*S*,4*R*)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide (2.93 mg, 23 %).

 1 H NMR (CD₃OD- 2 d₄, 400 MHz): δ 9.35 (s, 1H), 9.05 (s, 1H), 8.14 (s, 1H), 7.95 (d, 2 J = 8.30 Hz, 2H), 7.56 (d, 2 J = 8.30 Hz, 2H), 7.50 – 7.40 (m, 5H), 6.47 – 6.38 (m, 2H), 4.68 – 4.63 (m, 1H), 4.61 – 4.48 (m, 3H), 4.36 (d, 2 J = 15.53 Hz, 1H), 3.89 (d, 2 J = 10.90 Hz, 1H), 3.81 (dd, 2 J = 3.78, 10.81 Hz, 1H), 3.24 – 3.15 (m, 1H), 3.02 – 2.91 (m, 1H), 2.77 – 2.66 (m, 1H), 2.49 (s, 3H), 2.26 – 2.19 (m, 1H), 2.13 – 2.04 (m, 1H), 1.97 – 1.85 (m, 2H), 1.80 – 1.66 (m, 4H), 1.05 (s, 9H). 2 × protons not observed. LCMS: expected mass for [M+H] $^{+}$ (C₄₅H₅₁N₁₀O₆S) requires 859.36 m/z, found 859.20 m/z.

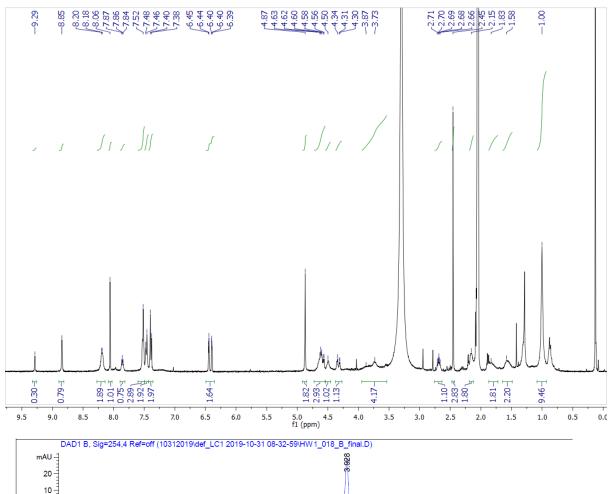
1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)-N-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-3-carboxamide Diasteroisomer A + B, UNC7702

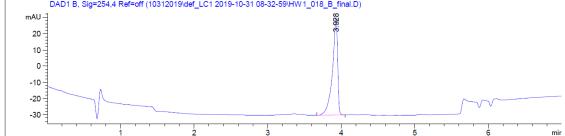

To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (7.26 mg, 21 μ mol, 1.0 equiv), DIPEA (11.3 μ L, 65 μ mol, 3.0 equiv), and TBTU (9.04 mg, 28 μ mol, 1.3 equiv) in DMF (0.55 mL), followed by addition of 3-(((S)-1-((S)-1-((S)-1-+S)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-


yl)carbamoyl)piperidin-1-ium 2,2,2-trifluoroacetatee (14.2 mg, 22 μmol, 1.0 equiv). The reaction was stirred at room temperature for 6 hr, concentrated *in vacuo* and purified by reverse phase high

performance liquid chromatography (C18, 0-100% MeCN in H_2O , 0.1% TFA). The product was concentrated to yield the desired product containing separated diasteroisomers as a white solid 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)-N-((S)-1-

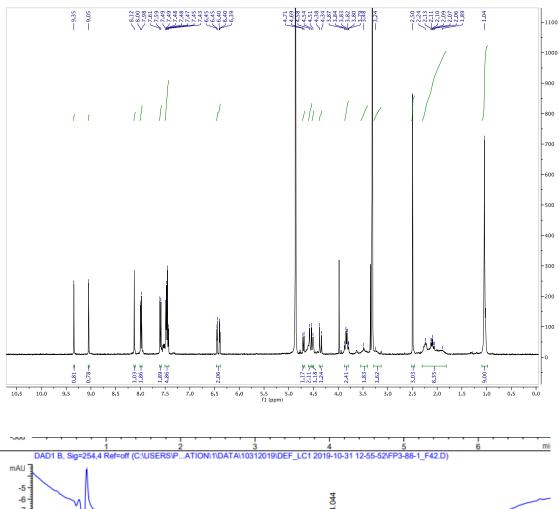
Diasteroisomer A Analysis

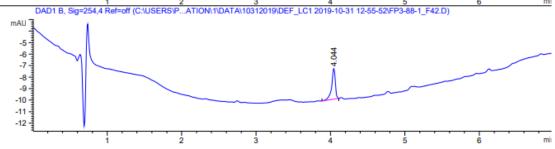

 1 H NMR (CD₃OD- 2 d₄, 400 MHz): δ 9.35 (s, 1H), 9.05 (s, 1H), 8.12 (s, 1H), 7.99 (d, J = 8.03 Hz, 2H), 7.57 (d, J = 6.70 Hz, 2H), 7.52 – 7.40 (m, 5H), 6.47 – 6.37 (m, 2H), 4.66 (s, 1H), 4.61 – 4.46 (m, 4H), 4.36 (d, J = 15.42 Hz, 1H), 3.94 – 3.71 (m, 3H), 3.27 – 3.16 (m, 1H), 3.03 – 2.93 (m, 1H), 2.75 – 2.61 (m, 1H), 2.49 (s, 3H), 2.26 – 2.19 (s, 1H), 2.14 – 2.05 (s, 1H), 2.02 – 1.95 (s, 1H), 1.88 – 1.71 (s, 2H), 1.66 – 1.48 (s, 1H), 0.99 (app m, 9H). (2 × 1H not observed – under H₂O peak). Exchangeable 1H not observed. LCMS: expected mass for [M+H]⁺ (C₄₅H₅₁N₁₀O₆S) requires 859.36 m/z, found 859.30 m/z. Retention time = 3.771 mins.



Diasteroisomer B Analysis

 1 H NMR (Acetone- d_{6} , 400 MHz): δ 9.29 (s, 1H), 8.85 (s, 1H), 8.19 (d, J = 5.74 Hz, 2H), 8.06 (s, 1H), 7.86 (t, J = 5.21 Hz, 1H), 7.55 – 7.49 (m, 3H), 7.49 – 7.45 (m, 2H), 7.41 – 7.37 (m, 2H), 6.48 – 6.37 (m, 2H), 4.87(s, 2H), 4.69 – 4.55 (m, 3H), 4.53 – 4.46 (m, 1H), 4.33 (dd, J = 3.15, 15.28 Hz, 1H), 3.93 – 3.55 (m, 4H), 2.74 – 2.64 (m, 1H), 2.45 (s, 3H), 2.19 – 2.13 (m, 2H), 1.85 – 1.72 (m, 2H), 1.62 – 1.49 (m, 2H), 1.00 (s, 9H). LCMS: expected mass for [M+H] $^{+}$ (C₄₅H₅₁N₁₀O₆S) requires 859.36 m/z, found 859.25 m/z. Retention time = 3.928 mins.

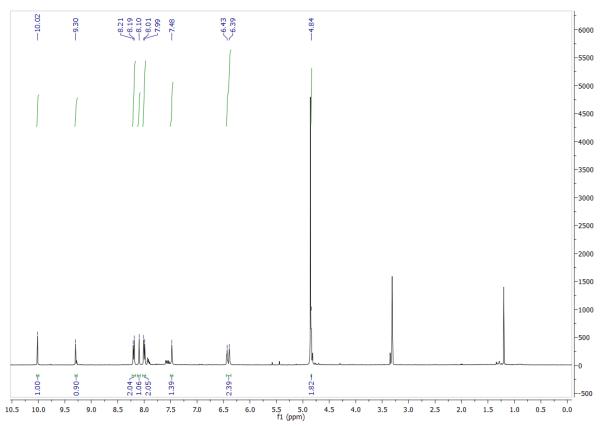


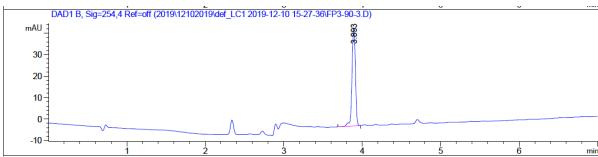


4-fluoro-1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)-N-((5)-1-((25,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide, UNC7703

To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (5.0 mg, 15 µmol, 1.0 equiv), DIPEA (7.8 µL, 45 µmol, 3.0 equiv), and TBTU (6.2 mg, 19 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of 4-fluoro-N-((S)-1-((S)-(

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.35 (s, 1H), 9.05 (s, 1H), 8.12 (s, 1H), 7.99 (d, J = 8.38 Hz, 2H), 7.60 (d, J = 8.34 Hz, 2H), 7.49 – 7.43 (m, 5H), 6.47 – 6.38 (m, 2H), 4.70 (d, J = 9.40 Hz, 1H), 4.62 – 4.56 (m, 2H), 4.55 – 4.48 (m, 2H), 4.36 (d, J = 15.60 Hz, 1H), 3.87 – 3.79 (m, 2H), 3.55 – 3.41 (m, 2H), 3.27 – 3.17 (s, 1H), 2.50 (s, 3H), 2.31 – 1.81 (m, 8H), 1.04 (s, 9H). LCMS: expected mass for [M+H]⁺ (C₄₅H₄₉FN₁₀O₆S) requires 877.35 m/z, found 877.30 m/z.

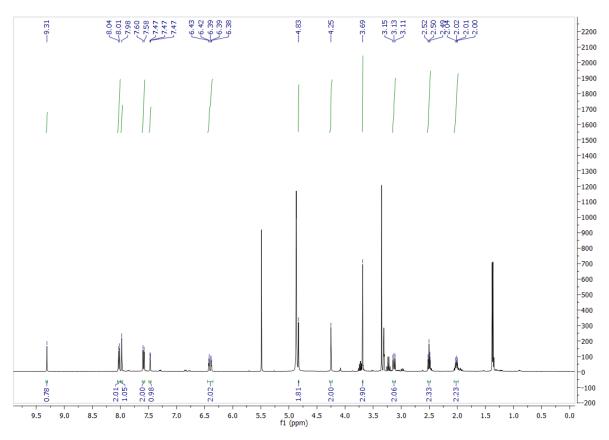


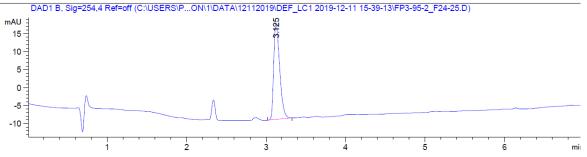

4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzaldehyde, 10

To a microwave vial was added 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (100 mg, 431 μ mol, 1.5 equiv), 8-bromo-*N*-(furan-2-ylmethyl)-[1,2,4]triazolo[4,3-c]pyrimidin-5-amine (84.5 mg, 287 μ mol, 1.0 equiv), Pd(dppf)Cl₂.CH₂Cl₂ (47 mg, 58 μ mol, 0.2 equiv), sodium bicarbonate (60 mg, 718 μ mol, 2.5 equiv) in THF (1 mL) and H₂O (0.5 mL). The vial was sealed at heated to 90 °C for 16 hr. The reaction was cooled and filtered through celite with EtOAc. The organics were washed with H₂O (2 × 200 mL), the organics dried with sodium sulfate and concentrated *in vacuo* to yield the crude product. Crude material was purified by column chromatography (0-100% EtOAc in hexane) to yield the desired

product as a yellow solid 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzaldehyde (10) (66 mg, 72%).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 10.02 (s, 1H), 9.30 (s, 1H), 8.20 (d, J = 8.19 Hz, 2H), 8.10 (s, 1H), 8.00 (d, J = 8.23 Hz, 2H), 7.48 (s, 1H), 6.46 – 6.36 (m, 2H), 4.84 (s, 2H).. LCMS: expected mass for [M+H]⁺ (C₁₇H₁₄N₅O₂) requires 320.11 m/z, found 320.10 m/z.

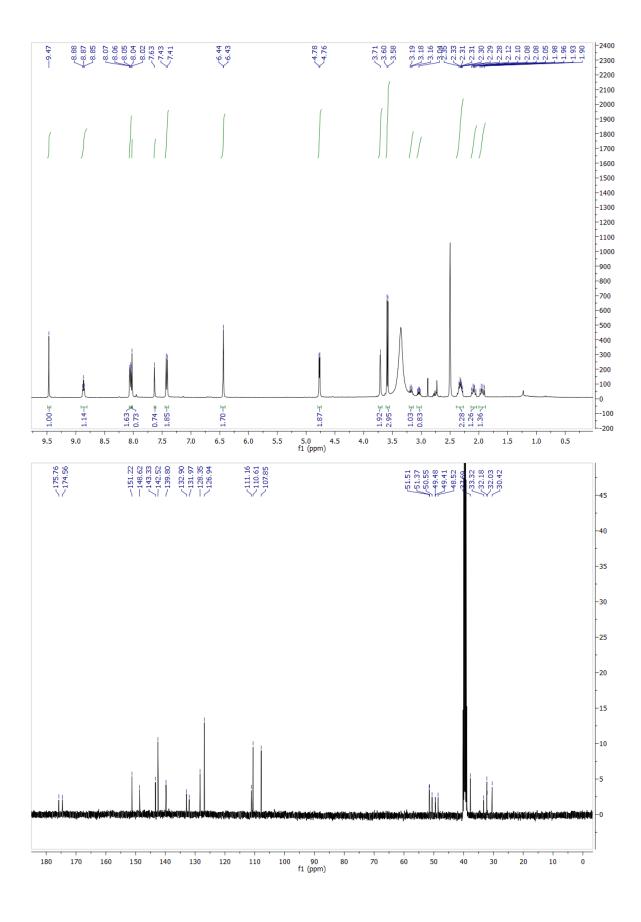


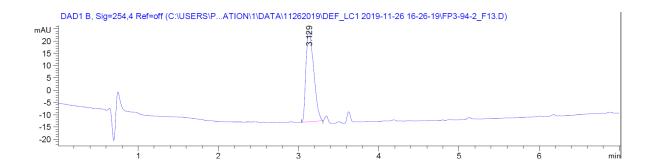

Methyl 4-((*tert*-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoate, 11

To a flask was added 4-aminobutanoate 2,2,2-trifluoroacetate (16 mg, 69 μ mol, 1.1 equiv), 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzaldehyde (**10**) (20 mg, 63 μ mol, 1.0 equiv), sodium sulfate (9.8 mg, 69 μ mol, 1.1 equiv), and DIPEA (23 μ L, 0.13 mmol, 2.1 equiv) in CH₂Cl₂

(0.5 mL). The reaction was refluxed at 40 °C for 1hr, concentrated *in vacuo*, resuspended in MeOH (0.5 mL) followed by addition of sodium tetrahydroborate (2.8 mg, 75 μ mol, 1.2 equiv). The reaction was stirred at rt for 16 hr, concentrated *in vacuo* and purified by column chromatography (0-100% EtOAc in hexane) to yield the desired product as a brown gum methyl 4-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoate (11) (9.8 mg, 37 %).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.31 (s, 1H), 8.03 (d, J = 8.32 Hz, 2H), 7.98 (s, 1H), 7.59 (d, J = 8.28 Hz, 2H), 7.49 – 7.45 (m, 1H), 6.44 – 6.37 (m, 2H), 4.83 (s, 2H), 4.25 (s, 2H), 3.69 (s, 3H), 3.16 – 3.10 (m, 2H), 2.50 (t, J = 7.07 Hz, 2H), 2.07 – 1.98 (m, 2H). LCMS: expected mass for [M+H]⁺ (C₂₂H₂₅N₆O₃) requires 421.19 m/z, found 421.20 m/z.

