library(mice) library(foreign) library(MASS) library(writexl) library(car) ###model with missing data to check VIF -> lm to use vif() fit1_missing <- lm(vas_today_a ~ vas_retro_bl + study_center + Sex + Age + CASMIN + migration + Personshousehold + proxy + Pre_fracture_dependency + Fracture_type + Charlson_commorbity_index_cat + polypharmacy + Social_support + subjective_need + Surgery + Referral_to_rehabilitation_facility + Malnutrition + PHQ_4_cat + OHS, data=dat1) summary(fit1_missing) ## VIF vif(fit1_missing) ##### fit2_missing <- lm(EQ5Dindex_FU ~ EQ5Dindex + study_center + Sex + Age + CASMIN + migration + Personshousehold + proxy + Pre_fracture_dependency + Fracture_type + Charlson_commorbity_index_cat + polypharmacy + Social_support + subjective_need + Surgery + Referral_to_rehabilitation_facility + Malnutrition + PHQ_4_cat + OHS, data=dat1) summary(fit2_missing) ## VIF vif(fit2_missing) ###################### Imputation ############################## ini <- mice(dat1, seed=1, maxit=0, m=5) meth <- ini$method meth #### passive imputation for diff-variables meth["vas_diff"] <- "~I(vas_today_a - vas_retro_bl)" meth["EQ5Dindex_diff"] <- "~I(EQ5Dindex_FU - EQ5Dindex)" predmat <- ini$predictorMatrix # Predictormatrix predmat #### change Predictormatrix predmat[,20] <- c(rep(0,25)) predmat[,21] <- c(rep(0,25)) ###### compute imputation ####### imp <- mice(dat1, seed=1,method=meth,predictorMatrix=predmat, maxit=20, m=10) imp$imp imp$loggedEvents ##### Diagnostics ############ # for numerical variables stripplot(imp) bwplot(imp) densityplot(imp) #convergence? plot(imp) ##################################################################################################### ############################ Analysis ############################## ################################################## # linear regression fit1 <- with(imp, lm(vas_today_a ~ vas_retro_bl + study_center + Sex + CASMIN + migration + Personshousehold + proxy + Pre_fracture_dependency + Fracture_type + Charlson_commorbity_index_cat + polypharmacy + Social_support + subjective_need + Surgery + ICU_episode + Referral_to_rehabilitation_facility + Malnutrition + PHQ_4_cat + OHS)) summary.fit1 <- summary(pool(fit1)) summary.fit1$p.value <- round(summary.fit1$p.value,3) summary.fit1$df <- round(summary.fit1$df,1) summary.fit1$statistic <- round(summary.fit1$statistic,2) summary.fit1$std.error <- round(summary.fit1$std.error,1) summary.fit1$estimate <- round(summary.fit1$estimate,2) summary.fit1 pool.r.squared(fit1) pool.r.squared(fit1, adjusted = T) fit2 <- with(imp, lm(EQ5Dindex_FU ~ EQ5Dindex + study_center + Sex + Age + CASMIN + migration + Personshousehold + proxy + Pre_fracture_dependency + Fracture_type + Charlson_commorbity_index_cat + polypharmacy + Social_support + subjective_need + Surgery + ICU_episode + Referral_to_rehabilitation_facility + Malnutrition + PHQ_4_cat + OHS)) summary.fit2 <- summary(pool(fit2)) summary.fit2$p.value <- round(summary.fit2$p.value,3) summary.fit2$df <- round(summary.fit2$df,1) summary.fit2$statistic <- round(summary.fit2$statistic,2) summary.fit2$std.error <- round(summary.fit2$std.error,3) summary.fit2$estimate <- round(summary.fit2$estimate,4) summary.fit2 pool.r.squared(fit2) pool.r.squared(fit2, adjusted = T) #### export output #update path! write_xlsx(x = as.data.frame(summary.fit1) , path = "C:/..../results_QoL_vas_FU.xlsx") write_xlsx(x = as.data.frame(summary.fit2) , path = "C:/..../results_QoL_EQ5D_FU.xlsx") ########################### Vas with Age ######################### # linear regression fit1 <- with(imp, lm(vas_today_a ~ vas_retro_bl + study_center + Sex + Age + CASMIN + migration + Personshousehold + proxy + Pre_fracture_dependency + Fracture_type + Charlson_commorbity_index_cat + polypharmacy + Social_support + subjective_need + Surgery + ICU_episode + Referral_to_rehabilitation_facility + Malnutrition + PHQ_4_cat + OHS)) summary.fit1 <- summary(pool(fit1)) summary.fit1$p.value <- round(summary.fit1$p.value,3) summary.fit1$df <- round(summary.fit1$df,1) summary.fit1$statistic <- round(summary.fit1$statistic,2) summary.fit1$std.error <- round(summary.fit1$std.error,1) summary.fit1$estimate <- round(summary.fit1$estimate,2) summary.fit1 pool.r.squared(fit1) pool.r.squared(fit1, adjusted = T) #### export output #update path! write_xlsx(x = as.data.frame(summary.fit1) , path = "C:/..../results_QoL_vas_FU_withAge.xlsx")