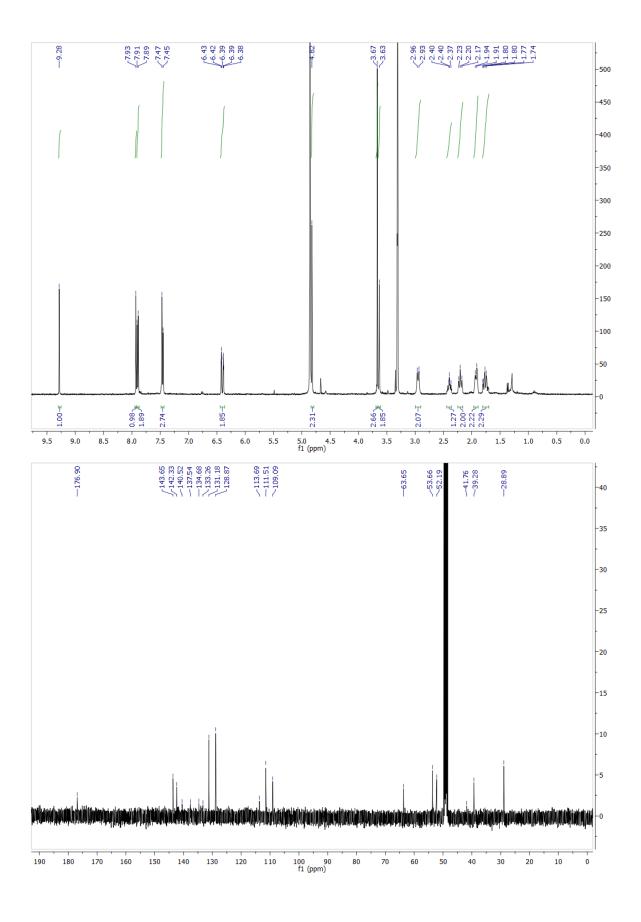


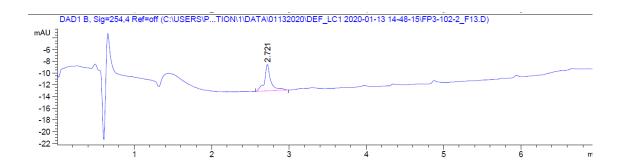


Methyl 3-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylate, 12

To a flask was added 3-aminocyclobutane-1-carboxylate 2,2,2-trifluoroacetate (8.4 mg, 34 μ mol, 1.1 equiv), 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzaldehyde (**10**) (10 mg, 31 μ mol, 1.0 equiv), sodium sulfate (4.9 mg, 34 μ mol, 1.1 equiv), and DIPEA (11 μ L, 66 μ mol, 2.1 equiv) in CH₂Cl₂ (0.3 mL). The reaction was refluxed at 40 °C for 1hr, concentrated *in vacuo*, resuspended in MeOH (0.5 mL) followed by addition of sodium tetrahydroborate (1.4 mg, 38 μ mol, 1.2 equiv). The reaction was stirred at rt for 16 hr, concentrated *in vacuo* and purified by column chromatography (0-100% EtOAc in hexane) to yield the desired product as a brown gum methyl 3-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylate (**12**) (6.0 mg, 44 %).

¹H NMR (DMSO- d_6 , 400 MHz): δ 9.47 (s, 1H), 8.87 (t, J = 5.28 Hz, 1H), 8.05 (dd, J = 2.09, 8.28 Hz, 2H), 8.03 – 8.02 (m, 1H), 7.63 (s, 1H), 7.42 (d, J = 8.19 Hz, 2H), 6.46 – 6.41 (m, 2H), 4.77 (d, J = 5.23 Hz, 2H), 3.71 (s, 2H), 3.59 (d, J = 6.87 Hz, 3H), 3.21 – 3.14 (m, 1H), 3.07 – 3.00 (m, 1H), 2.39 – 2.27 (m, 2H), 2.13 – 2.03 (m, 1H), 1.99 – 1.88 (m, 1H). ¹³C NMR (DMSO- d_6 , 101 MHz): δ 175.76, 174.56, 151.22, 148.62, 143.33, 142.52, 139.80, 132.90, 131.97, 128.35, 126.94, 111.16, 110.61, 107.85, 51.51, 51.37, 50.55, 49.48, 49.41, 48.52, 37.69, 33.32, 32.18, 32.03, 30.42. extra carbons peaks due to a diasteromeric mixture. LCMS: expected mass for [M+H]⁺ (C₂₃H₂₅N₆O₃) requires 433.19 m/z, found 433.20 m/z.

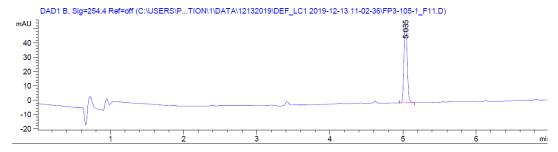




Methyl 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxylate, 13

To a flask was added methyl piperidine-4-carboxylate 2,2,2-trifluoroacetate (8.9 mg, 34 μ mol, 1.1 equiv), 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzaldehyde (**10**) (10 mg, 31 μ mol, 1.0 equiv), sodium sulfate (4.9 mg, 34 μ mol, 1.1 equiv), and DIPEA (11 μ L, 66 μ mol, 2.1 equiv) in CH₂Cl₂ (0.3 mL). The reaction was refluxed at 40 °C for 1hr, concentrated *in vacuo*, resuspended in MeOH (0.5 mL) followed by addition of sodium tetrahydroborate (1.4 mg, 38 μ mol, 1.2 equiv). The reaction was stirred at rt for 16 hr, concentrated *in vacuo* and purified by column chromatography (0-100% EtOAc in hexane) to yield the desired product as a brown solid methyl 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxylate (**13**) (4.7 mg, 34 %).

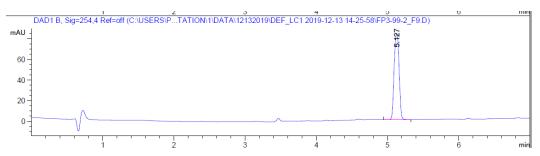
¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.28 (s, 1H), 7.93 (s, 1H), 7.90 (d, J = 8.16 Hz, 2H), 7.49 – 7.44 (m, 3H), 6.44 – 6.37 (m, 2H), 4.82 (s, 2H), 3.67 (s, 3H), 3.63 (s, 2H), 2.95 (ap d, J = 11.53 Hz, 2H), 2.44 – 2.35 (m, 1H), 2.20 (t, J = 11.25 Hz, 2H), 1.98 – 1.88 (m, 2H), 1.82 – 1.70 (m, 2H). ¹³C NMR (CD₃OD- d_4 CD₃OD- d_4 , 101 MHz): δ 176.90, 143.65, 142.33, 140.52, 137.54, 134.68, 133.26, 131.18, 128.87, 113.69, 111.51, 109.09, 63.65, 53.66, 52.19, 41.76, 39.28, 28.89. 1 × aliphatic carbon not observed. LCMS: expected mass for [M+H]⁺ (C₂4H₂7N₆O₃) requires 447.21 m/z, found 447.20 m/z.



Methyl 4-((*tert*-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzyl)amino)butanoate, 14

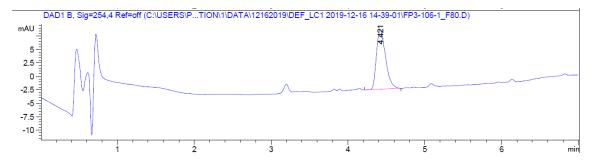
To a flask containing methyl 4-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoate (11) (9.8 mg, 23 μ mol, 1.0 equiv) in CH₂Cl₂ (93 μ L) was added Boc anhydride (5.6 mg, 23 μ mol, 1.1 equiv), NEt₃ (8.1 μ L, 58 μ mol, 2.5 equiv), and the reaction stirred at room temperature for 16 hr. The reaction was concentrated *in vacuo* and purified by column chromatography (0-10% MeOH in CH₂Cl₂) to yield the desired product as a yellow solid methyl 4-((*tert*-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoate (14) (6.2 mg, 51%).

LCMS: expected mass for $[M+H]^+$ ($C_{27}H_{33}N_6O_5$) requires 521.24 m/z, found 521.30 m/z.



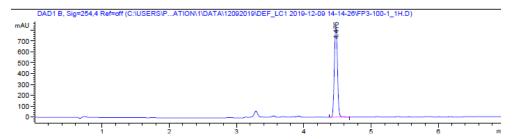
Methyl 3-((*tert*-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylate, 15

To a flask containing methyl 3-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylate (**12**) (6.0 mg, 14 μ mol, 1.0 equiv) in CH₂Cl₂ (55 μ L) was added Boc anhydride (3.3 mg, 15 μ mol, 1.1 equiv), NEt₃ (4.8 μ L, 35 μ mol, 2.5 equiv), and the reaction stirred at room temperature for 16 hr. The reaction was concentrated *in vacuo* and purified by column chromatography (0-10% MeOH in CH₂Cl₂) to yield the desired product as a yellow solid methyl 3-((*tert*-

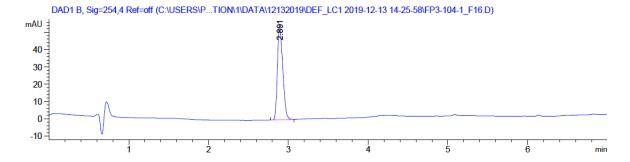

butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylate (15) (2.8 mg, 38%).

LCMS: expected mass for $[M+H]^+$ ($C_{28}H_{33}N_6O_5$) requires 533.24 m/z, found 533.20 m/z.

4-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoic acid, 16

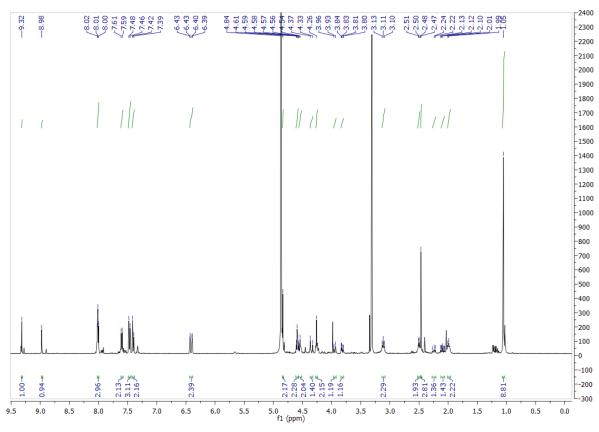

To a flask was added methyl 4-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoate (**14**) (6.2 mg, 12 µmol, 1.0 equiv) and LiOH.H₂O (1.5 mg, 36 µmol, 3.0 equiv) in H₂O (10 µL) and THF (0.12 mL), and the reaction was left to stir at room temperature for 16 hr. The reaction was concentrated *in vacuo* and purified by reverse phase column chromatography (10-100% MeCN in H₂O (+0.1% TFA)) to yield the desired product as a white gum 4-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoic acid (**16**) (3.6 mg, 60%). LCMS: expected mass for [M+H]⁺ (C₂₆H₃₁N₆O₅) requires 507.23 m/z, found 507.20 m/z

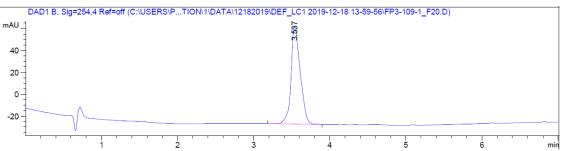
3-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylic acid, 17


To a flask was added methyl 3-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylate (**15**) (2.9 mg, 5.4 µmol, 1.0 equiv) and LiOH.H₂O (0.7 mg, 16 µmol, 3.0 equiv) in H₂O (5 µL) and THF (54 µL), and the reaction was left to stir at room temperature for 16 hr. The reaction was concentrated *in vacuo* and purified by reverse phase column chromatography (10-100% MeCN in H₂O (+0.1% TFA)) to yield the desired product as a white solid 3-((tert-butoxycarbonyl)(4-(5-((tert-butoxycarbonyl))amino)-[1,2,4]triazolo[4,3-tert-carboxylic acid (**17**) (2.70 mg, 96%).

LCMS: expected mass for $[M+H]^+$ ($C_{27}H_{31}N_6O_5$) requires 519.23 m/z, found 519.20 m/z.

1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxylic acid, 18

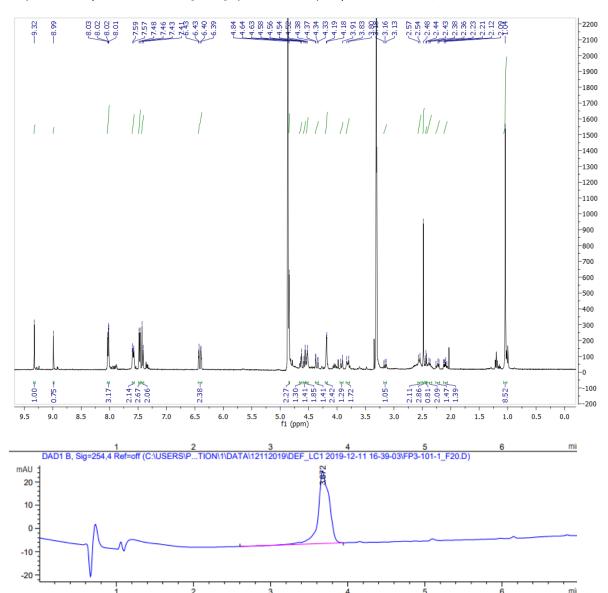

To a flask was added methyl 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxylate (**13**) (2.2 mg, 4.9 μ mol, 1.0 equiv) and LiOH.H₂O (0.6 mg, 15 μ mol, 3.0 equiv) in H₂O (4 μ L) and THF (50 μ L), and the reaction was left to stir at room temperature for 16 hr. The reaction was concentrated *in vacuo* and purified by reverse phase column chromatography (10-100% MeCN in H₂O (+0.1% TFA)) to yield the desired product as a white solid 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxylic acid (**18**) (2.1 mg, 99%). LCMS: expected mass for [M+H]⁺ (C₂₃H₂₅N₆O₃) requires 433.19 m/z, found 433.20 m/z.



(2*S*,4*R*)-1-((*S*)-2-(4-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzyl)amino)butanamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate, UNC7744

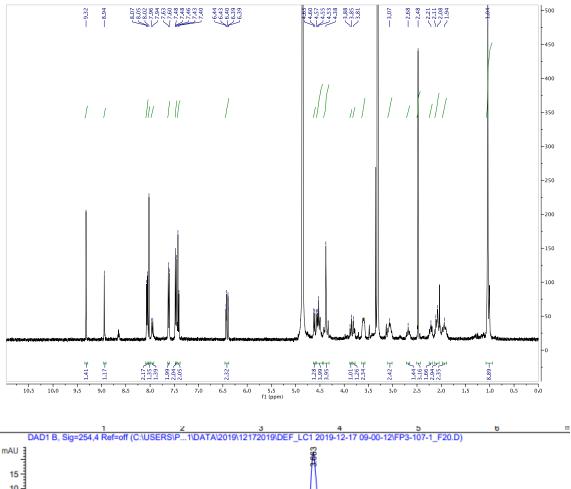
To a flask was added 4-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanoic acid (**16**) (2.1 mg, 4.1 µmol, 1.0 equiv), DIPEA (2.2 µL, 12 µmol, 3.0 equiv), and TBTU (1.7 mg, 5.4 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of (2S,4R)-1-((S)-2-((1R,3S)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (2.5 mg, 4.6 µmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and deprotected with 20% TFA in CH₂Cl₂ (1 mL). The reaction was concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid (2S,4R)-1-((S)-2-(4-((4-(5-(furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (2.61 mg, 67 %).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.32 (s, 1H), 8.98 (s, 1H), 8.02 – 7.99 (m, 3H), 7.60 (d, J = 8.21 Hz, 2H), 7.49 – 7.44 (m, 3H), 7.40 (d, J = 8.28 Hz, 2H), 6.41 (dd, J = 2.31, 13.92 Hz, 2H), 4.84 (s, 2H), 4.62 – 4.56 (m, 2H), 4.55 – 4.51 (m, 2H), 4.35 (d, J = 15.51 Hz, 1H), 4.28 – 4.23 (m, 2H), 3.95 (d, J = 11.25 Hz, 1H), 3.82 (dd, J = 4.03, 10.94 Hz, 1H), 3.14 – 3.08 (m, 2H), 2.53 – 2.48 (m, 2H), 2.47 (s, 3H), 2.28 – 2.20 (m, 1H), 2.15 – 2.06 (m, 1H), 2.02 – 1.95 (m, 2H), 1.05 (m, 9H). LCMS: expected mass for [M+H]⁺ (C₄₃H₅₁N₁₀O₅S) requires 819.37 m/z, found 819.30 m/z.



(2*S*,4*R*)-1-((*S*)-2-(3-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate, UNC7742

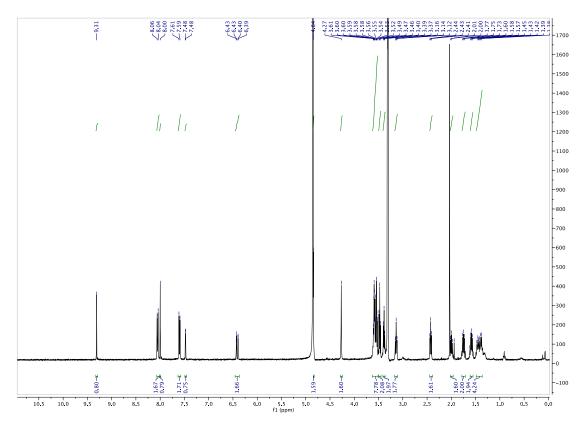
To a flask was added 3-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxylic acid (17) (2.7 mg, 5.2 µmol, 1.0 equiv), DIPEA (2.7 µL, 16 µmol, 3.0 equiv), and TBTU (2.2 mg, 6.8 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of (2S,4R)-1-((S)-2-((1R,3S)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (3.1 mg, 5.7 µmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and deprotected with 20% TFA in CH_2Cl_2 (1 mL). The reaction was concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H_2O , 0.1% TFA). The product was concentrated to yield the desired product as a white solid (2S,4R)-1-((S)-2-(3-((4-(5-(1T)-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-T)-T0-yrimidin-8-yl)benzyl)amino)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-T1-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (2.2 mg, 46 %) over two steps.

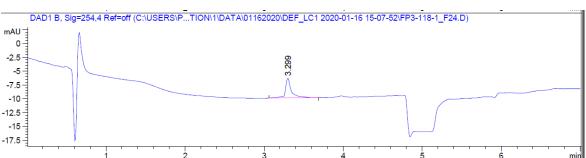

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.32 (s, 1H), 8.99 (s, 1H), 8.05 – 8.00 (m, 3H), 7.59 (dd, J = 2.97, 8.17 Hz, 2H), 7.50 – 7.45 (m, 3H), 7.42 (d, J = 8.38 Hz, 2H), 6.41 (dd, J = 2.48, 14.30 Hz, 2H), 4.84 (s, 2H), 4.65 4.62 (m, 1H), 4.60 – 4.55 (m, 1H), 4.55 – 4.51 (m, 2H), 4.36 (dd, J = 2.72, 15.50 Hz, 1H), 4.19 (d, J = 2.98 Hz, 2H), 3.92 (d, J = 11.23 Hz, 1H), 3.84 – 3.78 (m, 2H), 3.18 – 3.12 (m, 1H), 2.58 – 2.53 (m, 2H), 2.48 (s, 3H), 2.43 (d, J = 3.97 Hz, 1H), 2.42 – 2.34 (m, 2H), 2.27 – 2.20 (m, 1H), 2.13 – 2.06 (m, 1H), 1.04 (s, 9H). LCMS: expected mass for [M+H]⁺ (C₄₄H₅₁N₁₀O₅S) requires 831.37 m/z, found 831.30 m/z.

1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)-N-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide 2,2,2-trifluoroacetate, UNC7743

To a flask was added 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxylic acid (18) (2.1 mg, 4.9 µmol, 1.0 equiv), DIPEA (2.5 µL, 15 µmol, 3.0 equiv), and TBTU (2.0 mg, 6.3 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of (2*S*,4*R*)-1-((*S*)-2-((1*R*,3*S*)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (2.9 mg, 5.3 µmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and deprotected with 20% TFA in CH₂Cl₂ (1 mL). The reaction was concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)-N-((*S*)-1-((2*S*,4*R*)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide 2,2,2-trifluoroacetate (1.39 mg, 30 %) over two steps.

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.32 (s, 1H), 8.94 (s, 1H), 8.06 (d, J = 8.24 Hz, 2H), 8.02 (s, 1H), 7.95 (d, J = 8.80 Hz, 1H), 7.616 (d, J = 8.34 Hz, 2H), 7.50 – 7.45 (m, 2H), 7.43 – 7.39 (m, 2H), 6.45 – 6.38 (m, 2H), 4.64 – 4.60 (m, 1H), 4.58 – 4.47 (m, 4H), 4.44 – 4.31 (m, 4H), 3.87 (d, J = 10.78 Hz, 1H), 3.80 (dd, J = 3.81 – 11.20 Hz, 1H), 3.65 – 3.55 (m, 2H), 3.12 – 3.02 (m, 2H), 2.72 – 2.64 (m, 1H), 2.48 (s, 3H), 2.26 – 2.18 (m, 2H), 2.14 – 2.05 (m, 3H), 1.98 – 1.88 (m, 2H), 1.04 (s, 9H). LCMS: expected mass for [M+H]⁺ (C₄₅H₅₃N₁₀O₅S) requires 845.38 m/z, found 845.30 m/z.

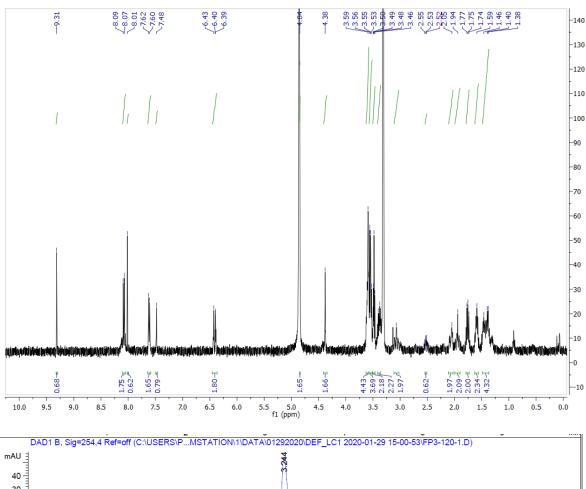

MAU 15 10 15


 $N-(2-(2-((6-\text{chlorohexyl})\text{oxy})\text{ethoxy})\text{ethyl})-4-((4-(5-((furan-2-ylmethyl)amino})-[1,2,4]\text{triazolo}[4,3-c]$ pyrimidin-8-yl)benzyl)amino)butanamide 2,2,2-trifluoroacetate, UNC7805

To a flask was added 4-((tert-butoxycarbonyl)(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-<math>c]pyrimidin-8-yl)benzyl)amino)butanoic acid (16) (1.5 mg, 3.0 μ mol, 1.0 equiv), DIPEA (1.5 μ L, 8.9 μ mol,

3.0 equiv), and TBTU (1.2 mg, 3.8 μ mol, 1.3 equiv) in DMF (0.5 mL), followed by addition of 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (1.0 mg, 3.0 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and deprotected with 20% TFA in CH₂Cl₂ (0.5 mL). The reaction was concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid *N*-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)-4-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)amino)butanamide 2,2,2-trifluoroacetate (0.38 mg, 18 %).

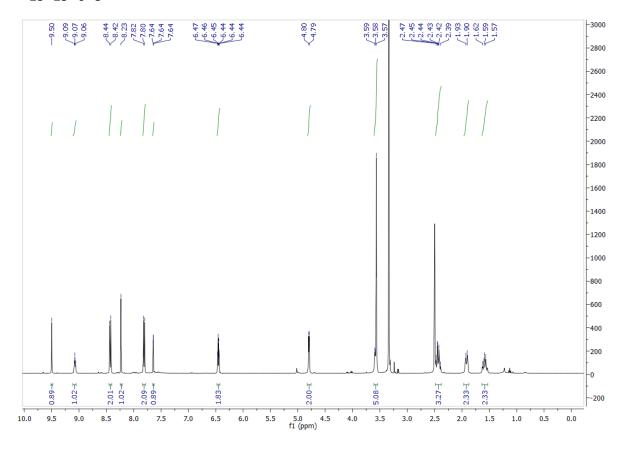
¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.31 (s, 1H), 8.05 (d, J = 8.37 Hz, 2H), 8.00 (s, 1H), 7.60 (d, J = 8.36 Hz, 2H), 7.49 – 7.45 (m, 1H), 6.45 – 6.37 (m, 2H), 4.84 (s, 2H), 4.27 (s, 2H), 3.62 – 3.52 (m, 8H), 3.47 (t, J = 6.55 Hz, 2H), 3.39 (t, J = 5.44 Hz, 2H), 3.14 (t, J = 7.27 Hz, 2H), 2.43 (t, J = 6.69 Hz, 2H), 2.02 – 1.96 (m, 2H), 1.79 – 1.70 (m, 2H), 1.63 – 1.53 (m, 2H), 1.50 – 1.36 (m, 4H). LCMS: expected mass for [M+H]⁺ (C₃₁H₄₃ClN₇O₄) requires 612.30 m/z, found 612.30 m/z.

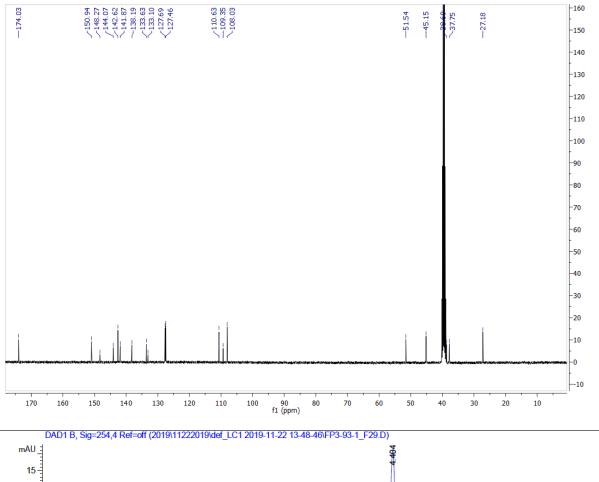


N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)-1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzyl)piperidine-4-carboxamide 2,2,2-trifluoroacetate, UNC7806

To a flask was added 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxylic acid (**18**) (0.9 mg, 2.1 µmol, 1.0 equiv), DIPEA (1.1 µL, 6.2 µmol, 3.0 equiv), and TBTU (0.9 mg, 2.7 µmol, 1.3 equiv) in DMF (0.5 mL), followed by addition of 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (0.8 mg, 2.3 µmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA). The product was concentrated to yield the desired product as a white solid *N*-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)-1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzyl)piperidine-4-carboxamide 2,2,2-trifluoroacetate (0.49 mg, 31 %).

 1 H NMR (CD₃OD- d_{4} , 400 MHz): δ 9.31 (s, 1H), 8.08 (d, J = 8.38 Hz, 2H), 8.01 (s, 1H), 7.61 (d, J = 8.10 Hz, 2H), 7.49 – 7.47 (m, 1H), 6.44 – 6.37 (m, 2H), 4.84 (s, 2H), 4.38 (s, 2H), 3.64 – 3.58 (m, 4H), 3.57 – 3.52 (m, 4H), 3.50 – 3.45 (m, 2H), 3.42 – 3.34 (m, 2H), 3.07 (t, J = 12.11 Hz, 2H), 2.56 – 2.48 (m, 1H), 2.10 – 2.02 (m, 2H), 1.96 – 1.91 (m, 2H), 1.79 – 1.72 (m, 2H), 1.63 – 1.55 (m, 2H), 1.49 – 1.36 (m, 4H). LCMS: expected mass for [M+H] $^{+}$ (C₃₃H₄₅ClN₇O₄) requires 638.31 m/z, found 638.30 m/z.

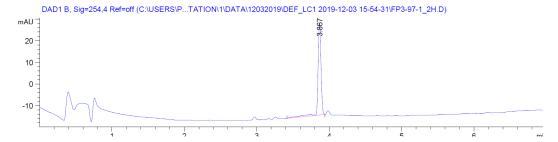

30 - 20 - 10 - 10 - 10 - 10 - 11 - 2 - 3 - 4 - 5 - 6 - min


Methyl 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylate, 19

To a microwave vial was added methyl 1-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)sulfonyl)piperidine-4-carboxylate (209 mg, 510 μ mol, 1.5 equiv), 8-bromo-*N*-(furan-2-ylmethyl)-[1,2,4]triazolo[4,3-c]pyrimidin-5-amine (100 mg, 340 μ mol, 1.0 equiv), Pd(dppf)Cl₂.CH₂Cl₂ (56 mg, 68 μ mol, 0.2 equiv), sodium bicarbonate (71.4 mg, 850 μ mol, 2.5 equiv) in THF (1 mL) and H₂O (0.5 mL). The vial was sealed at heated to 90 °C for 16 hr. The reaction was cooled and filtered through celite with EtOAc. The organics were concentrated *in vacuo* to yield the crude product. Crude material was purified by column chromatography (0-10% MeOH in CH₂Cl₂) to yield the desired product as a

white solid methyl 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylate (**19**) (12.7 mg, 8%).

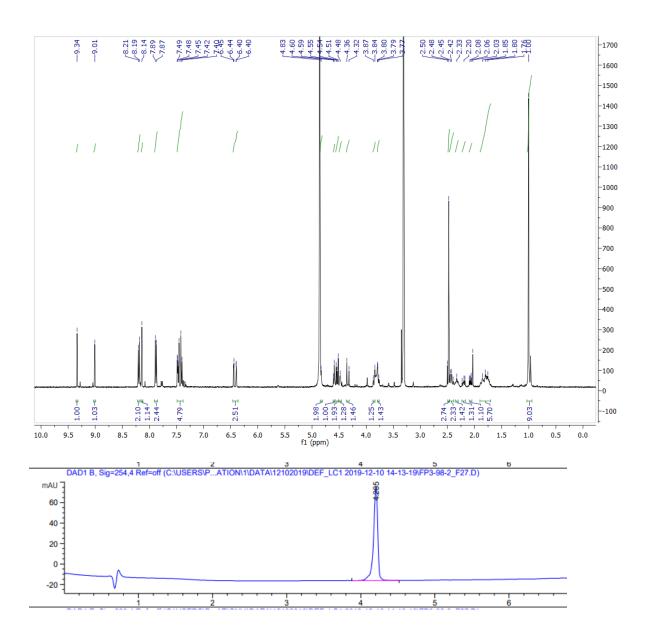
¹H NMR (DMSO- d_6 , 400 MHz): δ 9.50 (s, 1H), 9.07 (t, J = 5.19 Hz, 1H), 8.43 (d, J = 8.59 Hz, 2H), 8.23 (s, 1H), 7.81 (d, J = 8.60 Hz, 2H), 7.66 – 7.61 (m, 1H), 6.49 – 6.42 (m, 2H), 4.80 (d, J = 5.00 Hz, 2H), 3.61 – 3.54 (m, 5H), 2.48 – 2.37 (m, 3H), 1.95 – 1.88 (m, 2H), 1.57 (dt, J = 7.50, 14.86 Hz, 2H). ¹³C NMR (DMSO- d_6 , 101 MHz): δ 174.03, 150.94, 148.27, 144.07, 142.62, 141.87, 138.19, 133.63, 133.10, 127.69, 127.46, 110.63, 109.35, 108.03, 51.54, 45.15, 38.69, 37.75, 27.18. LCMS: expected mass for [M+H]⁺ (C₂₃H₂₅N₆O₅S) requires 497.15 m/z, found 497.15 m/z.



15-10-

1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylic acid, 20

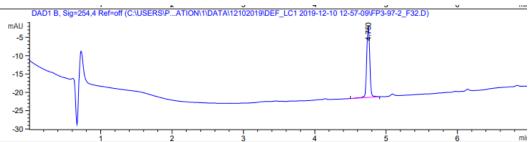
To a flask was added methyl 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylate ($\bf 19$) (12.7 mg, 26 µmol, 1.0 equiv) and LiOH.H₂O (3.2 mg, 76.7 µmol, 3.0 equiv) in THF (256 µL) and H₂O (256 µL) and the reaction left to stir for 16 hr. The reaction was concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (10-100% MeCN in H₂O (+ 0.1% TFA)) to yield the desired product as a white solid 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylic acid ($\bf 20$) (5.8 mg, 47 %).


LCMS: expected mass for $[M+H]^+$ ($C_{22}H_{23}N_6O_5S$) requires 483.14 m/z, found 483.10 m/z.

1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)-N-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide, UNC7741

To a flask was added 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylic acid (**20**) (3.7 mg, 7.7 µmol, 1.0 equiv), DIPEA (4 µL, 23 µmol, 3.0 equiv), and TBTU (3.2 mg, 10 µmol, 1.3 equiv) in DMF (1 mL), followed by addition of (2S,4R)-1-((S)-2-((1R,3S)-3-aminocyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (4.6 mg, 8.4 µmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H_2O , 0.1% TFA) to yield the desired product as a white solid 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)-N-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)piperidine-4-carboxamide (0.97 mg, 14%).

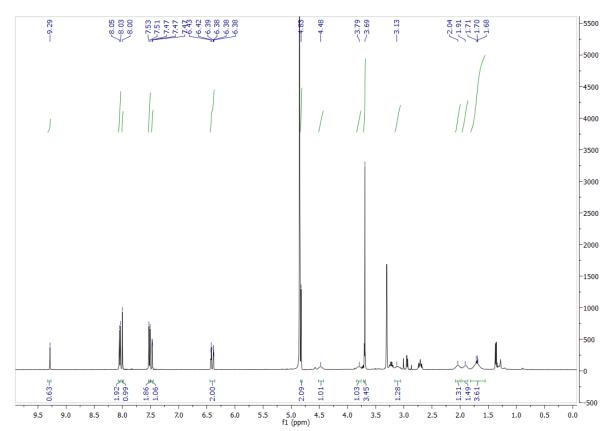
¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.34 (s, 1H), 9.01 (s, 1H), 8.20 (d, J = 8.51 Hz, 2H), 8.14 (s, 1H), 7.88 (d, J = 8.54 Hz, 2H), 7.49 – 7.39 (m, 5H), 6.46 – 6.38 (m, 2H), 4.83 (s, 2H), 4.60 – 4.57 (m, 1H), 4.56 – 4.51 (m, 2H), 4.50 – 4.45 (m, 1H), 4.34 (d, J = 15.61 Hz, 1H), 3.85 (d, J = 11.39 Hz, 1H), 3.78 (dd, J = 3.40, 10.81 Hz, 1H), 2.50 (s, 3H), 2.47 – 2.39 (m, 2H), 2.37 – 2.29 (m, 1H), 2.23 – 2.17 (m, 1H), 2.10 – 2.04 (m, 1H), 1.90 – 1.70 (m, 6H), 1.00 (s, 9H). LCMS: expected mass for [M+H]⁺ (C₄₄H₅₁N₁₀O₇ S₂) requires 895.33 m/z, found 895.20 m/z.

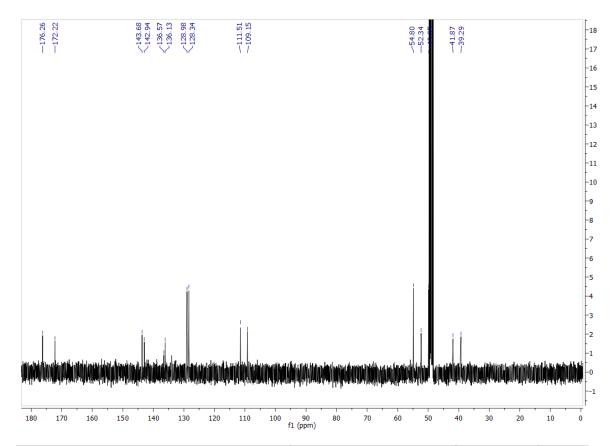

N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)-1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxamide, UNC7793

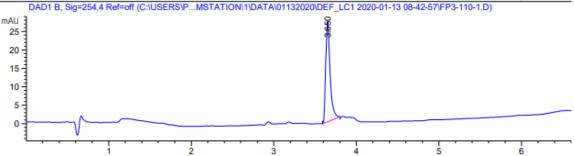
To a flask was added 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylic acid (20) (2.1 mg, 4.4 μ mol, 1.0 equiv), DIPEA (2.3 μ L, 13

μmol, 3.0 equiv), and TBTU (1.8 mg, 5.7 μmol, 1.3 equiv) in DMF (0.5 mL), followed by addition of 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (1.6 mg, 4.8 μmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H_2O , 0.1% TFA) to yield the desired product as a white solid N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)-1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxamide (0.97 mg, 32 %).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.32 (s, 1H), 8.23 (d, J = 8.58 Hz, 2H), 8.11 (s, 1H), 7.87 (d, J = 8.56 Hz, 2H), 7.50 – 7.46 (m, 1H), 6.45 – 6.37 (m, 2H), 3.81 (m, 2H), 3.59 – 3.43 (m, 10H), 3.36 – 3.33 (m, 2H), 2.41 (td, J = 2.72, 11.66, 11.65 Hz, 2H), 2.21 – 2.10 (m, 2H), 1.89 – 1.69 (m, 7H), 1.57 (dt, J = 6.73, 13.79 Hz, 2H), 1.48 – 1.33 (m, 5H). LCMS: expected mass for [M+H]⁺ (C₃₂H₄₃ClN₇O₆S) requires 688.26 m/z, found 688.15 m/z.

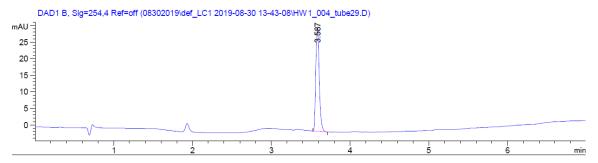





Methyl 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)piperidine-4-carboxylate, 22

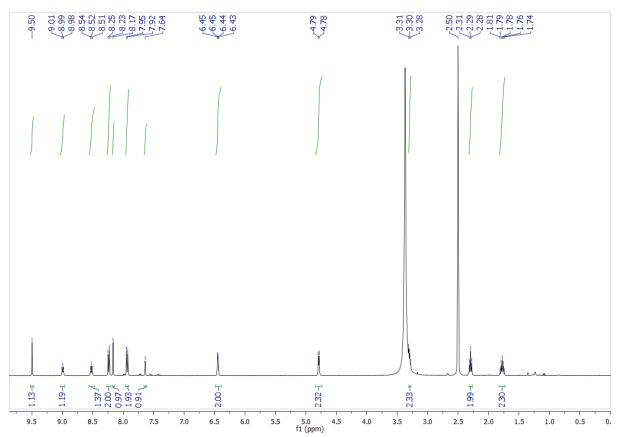
To a flask was added 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylic acid (9) (20 mg, 60 μ mol, 1.0 equiv), DIPEA (31 μ L, 180 μ mol, 3.0 equiv), and TBTU (25 mg, 78 μ mol, 1.3 equiv) in DMF (0.6 mL), followed by addition of methyl piperidine-4-carboxylate 2,2,2-trifluoroacetate (17 mg, 66 μ mol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by normal phase column chromatography (0-10% MeOH in CH₂Cl₂) to yield the desired product as a white solid methyl 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)piperidine-4-carboxylate (22) (15.3 mg, 56 %).

 1 H NMR (CD₃OD- 2 d₄, 400 MHz): δ 9.29 (s, 1H), 8.04 (d, 2 = 8.42 Hz, 2H), 8.00 (s, 1H), 7.52 (d, 2 = 8.41 Hz, 2H), 7.48 – 7.45 (m, 1H), 6.44 – 6.36 (m, 2H), 4.83 (s, 2H), 4.53 – 4.43 (m, 1H), 3.84 – 3.76 (m, 1H), 3.69 (s, 3H), 3.17 – 3.03 (m, 1H), 2.10 – 2.00 (m, 1H), 1.94 – 1.86 (m, 1H), 1.77 – 1.59 (m, 4H). 13 HC NMR (CD₃OD- 2 d₄, 101 MHz): δ 176.26, 172.22, 143.68, 142.94, 136.57, 136.13, 128.98, 128.34, 111.51, 109.15, 54.80, 52.34, 49.85, 41.87, 39.29. LCMS: expected mass for [M+H]⁺ (C₂₄H₂₅N₆O₄) requires 461.19 m/z, found 461.20 m/z.



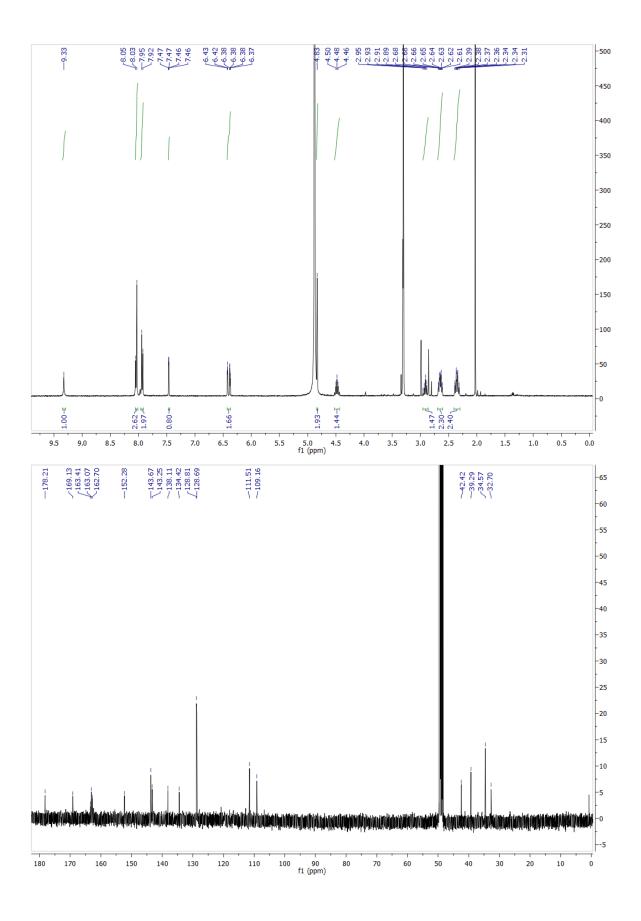
4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanoic acid, 23

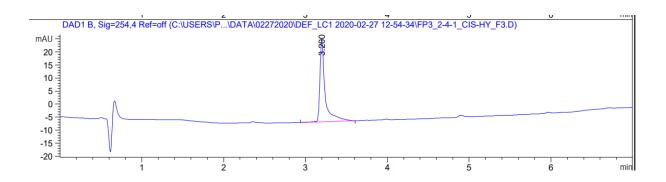
To a flask was added 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)phenyl)sulfonyl)piperidine-4-carboxylic acid (9) (50.8 mg, 151 μ mol, 1.0 equiv), DIPEA (80 μ L, 453 μ mol, 3.0 equiv), and TBTU (62.2 mg, 194 μ mol, 1.3 equiv) in DMF (0.5 mL), followed by addition of methyl 4-aminobutanoate 2,2,2-trifluoroacetate (42.9 mg, 186 μ mol, 1.22 equiv) in DMF (1.0 mL). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by column chromatography (0-10% MeOH in CH₂Cl₂). The product was concentrated to yield the desired product


as a clear gum methyl 4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanoate (**21**).

LCMS: expected mass for $[M+H]^+$ ($C_{22}H_{23}N_6O_4$) requires 435.17 m/z, found 435.20 m/z.

Intermediate methyl 4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanoate (**21**) was telescoped into the next step. To a flask was added methyl 4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanoate, LiOH.H $_2$ O (23.9 mg, 570 µmol, 3.8 equiv) in THF (1.2 mL) and H $_2$ O (0.3 mL) and the reaction was stirred at 50 °C for 3 hr. THF was removed *in vacuo* and 1M HCl was added, the precipitate was filtered under vacuum and washed with H $_2$ O then Et $_2$ O to yield the desired product as a beige solid 4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanoic acid (**22**) (44.5 mg, 70%) over two steps.

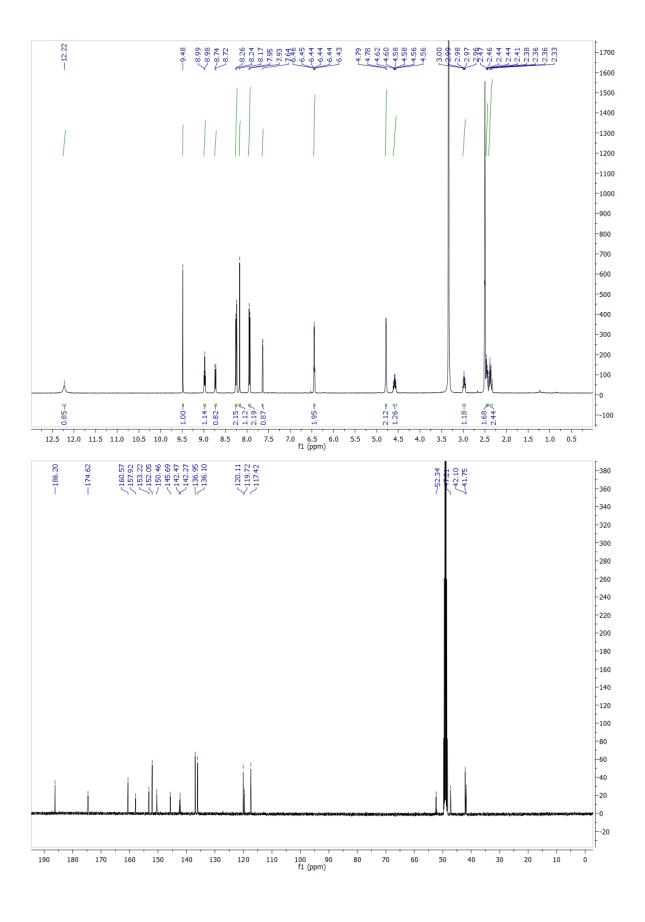

¹H NMR (DMSO- d_6 , 400 MHz): δ 9.50 (s, 1H), 8.99 (t, J = 5.27 Hz, 1H), 8.52 (t, J = 5.61 Hz, 1H), 8.24 (d, J = 8.49 Hz, 2H), 8.17 (s, 1H), 7.94 (d, J = 8.50 Hz, 2H), 7.65 – 7.62 (m, 1H), 6.44 (m, 2H), 4.79 (d, J = 5.18 Hz, 2H), 3.32 – 3.27 (m, 2H), 2.29 (t, J = 7.35 Hz, 2H), 1.82 – 1.74 (m, 2H).

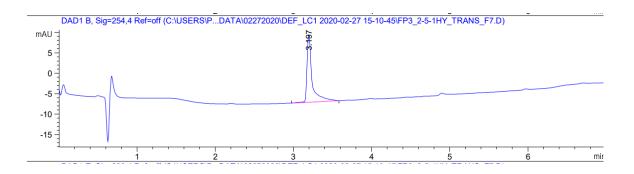


(15,35)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxylic acid, 25

flask was added 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8yl)phenyl)sulfonyl)piperidine-4-carboxylic acid (9) (20 mg, 60 μmol, 1.0 equiv), DIPEA (33 μL, 192 μmol, 3.2 equiv), and TBTU (25 mg, 78 µmol, 1.3 equiv) in DMF (0.5 mL), followed by addition of methyl (15,3S)-3-aminocyclobutane-1-carboxylate 2,2,2-trifluoroacetate (16 mg, 66 μmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated in vacuo and purified by column chromatography (0-10% MeOH in CH₂Cl₂). The product was concentrated to yield the desired product as a clear gum. Intermediate methyl (15,35)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxylate was telescoped into the next step. To a flask was added (1S,3S)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8yl)benzamido)cyclobutane-1-carboxylate, LiOH.H₂O (7.5 mg, 180 μmol, 3.0 equiv) in THF (0.24 mL) and H₂O (54 µL) and the reaction was stirred at 50 °C for 16 hr. THF was removed in vacuo and 1M HCl was added, the crude material concentrated in vacuo and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA) to yield the desired product as a white solid (1S,3S)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8yl)benzamido)cyclobutane-1-carboxylic acid (25) (9.4 mg, 36%) over two steps.

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.33 (s, 1H), 8.07 – 8.01 (m, 3H), 7.93 (d, J = 8.46, 2H), 7.49 – 7.45 (m, 1H), 6.44 – 6.36 (m, 2H), 4.83 (s, 2H), 4.53 – 4.43 (m, 1H), 2.95 – 2.86 (m, 1H), 2.65 (ddd, J = 2.64, 7.84, 15.65, 2H), 2.41 – 2.29 (m, 2H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 178.21, 169.13, 163.41, 163.07, 162.70, 152.28, 143.67, 143.25, 138.11, 134.42, 128.81, 128.69, 111.51, 109.16, 42.42, 39.29, 34.57, 32.70. LCMS: expected mass for [M+H]⁺ (C₂₂H₂₁N₆O₄) requires 433.15 m/z, found 433.20 m/z.

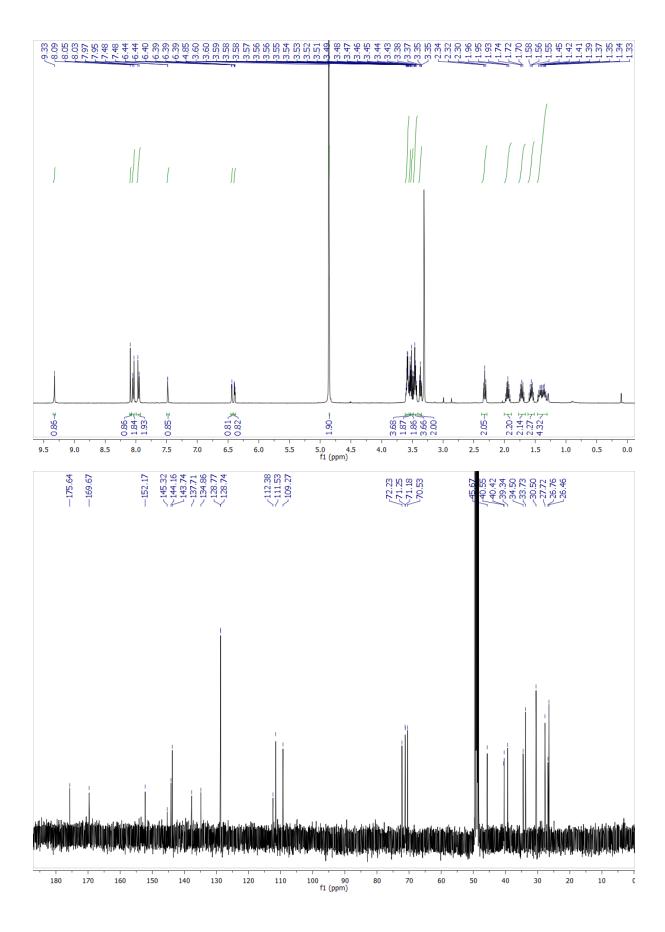


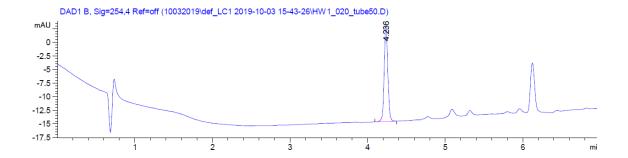


(1*R*,3*R*)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxylic acid, 26

To added 1-((4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8flask was yl)phenyl)sulfonyl)piperidine-4-carboxylic acid (9) (10 mg, 30 µmol, 1.0 equiv), DIPEA (17 µL, 95 µmol, 3.2 equiv), and TBTU (12 mg, 39 µmol, 1.3 equiv) in DMF (0.3 mL), followed by addition of methyl (1R,3R)-3-aminocyclobutane-1-carboxylate 2,2,2-trifluoroacetate (8 mg, 33 μmol, 1.1 equiv). The reaction was stirred at room temperature for 16 hr, concentrated in vacuo and purified by column chromatography (0-10% MeOH in CH₂Cl₂). The product was concentrated to yield the desired product as a clear gum. Intermediate methyl (1R,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxylate was telescoped into the next step. To a flask methyl (1R,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-<math>c]pyrimidin-8yl)benzamido)cyclobutane-1-carboxylate, LiOH.H₂O (3.8 mg, 89 μmol, 3.0 equiv) in THF (0.12 mL) and H₂O (27 μL) and the reaction was stirred at 50 °C for 16 hr. THF was removed in vacuo and 1M HCl was added, the crude material concentrated in vacuo and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA) to yield the desired product as a white solid (1R,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8yl)benzamido)cyclobutane-1-carboxylic acid (26) (3 mg, 20%) over two steps.

¹H NMR (DMSO- d_6 , 400 MHz): δ 12.22 (s, 1H), 9.48 (s, 1H), 8.98 (t, J = 5.44 Hz, 1H), 8.73 (d, J = 7.48 Hz, 1H), 8.25 (d, J = 8.54 Hz, 2H), 8.17 (s, 1H), 7.94 (d, J = 8.56 Hz, 2H), 7.66 – 7.62 (m, 1H), 6.47 – 6.41 (m, 2H), 4.79 (d, J = 5.34 Hz, 2H), 4.63 – 4.54 (m, 1H), 3.02 – 2.94 (m, 1H), 2.48 – 2.41 (m, 2H), 2.41 – 2.33 (m, 2H). ¹³C NMR (DMSO- d_6 , 101 MHz): δ 186.20, 174.62, 160.57, 157.92, 153.22, 152.05, 150.46, 145.69, 142.47, 142.27, 136.95, 136.10, 120.11, 119.72, 117.42, 52.34, 47.21, 42.10, 41.75. LCMS: expected mass for [M+H]⁺ ($C_{22}H_{21}N_6O_4$) requires 433.15 m/z, found 433.20 m/z.

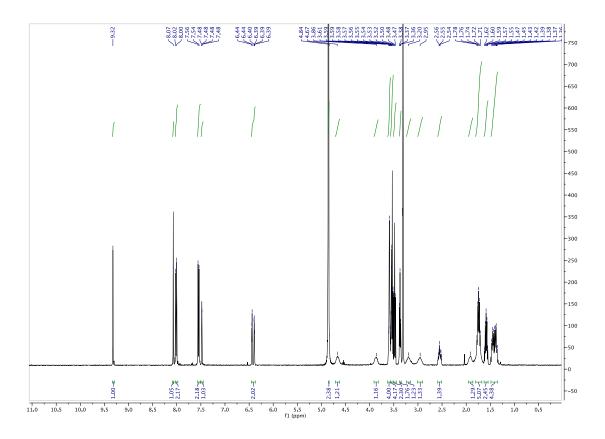


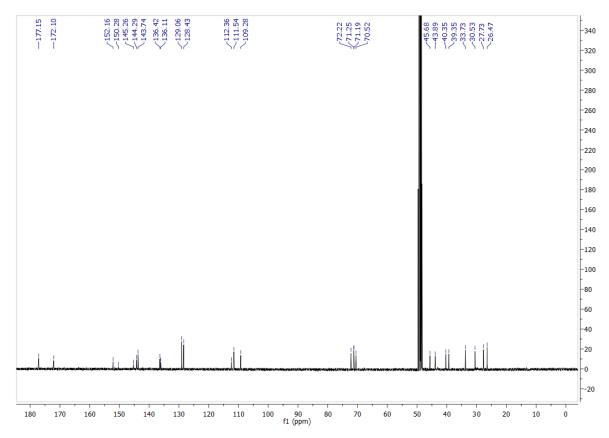


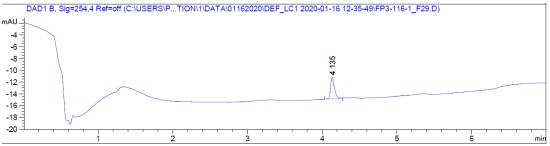
N-(4-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)amino)-4-oxobutyl)-4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-<math>c]pyrimidin-8-yl)benzamide, UNC7706

To a flask was added 4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanoic acid (23) (5.6 mg, 13 μ mol, 1.0 equiv), DIPEA (6.0 μ L, 34 μ mol, 2.6 equiv), and TBTU (6.4 mg, 20 μ mol, 1.5 equiv) in DMF (0.2 mL), followed by addition of 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (6.0 mg, 18 μ mol, 1.3 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA) to yield the desired product as a white solid *N*-(4-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)amino)-4-oxobutyl)-4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamide (2.3 mg, 27 %).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.33 (s, 1H), 8.09 (s, 1H), 8.04 (d, J = 8.47 Hz, 2H), 7.96 (d, J = 8.50 Hz, 2H), 7.49 – 7.46 (m, 1H), 6.46 – 6.37 (m, 2H), 4.85 (s, 2H), 3.61 – 3.55 (m, 4H), 3.55 – 3.53 (m, 2H), 3.51 (t, J = 5.78 Hz, 2H), 3.48 – 3.41 (m, 4H), 3.37 (t, J = 5.46 Hz, 2H), 2.32 (t, J = 7.39 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.76 – 1.68 (m, 2H), 1.60 – 1.52 (m, 2H), 1.46 – 1.32 (m, 4H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 175.64, 169.67, 152.17, 145.32, 144.16, 143.74, 137.71, 134.86, 128.77, 128.74, 112.38, 111.53, 109.27, 72.23, 71.25, 71.18, 70.53, 45.67, 40.55, 40.42, 39.34, 34.50, 33.73, 30.50, 27.72, 26.76, 26.46, 2 × aromatic C not observed. LCMS: expected mass for [M+H]⁺ (C₃₁H₄₁ClN₇O₅) requires 626.28 m/z, found 626.20 m/z.

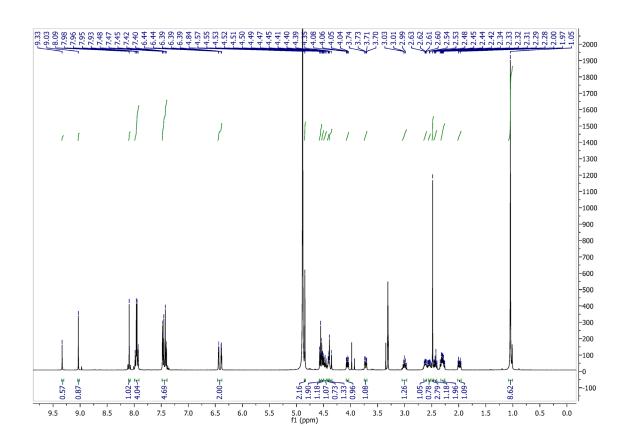

 $N-(2-(2-((6-\text{chlorohexyl})\text{oxy})\text{ethoxy})\text{ethyl})-1-(4-(5-((furan-2-ylmethyl)amino})-[1,2,4]\text{triazolo}[4,3-c]$ pyrimidin-8-yl)benzoyl)piperidine-4-carboxamide, UNC7791

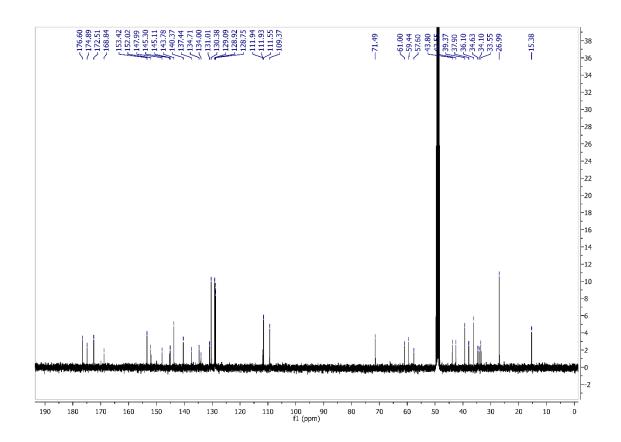

To a flask was added methyl 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)piperidine-4-carboxylate (**22**) (15.3 mg, 33.2 μ mol, 1.0 equiv) and LiOH.H₂O (4.2 mg, 99.7 μ mol, 3.0 equiv) in THF (133 μ L) and H₂O (12 μ L). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase column chromatography (10-100% MeCN in H₂O (+0.1% TFA)) to yield the desired product as a white solid 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)piperidine-4-carboxylic acid (**24**) (6.7 mg, 45 %).

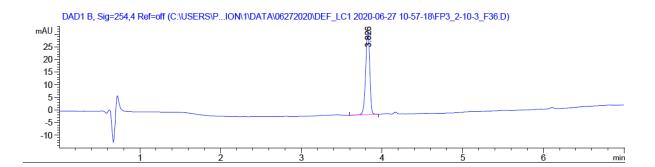

To a flask was added 1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)piperidine-4-carboxylic acid (**24**) (6.7 mg, 15 µmol, 1.1 equiv), DIPEA (7.1 µL, 41 µmol, 3.0 equiv), and TBTU (5.7 mg, 18 µmol, 1.3 equiv) in DMF (0.5 mL), followed by addition of 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (4.6 mg, 14 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H_2O , 0.1% TFA) to yield the desired product as a white solid N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)-1-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoyl)piperidine-4-carboxamide (3.5 mg, 39 %).

S65

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.32 (s, 1H), 8.07 (s, 1H), 8.01 (d, J = 8.41 Hz, 2H), 7.55 (d, J = 8.39 Hz, 2H), 7.50 – 7.47 (m, 1H), 6.46 – 6.38 (m, 2H), 4.84 (s, 2H), 4.72 – 4.62 (m, 1H), 3.93 – 3.81 (m, 1H), 3.62 – 3.57 (m, 4H), 3.56 – 3.51 (m, 4H), 3.48 (t, J = 6.57 Hz, 2H), 3.37 (t, J = 5.43 Hz, 2H), 3.25 – 3.14 (m, 1H), 3.01 – 2.90 (m, 1H), 2.54 (m, 1H), 1.97 – 1.87 (m, 1H), 1.82 – 1.68 (m, 5H), 1.63 – 1.54 (m, 2H), 1.50 – 1.33 (m, 4H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 177.15, 172.10, 152.16, 150.28, 145.26, 144.29, 143.74, 136.42, 136.11, 129.06, 128.43, 112.36, 111.54, 109.28, 72.22, 71.25, 71.19, 70.52, 45.68, 43.89, 40.35, 39.35, 33.73, 30.53, 27.73, 26.47. LCMS: expected mass for [M+H]⁺ (C₃₃H₄₃ClN₇O₅) requires 652.29 m/z, found 652.30 m/z.

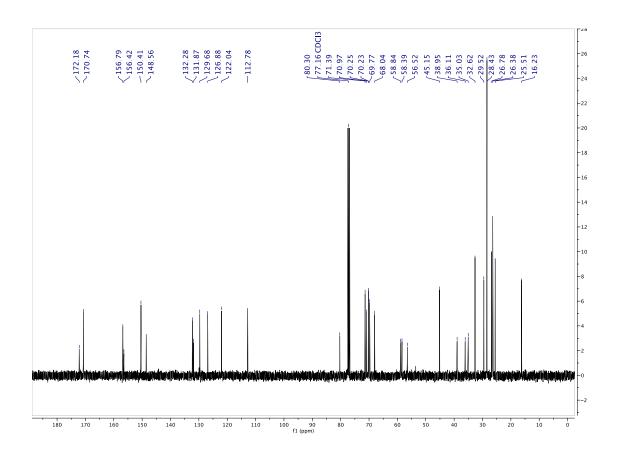

(2S,4S)-1-((S)-2-((1S,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide, UNC7971

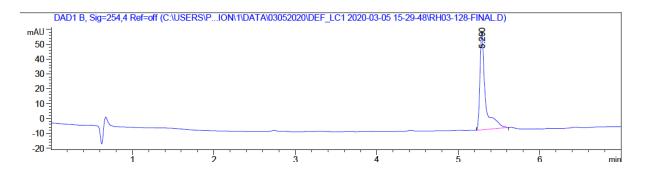

To a flask was added (1*S*,3*S*)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxylic acid


(25) (3.3 mg, 8 μ mol, 1.1 equiv), DIPEA (4 μ L, 22 μ mol, 3.2 equiv), and TBTU (3 mg, 22 μ mol, 1.3 equiv) in DMF (0.5 mL), followed by addition of (2*S*,4*S*)-1-((*S*)-2-amino-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (3.8 mg,

7 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by reverse phase high performance liquid chromatography (C18, 10-100% MeCN in H₂O, 0.1% TFA) to yield the desired product as a white solid (2*S*,4*S*)-1-((*S*)-2-((1*S*,3*R*)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-*N*-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (1.8 mg, 31 %).

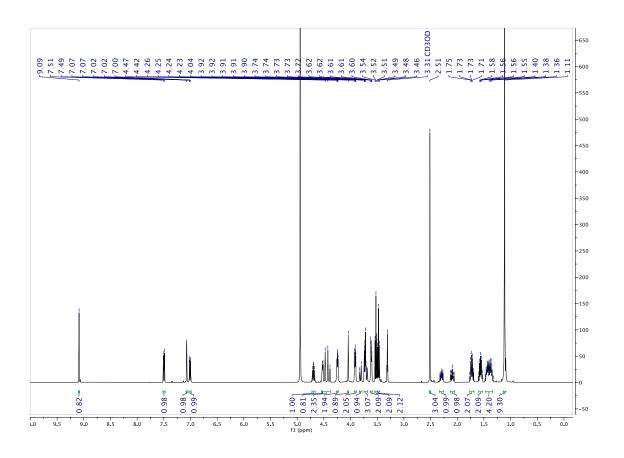
¹H NMR (CD₃OD- d_4 , 400 MHz) δ 9.33 (s, 1H), 9.03 (s, 1H), 8.09 (s, 1H), 7.99 – 7.91 (m, 4H), 7.50 – 7.39 (m, 5H), 6.46 – 6.36 (m, 2H), 4.84 (s, 2H), 4.56 (d, J = 7.1 Hz, 2H), 4.54 – 4.49 (m, 1H), 4.46 (d, J = 8.1 Hz, 1H), 4.43 – 4.38 (m, 1H), 4.35 (s, 1H), 4.06 (dd, J = 10.6, 5.1 Hz, 1H), 3.72 (dd, J = 10.5, 3.7 Hz, 1H), 3.00 (q, J = 8.6 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.57 – 2.50 (m, 1H), 2.48 (s, 3H), 2.43 (q, J = 6.2 Hz, 1H), 2.30 (ddt, J = 14.6, 9.8, 4.9 Hz, 2H), 1.99 (dt, J = 13.1, 4.4 Hz, 1H), 1.05 (s, 9H). ¹³C NMR (CD₃OD- d_4 , 101 MHz) δ 176.60, 174.89, 172.51, 168.84, 153.41, 152.02, 147.99, 145.30, 145.11, 143.78, 140.37, 137.44, 134.71, 134.00, 131.01, 130.38, 129.09, 128.92, 128.75, 111.94 (d, J = 1.2 Hz), 111.55, 109.37, 71.49, 61.00, 59.44, 57.60, 43.80, 42.55, 39.37, 37.90, 36.10, 34.63, 34.10, 33.55, 26.99, 15.38. LCMS: expected mass for [M+H]⁺ (C₄₄H₄₉N₁₀O₆S) requires 845.35m/z, found 845.20 m/z.

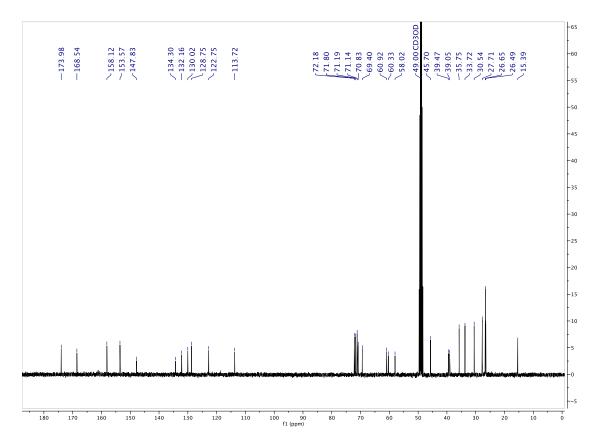

Tert-butyl ((*S*)-1-((2*S*,4*R*)-2-((2-(2-((6-chlorohexyl)oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)carbamoyl)-4-hydroxypyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)carbamate, 27

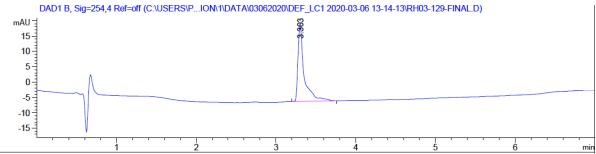

To a vial was added tert-butyl ((S)-1-((2S,4R)-4-hydroxy-2-((2-hydroxy-4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)carbamate (41 mg, 0.13 mmol, 1.2 equiv), Cs_2CO_3 (41 mg, 0.13 mmol, 1.2 equiv), followed by 2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl 4-methylbenzenesulfonate (41 mg, 0.11 mmol, 1.0 equiv) in DMF (1 mL) and the reaction stirred at room

temperature for 16 hr. The reaction was quenched with H_2O and extracted with EtOAc (x3). Organics were combined, washed with washed (×3) and brine, dried with a phase separator and concentrated *in vacuo* to yield a yellow residue. Crude material was purified by column chromatography (silica, 0-10% MeOH in CH_2Cl_2) to yield the desired product as a clear oil *tert*-butyl ((*S*)-1-((2*S*,4*R*)-2-((2-(2-(6-chlorohexyl)oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)carbamoyl)-4-hydroxypyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)carbamate (27) (46.2 mg, 73%).

¹H NMR (CDCl₃, 400 MHz) δ 8.66 (s, 1H), 7.37 (t, J = 6.0 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 6.94 (dd, J = 7.7, 1.6 Hz, 1H), 6.87 (d, J = 1.6 Hz, 1H), 5.21 (d, J = 9.2 Hz, 1H), 4.69 (t, J = 7.8 Hz, 1H), 4.54 – 4.44 (m, 1H), 4.40 (mz, 2H), 4.23 – 4.11 (m, 3H), 3.99 (d, J = 11.3 Hz, 1H), 3.90 (dt, J = 5.8, 4.3 Hz, 2H), 3.78 – 3.66 (m, 2H), 3.63 – 3.54 (m, 3H), 3.50 (t, J = 6.7 Hz, 2H), 3.45 (t, J = 6.7 Hz, 2H), 3.25 (s, 1H), 2.50 (s, 3H), 2.48 – 2.39 (m, 1H), 2.13 – 2.03 (m, 2H), 1.79 – 1.70 (m, 2H), 1.58 (p, J = 6.8 Hz, 2H) 1.52 – 1.28 (m, 14H), 0.88 (s, 9H). ¹³C NMR (CDCl₃, 101 MHz) δ 172.18, 170.74, 156.79, 156.42, 150.41, 148.56, 132.28, 131.87, 129.68, 126.88, 122.04, 112.78, 80.30, 71.39, 70.97, 70.25, 70.23, 69.77, 68.04, 58.84, 58.39, 56.52, 45.15, 38.95, 36.11, 35.03, 32.62, 29.52, 28.43, 26.78, 26.38, 25.51, 16.23. LCMS: expected mass for [M+H]⁺ (C₃₇H₅₈CIN₄O₈S) requires 753.36 m/z, found 753.30 m/z.

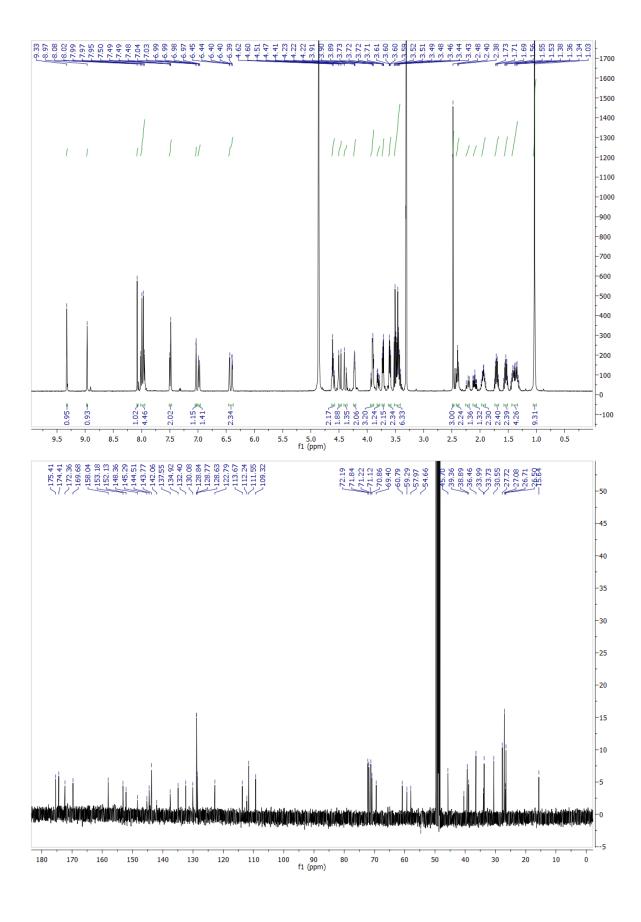


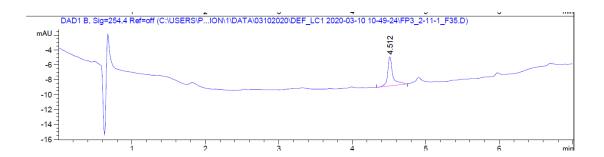

(2*S*,4*R*)-1-((*S*)-2-amino-3,3-dimethylbutanoyl)-*N*-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-4-hydroxypyrrolidine-2-carboxamide 2,2,2-trifluoroacetate, 28


To a vial was added tert-butyl ((S)-1-((2S,4R)-2-((2-(2-((6-chlorohexyl))oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)carbamoyl)-4-hydroxypyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)carbamate (**27**) (45 mg, 61 μ mol, 1.0 equiv) and 20% TFA in CH_2Cl_2 and the reaction stirred at room temperature. The reaction was concentrated *in vacuo* and purified by column chromatography (C18,

10-100% MeOH in $H_2O + 0.1\%$ TFA) to yield the desired product as a white solid (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-4-hydroxypyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (28) (45 mg, 96%).

¹H NMR (CD₃OD- d_4 , 400 MHz) δ 9.09 (s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.07 (d, J = 1.7 Hz, 1H), 7.01 (dd, J = 7.8, 1.7 Hz, 1H), 4.69 (m, 1H), 4.53 (m, 1H), 4.54 – 4.36 (m, 2H), 4.28 – 4.21 (m, 2H), 4.04 (s, 1H), 3.95 – 3.88 (m, 2H), 3.81 (m, 1H), 3.77 – 3.66 (m, 3H), 3.65 – 3.58 (m, 2H), 3.52 (t, J = 6.6 Hz, 2H), 3.48 (t, J = 6.5 Hz, 2H), 2.51 (s, 3H), 2.35 – 2.24 (m, 1H), 2.09 (m, 1H), 1.79 – 1.66 (m, 2H), 1.56 (p, J = 6.7 Hz, 2H), 1.48 – 1.32 (m, 4H), 1.11 (s, 9H). ¹³C NMR (CD₃OD- d_4 , 400 MHz) δ 173.98, 168.54, 158.12, 153.57, 147.83, 134.30, 132.16, 130.02, 128.75, 122.75, 113.72, 72.18, 71.80, 71.19, 71.14, 70.83, 69.40, 60.92, 60.33, 58.02, 45.70, 39.47, 39.05, 35.75, 33.72, 30.54, 27.71, 26.65, 26.49, 15.39. LCMS: expected mass for [M+H]⁺ (C₃₂H₅₀CIN₄O₆S) requires 653.31 m/z, found 653.30 m/z.

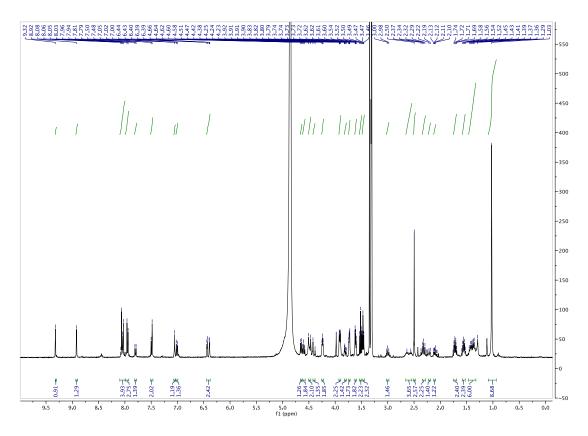


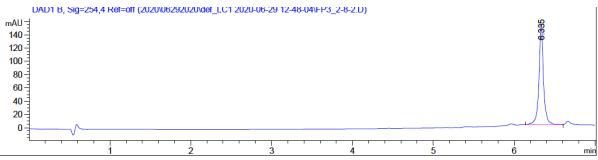


(2R,4S)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)+4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-(4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide, UNC7962

To a flask was added 4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)butanoic acid (23) (3.0 mg, 7 μ mol, 1.1 equiv), DIPEA (4 μ L, 20 μ mol, 3.2 equiv), and TBTU (3.0 mg, 8 μ mol, 1.3 equiv) in DMF (70 μ L), followed by addition of (2S,4R)-1-((S)-2-amino-3,3-dimethylbutanoyl)-N-(2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-4-hydroxypyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (28) (5.0 mg, 7 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by preparative high-performance liquid chromatography (10-100% MeCN in H₂O (+ 0.1% TFA)). The product was concentrated to yield the desired product as a white solid (2*R*,4*S*)-*N*-(2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((*S*)-2-(4-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamido)butanamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide (3.8 mg, 54%).

 1 H NMR (CD₃OD- 2 OD- 4 , 400 MHz): δ 9.33 (s, 1H), 8.97 (s, 1H), 8.08 (s, 1H), 7.98 (m, 4H), 7.51 – 7.47 (m, 2H), 7.04(s, 1H), 6.98 (d, 2 = 1.51, 7.75 Hz, 1H), 6.46 – 6.38 (m, 2H), 4.64 – 4.58 (m, 2H), 4.53 – 4.46 (m, 2H), 4.39 (m, 1H), 4.25 – 4.20 (m, 2H), 3.94 – 3.88 (m, 3H), 3.80 (m, 1H), 3.74 – 3.70 (m, 2H), 3.62 – 3.57 (m, 2H), 3.53 – 3.40 (m, 6H), 2.48 (s, 3H), 2.40 (t, 2 = 7.43 Hz, 2H), 2.25 – 2.18 (m, 1H), 2.09 (m, 1H), 1.95 (m, 2H), 1.75 – 1.67 (m, 2H), 1.59 – 1.50 (m, 2H), 1.45 – 1.31 (m, 4H), 1.03 (s, 9H). 2 × 1 H not observed. 13 C NMR (CD₃OD- 2 OD- 2 OD- 2 OD- 2 OD, 137.55, 134.92, 132.40, 130.08, 128.84, 128.77, 128.63, 148.36, 145.29, 144.51, 143.77, 142.06, 137.55, 134.92, 132.40, 130.08, 128.84, 128.77, 128.63, 122.79, 113.67, 112.24, 111.55, 109.32, 72.19, 71.84, 71.22, 71.12, 70.86, 69.40, 60.79, 59.29, 57.97, 54.66, 45.70, 40.47, 39.36, 38.89, 36.46, 33.99, 33.73, 30.55, 27.72, 27.08, 26.71, 26.50, 15.64. 2 × 13 C not observed. LCMS: expected mass for [M+H] $^{+}$ (C₅₃H₆₈ClN₁₀O₉S) requires 1055.45 m/z, found 1055.30 m/z.

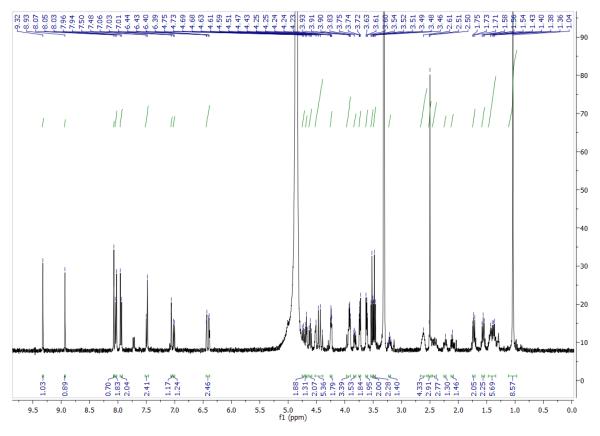


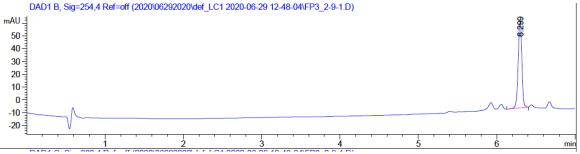


(2S,4R)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-((1S,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide, UNC7960

To a flask was added (15,35)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxylic acid (**25**) (2.3 mg, 5.3 µmol, 1.1 equiv), DIPEA (2.7 µL, 15 µmol, 3.2 equiv), and TBTU (2.0 mg, 6,3 µmol, 1.3 equiv) in DMF (100 µL), followed by addition of (25,4R)-1-((5)-2-amino-3,3-dimethylbutanoyl)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-4-hydroxypyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (**28**) (3.7 mg, 4.8 µmol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by preparative high-performance liquid chromatography (10-100% MeCN in H₂O (+ 0.1% TFA)). The product was concentrated to yield the desired product as a white solid (25,4R)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((5)-2-((15,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-<math>c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide (1.4 mg, 28%).

¹H NMR (CD₃OD- d_4 , 400 MHz) δ 9.32 (s, 1H), 8.92 (s, 1H), 8.10 – 8.00 (m, 4H), 7.95 (d, J = 8.5 Hz, 3H), 7.80 (d, J = 8.8 Hz, 1H), 7.49 (m, 2H), 7.05 (m, 1H), 7.01 (m, 1H), 6.45 – 6.37 (m, 2H), 4.65 (m, 1H), 4.60 (t, J = 8.1 Hz, 2H), 4.53 – 4.45 (m, 3H), 4.44 – 4.38 (m, 2H), 4.27 – 4.21 (m, 2H), 3.95 – 3.88 (m, 2H), 3.81 (dd, J = 10.9, 3.9 Hz, 1H), 3.77 – 3.70 (m, 2H), 3.64 – 3.58 (m, 2H), 3.52 (t, J = 6.7 Hz, 2H), 3.47 (t, J = 6.5 Hz, 2H), 3.00 (t, J = 8.6 Hz, 1H), 2.66 – 2.54 (m, 4H), 2.50 (s, 3H), 2.34 – 2.28 (m, 2H), 2.20 (m, 1H), 2.15 – 2.01 (m, 1H), 1.72 (p, J = 6.8 Hz, 2H), 1.56 (p, J = 6.8 Hz, 2H), 1.47 – 1.33 (m, 6H), 1.03 (s, 9H). LCMS: expected mass for [M+H]⁺ (C₅₄H₆₈ClN₁₀O₉S) requires 1067.45 m/z, [M+H] ⁺/2 requires 533.73 found m/z 533.75.

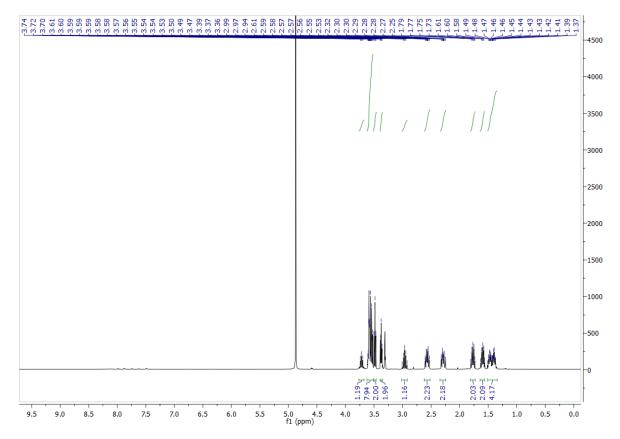


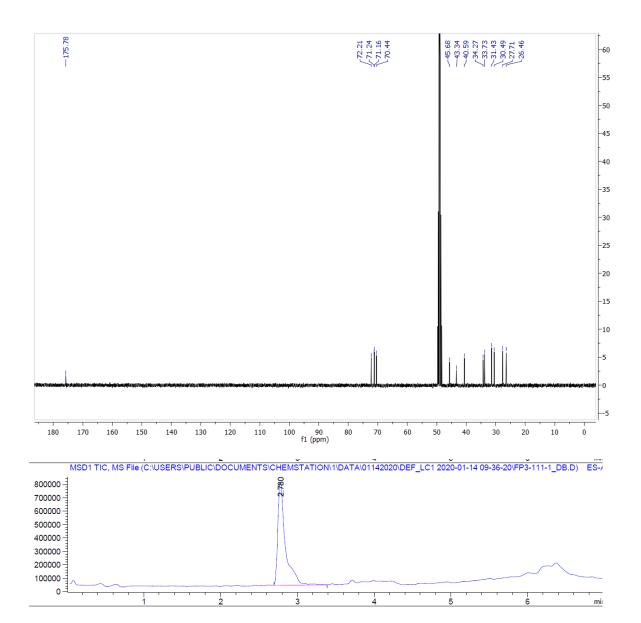

(2S,4R)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((S)-2-((1R,3S)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide, UNC7961

To a flask was added (1R,3R)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxylic acid (**26**) (3.0 mg, 7 μ mol, 1.1 equiv), DIPEA (4 μ L, 20 μ mol, 3.2 equiv), and TBTU (3.0 mg, 8 μ mol, 1.3 equiv) in DMF (100 μ L), followed by addition of (25,4R)-1-((5)-

2-amino-3,3-dimethylbutanoyl)-N-(2-(2-(2-((6-chlorohexyl)oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-4-hydroxypyrrolidine-2-carboxamide 2,2,2-trifluoroacetate (**28**) (5.0 mg, 7 μ mol, 1.0 equiv). The reaction was stirred at room temperature for 16 hr, concentrated *in vacuo* and purified by preparative high-performance liquid chromatography (10-100% MeCN in H₂O (+ 0.1% TFA)). The product was concentrated to yield the desired product as a white solid (2*S*,4*R*)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)-4-(4-methylthiazol-5-yl)benzyl)-1-((*S*)-2-((1*R*,3*S*)-3-(4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzamido)cyclobutane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide (0.91 mg, 10%).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.32 (s, 1H), 8.93 (s, 1H), 8.07 (s, 1H), 8.04 (d, J = 8.59 Hz, 2H), 7.95 (d, J = 8.52 Hz, 2H), 7.49 (d, J = 7.80 Hz, 2H), 7.07 – 7.05 (m, 1H), 7.02 (m, 1H), 6.46 – 6.37 (m, 2H), 4.76 – 4.71 (m, 2H), 4.69 – 4.66 (m, 1H), 4.64 – 4.58 (m, 2H), 4.54 – 4.39 (m, 5H), 4.27 – 4.22 (m, 2H), 3.97 – 3.90 (m, 2H), 3.82 (dd, J = 3.87, 11.12 Hz, 1H), 3.76 – 3.71 (m, 2H), 3.64 – 3.59 (m, 2H), 3.52 (t, J = 6.65 Hz, 2H), 3.28 (t, J = 6.52 Hz, 2H), 3.25 – 3.18 (m, 1H), 2.66 – 2.57 (m, 4H), 2.50 (s, 3H), 2.45 – 2.37 (m, 3H), 2.27 – 2.20 (m, 1H), 2.14 – 2.06 (m, 1H), 1.76 – 1.69 (m, 2H), 1.60 – 1.52 (m, 2H), 1.46 – 1.32 (m, 6H), 1.04 (s, 9H). LCMS: expected mass for [M+H]⁺ (C₅₄H₆₈ClN₁₀O₉S) requires 1067.45 m/z, found 1067.3 m/z.

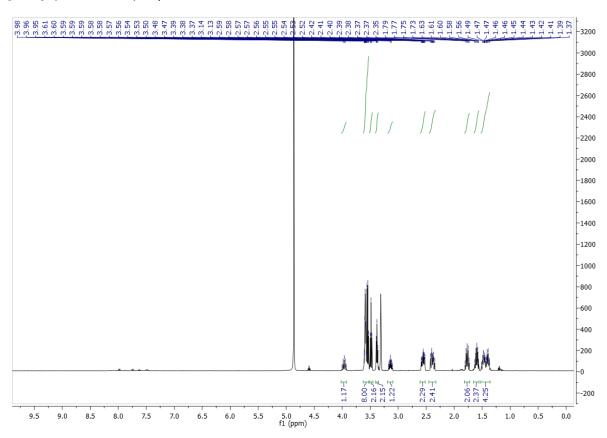


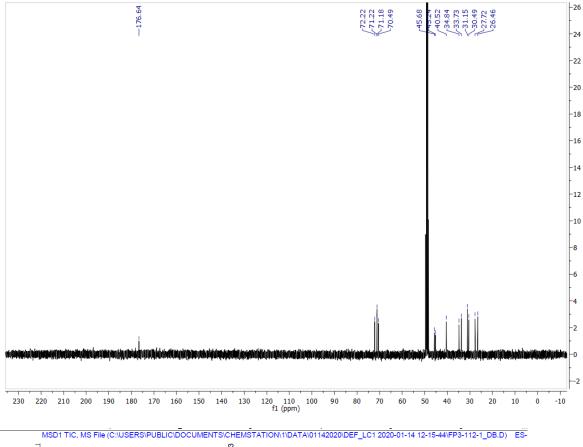


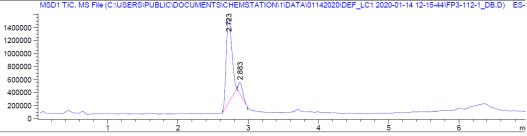
(15,35)-3-amino-*N*-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)cyclobutane-1-carboxamide trifluoroacetate, 29

To a flask was added (1*S*,3*S*)-3-((*tert*-butoxycarbonyl)amino)cyclobutane-1-carboxylic acid (25 mg, 0.12 mmol, 1.0 equiv), DIPEA (61 μ L, 0.35 mmol, 3.0 equiv), TBTU (48 mg, 0.15 mmol, 1.3 equiv), followed by 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (39 mg, 0.12 mmol, 1.0 equiv) in DMF (1 mL) and the reaction stirred at room temperature for 16 hr. The reaction was concentrated and purified by column chromatography (0-10% MeOH in CH₂Cl₂) to yield the intermediate as a clear oil. The *N*-Boc intermediate was deprotected with 20% TFA in CH₂Cl₂, concentrated *in vacuo* and purified by reverse phase column chromatography (MeOH in H₂O (+0.1% TFA)) to yield the desired product as a white solid (1*S*,3*S*)-3-amino-*N*-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)cyclobutane-1-carboxamide 2,2,2-trifluoroacetate (**29**) (15 mg, 30%).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 3.72 (p, J = 7.9 Hz, 1H), 3.62 – 3.52 (m, 8H), 3.49 (t, J = 6.56 Hz, 2H), 3.37 (t, J = 5.47 Hz, 2H), 2.97 (p, J = 8.4 Hz, 1H), 2.63 – 2.53 (m, 2H), 2.33 – 2.24 (m, 2H), 1.82 – 1.72 (m, 2H), 1.64 – 1.55 (m, 2H), 1.52 – 1.36 (m, 4H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 175.78, 72.21, 71.24, 71.16, 70.44, 45.68, 43.34, 40.59, 34.27, 33.73, 31.43, 30.49, 27.71, 26.46. LCMS: expected mass for [M+H]⁺ (C₁₅H₃₀CIN₂O₃) requires 321.19 m/z, found 321.20 m/z.

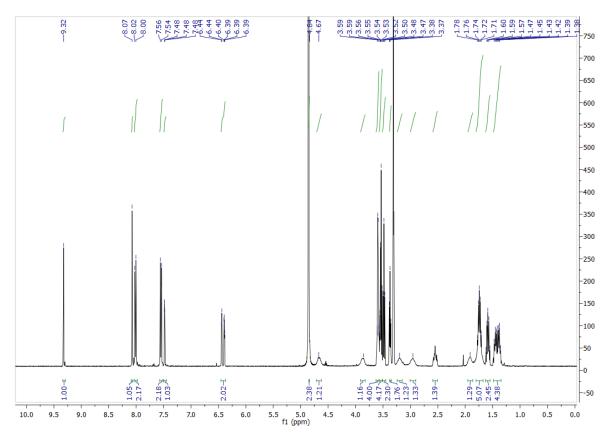

(1*R*,3*R*)-3-amino-*N*-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)cyclobutane-1-carboxamide 2,2,2-trifluoroacetate, 30

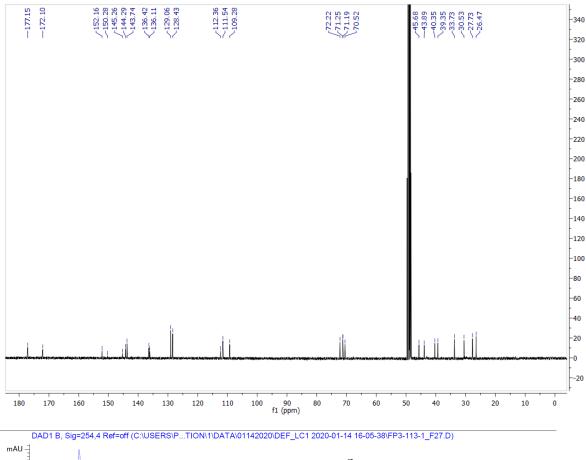


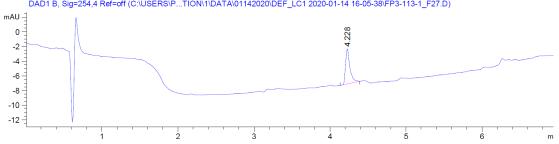

To a flask was added (1R,3R)-3-((tert-butoxycarbonyl)amino)cyclobutane-1-carboxylic acid (25 mg, 0.12 mmol, 1.0 equiv), DIPEA (61 μ L, 0.35 mmol, 3.0 equiv), TBTU (48 mg, 0.15 mmol, 1.3 equiv), followed by 2-(2-((6-chlorohexyl)oxy)ethoxy)ethan-1-amine 2,2,2-trifluoroacetate (39 mg, 0.12 mmol, 1.0 equiv) in DMF (1 mL) and the reaction stirred at room temperature for 16 hr. The reaction was

concentrated and purified by column chromatography (0-10% MeOH in CH_2Cl_2) to yield the intermediate as a clear oil. The *N*-Boc was deprotected with 20% TFA in CH_2Cl_2 , concentrated *in vacuo* and purified by reverse phase column chromatography (MeOH in H_2O (+0.1% TFA)) to yield the desired product as a white solid (1*R*,3*R*)-3-amino-*N*-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)cyclobutane-1-carboxamide 2,2,2-trifluoroacetate (**29**) (6 mg, 11%).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 3.97 (p, J = 7.7 Hz, 1H), 3.61 – 3.52 (m, 8H), 3.48 (t, J = 6.57 Hz, 2H), 3.38 (t, J = 5.46 Hz, 2H), 3.18 – 3.09 (m, 1H), 2.61 – 2.50 (m, 2H), 2.44 – 2.33 (m, 2H), 1.81 – 1.72 (m, 2H), 1.64 – 1.56 (m, 2H), 1.51 – 1.36 (m, 4H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 176.64, 72.22, 71.22, 71.18, 70.49, 45.68, 45.24, 40.52, 34.84, 33.73, 31.15, 30.49, 27.72, 26.46. LCMS: expected mass for [M+H]⁺ (C₁₅H₃₀CIN₂O₃) requires 321.19 m/z, found 321.20 m/z.

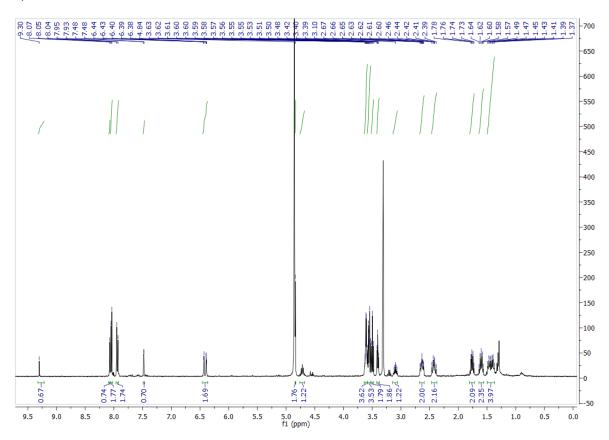


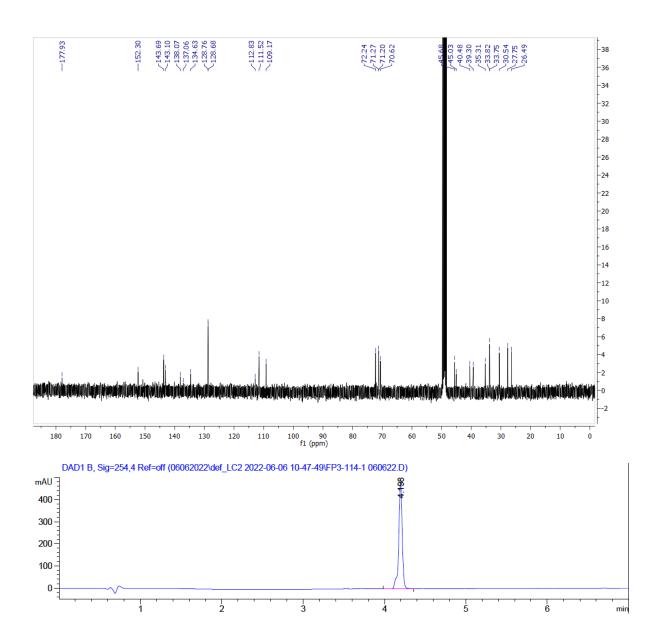

N-((15,35)-3-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)carbamoyl)cyclobutyl)-4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-<math>c]pyrimidin-8-yl)benzamide, UNC7792


To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (13 mg, 38 μ mol, 1.1 equiv), DIPEA (18 μ L, 102 μ mol, 3.0 equiv), TBTU (14 mg, 45 μ mol 1.3 equiv), followed by (15,3c)-3-amino-c-(2-(6-chlorohexyl)oxy)ethoxy)ethyl)cyclobutane-1-carboxamide

2,2,2-trifluoroacetate (**29**) (15 mg, 34 μ mol, 1.0 equiv) in DMF (0.5 mL) and the reaction stirred at room temperature for 16 hr. The reaction was concentrated and purified by reverse phase column chromatography (MeOH in H₂O (+0.1% TFA)) to yield the desired product as a white solid *N*-((1*S*,3*S*)-3-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)carbamoyl)cyclobutyl)-4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamide (2 mg, 9%).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.32 (s, 1H), 8.08 (s, 1H), 8.04 (d, J = 8.55 Hz, 2H), 7.96 (d, J = 8.57 Hz, 2H), 7.50 – 7.46 (m, 1H), 6.45 – 6.38 (m, 2H), 4.55 – 4.44 (m, 1H), 3.63 – 3.58 (m, 4H), 3.57 – 3.52 (m, 4H), 3.49 (t, J = 6.56 Hz, 2H), 3.38 (t, J = 5.48 Hz, 2H), 2.91 – 2.81 (m, 1H), 2.59 (m, 2H), 2.37 – 2.27 (m, 2H), 1.80 – 1.71 (m, 2H), 1.64 – 1.56 (m, 2H), 1.51 – 1.35 (m, 4H). 2 × 1H not observed (under H₂O peak). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 176.70, 168.92, 152.19, 145.31, 144.04, 143.73, 137.84, 134.60, 128.86, 128.74, 112.46, 111.53, 109.25, 72.24, 71.28, 71.19, 70.56, 45.68, 42.37, 40.50, 39.34, 34.40, 34.04, 33.75, 30.54, 27.74, 26.49. 2 × C not observed. LCMS: expected mass for [M+H]⁺ (C₃₂H₄₁ClN₇O₅) requires 638.28 m/z, found 638.30 m/z.




N-((1R,3R)-3-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)carbamoyl)cyclobutyl)-4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-<math>c]pyrimidin-8-yl)benzamide, UNC7794

To a flask was added 4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-c]pyrimidin-8-yl)benzoic acid (9) (13 mg, 38 μ mol, 1.1 equiv), DIPEA (18 μ L, 102 μ mol, 3.0 equiv), TBTU (14 mg, 45 μ mol 1.3 equiv), followed by (1R,3R)-3-amino-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)cyclobutane-1-carboxamide

2,2,2-trifluoroacetate (**30**) (15 mg, 34 μ mol, 1.0 equiv) in DMF (0.5 mL) and the reaction stirred at room temperature for 16 hr. The reaction was concentrated and purified by reverse phase column chromatography (MeOH in H₂O (+0.1% TFA)) to yield the desired product as a white solid *N*-((1*R*,3*R*)-3-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)carbamoyl)cyclobutyl)-4-(5-((furan-2-ylmethyl)amino)-[1,2,4]triazolo[4,3-*c*]pyrimidin-8-yl)benzamide (2 mg, 9%).

¹H NMR (CD₃OD- d_4 , 400 MHz): δ 9.30 (s, 1H), 8.07 (s, 1H), 8.04 (d, J = 6.40 Hz, 2H), 7.94 (d, J = 8.55 Hz, 2H), 7.49 – 7.47 (m, 1H), 6.45 – 6.37 (m, 2H), 4.84 (s, 2H), 4.76 – 4.67 (m, 1H), 3.64 – 3.58 (m, 4H), 3.58 – 3.53 (m, 4H), 3.50 (t, J = 6.58 Hz, 2H), 3.40 (t, J = 5.45 Hz, 2H), 3.14 – 3.05 (m, 1H2.67 – 2.60 (m, 2H), 2.48 – 2.38 (m, 2H), 1.80 – 1.72 (m, 2H), 1.65 – 1.56 (m, 2H), 1.51 – 1.37 (m, 4H). ¹³C NMR (CD₃OD- d_4 , 101 MHz): δ 177.93, 152.30, 143.69, 143.10, 138.07, 137.06, 134.63, 128.76, 128.68, 112.83, 111.52, 109.17, 72.24, 71.27, 71.20, 70.62, 45.68, 45.03, 40.48, 39.30, 35.31, 33.82, 33.75, 30.54, 27.75, 26.49. 3 × C not observed. LCMS: expected mass for [M+H]⁺ (C₃₂H₄₁ClN₇O₅) requires 638.28 m/z, found 638.3 m/z.

References

(1) Potjewyd, F.; Turner, A. M. W.; Beri, J.; Rectenwald, J. M.; Norris-Drouin, J. L.; Cholensky, S. H.; Margolis, D. M.; Pearce, K. H.; Herring, L. E.; James, L. I. Degradation of Polycomb Repressive Complex 2 with an EED-Targeted Bivalent Chemical Degrader. *Cell Chem Biol* 2020, *27* (1), 47-56.e15. https://doi.org/10.1016/j.chembiol.2019.11.006.