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Introduction

In this appendix we present additional details and results beyond what could be presented

in the main manuscript. To distinguish the two documents, alpha-numeric labels are used

in this document while numeric labels are used in the main paper. Section A provides

additional results from the data application. Section B describes the use of fitted illness-

death models for individualized risk prediction, and presents an example using the data

application. Section C provides the proof of Theorem 1. Section D defines likelihood-related

functions for frailty-based parametric illness death models. Section E defines and proves

technical lemmas used in the main result. Section F presents additional simulation details

and results. Section G presents additional algorithmic details for optimization. Section H

summarizes other spline-based hazard specifications.
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A Additional Data Application Results

In this section, we present further additional results for the data application.

Table A.1: Characteristics of the study population, overall and by observed preeclampsia

diagnosis and delivery outcome. Abbreviations: abnormal (Abn), white blood cell count

(WBC), red blood cell count (RBC), red cell distribution width (RDW), mean corpuscular

volume (MCV), gastroesophageal reflux disease (GERD).

Total Births Births with Preeclampsia Births without Preeclampsia

Total 2127 (100%) 189 (100%) 1938 (100%)

Maternal Age ≥ 35 658 (30.9%) 61 (32.3%) 597 (30.8%)

Male Fetus 1074 (50.5%) 94 (49.7%) 980 (50.6%)

Current or Prior Cigarette Use 232 (10.9%) 29 (15.3%) 203 (10.5%)

Previous Preeclampsia 51 (2.4%) 10 (5.3%) 41 (2.1%)

Parity ≥ 1 1075 (50.5%) 58 (30.7%) 1017 (52.5%)

Public or No Insurance 761 (35.8%) 81 (42.9%) 680 (35.1%)

Other/Unknown Race/Ethnicity 431 (20.3%) 54 (28.6%) 377 (19.5%)

Hispanic Race/Ethnicity 194 (9.1%) 12 (6.3%) 182 (9.4%)

Asian Race/Ethnicity 209 (9.8%) 10 (5.3%) 199 (10.3%)

Black Race/Ethnicity 310 (14.6%) 29 (15.3%) 281 (14.5%)

BMI ≥ 30 550 (25.9%) 75 (39.7%) 475 (24.5%)

Pre-existing Diabetes 49 (2.3%) 14 (7.4%) 35 (1.8%)

Anemia 283 (13.3%) 31 (16.4%) 252 (13%)

Retention of Urine 49 (2.3%) 5 (2.6%) 44 (2.3%)

GERD 96 (4.5%) 11 (5.8%) 85 (4.4%)

Asthma 175 (8.2%) 22 (11.6%) 153 (7.9%)

Anxiety Disorder 166 (7.8%) 25 (13.2%) 141 (7.3%)

Mood Disorder 125 (5.9%) 15 (7.9%) 110 (5.7%)

Polycystic Ovarian Syndrome 30 (1.4%) 2 (1.1%) 28 (1.4%)

Hypothyroidism 140 (6.6%) 21 (11.1%) 119 (6.1%)

Leiomyoma 269 (12.6%) 14 (7.4%) 255 (13.2%)

Hepatitis Infection 27 (1.3%) 7 (3.7%) 20 (1%)

Herpesviral Infection 101 (4.7%) 8 (4.2%) 93 (4.8%)

Abn. WBC 462 (21.7%) 41 (21.7%) 421 (21.7%)

Abn. Urine WBC 95 (4.5%) 6 (3.2%) 89 (4.6%)

Abn. Urine Bilinogen 47 (2.2%) 5 (2.6%) 42 (2.2%)

Abn. Urine Specific Gravity 10 (0.5%) 1 (0.5%) 9 (0.5%)

Abn. RBC 322 (15.1%) 19 (10.1%) 303 (15.6%)

Abn. RDW 79 (3.7%) 8 (4.2%) 71 (3.7%)

Abn. Urine RBC 88 (4.1%) 8 (4.2%) 80 (4.1%)

Abn. Platelet Count 55 (2.6%) 4 (2.1%) 51 (2.6%)

Abn. MCV 153 (7.2%) 14 (7.4%) 139 (7.2%)

Abn. Hemoglobin 187 (8.8%) 15 (7.9%) 172 (8.9%)
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A.1 Additional Estimation Results
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Figure A.1: Estimated coefficients, AIC-optimal SCAD-penalized estimators with and with-

out `1 fusion between h2 and h3, and MLE under Markov specification. Fused coefficients

connected with a black line.
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Table A.2: Information criterion values for models presented in Figures 2 (BIC) and A.1

(AIC). Lower values reflect improved model fit.

BIC-Optimal Selection λ1 λ2 BIC

Weibull MLE 0 0 -219.039

Weibull, SCAD, No Fusion 0.027 0 -762.464

Weibull, SCAD, Fuse h2 + h3 0.016 0.015 -784.840

Piecewise MLE 0 0 93.984

Piecewise, SCAD, No Fusion 0.017 0 -467.450

Piecewise, SCAD, Fuse h2 + h3 0.017 0.015 -487.490

AIC-Optimal Selection λ1 λ2 AIC

Weibull MLE 0 0 -813.599

Weibull, SCAD, No Fusion 0.009 0 -907.093

Weibull, SCAD, Fuse h2 + h3 0.009 0.001 -907.164

Piecewise MLE 0 0 -568.524

Piecewise, SCAD, No Fusion 0.011 0 -668.483

Piecewise, SCAD, Fuse h2 + h3 0.010 0.010 -675.313
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B Individualized Joint Outcome Risk Prediction

Fitted illness-death models can be used to generate clinically meaningful predictions of in-

dividualized joint risk, and the timing of the non-terminal and terminal events. In the

preeclampsia setting, the model can predict across time how likely an individual is to be in

one of four categories:

(1) still pregnant without preeclampsia

(2) already delivered without preeclampsia

(3) already delivered with preeclampsia, and

(4) still pregnant with preeclampsia.

These four probabilities comprise an individualized “risk profile,” and are derived for the

illness-death model in Putter et al. (2007) by integrating over regions of the joint density of

the semi-competing outcomes (T1, T2). The resulting formulas can be concisely represented

for both Markov and semi-Markov illness-death models, by defining

H3(t | t1,X3) =

H3(t | X3)−H3(t1 | X3) Markov

H3(t− t1 | X3) semi-Markov.

Then for fixed frailty γ, these four probabilities (numbered as above) are:

π(1)(t | X, γ) = exp{−γ[H1(t | X1) +H2(t | X2)]}

π(2)(t | X, γ) =

∫ t

0

γh2(t2 | X2) exp{−γ[H1(t2 | X1) +H2(t2 | X2)]}dt2

π(3)(t | X, γ) =

∫ t

0

γh1(t1 | X1) exp{−γ[H1(t1 | X1) +H2(t1 | X2)]}

× (1− exp{−γH3(t | t1,X3)})dt1

π(4)(t | X, γ) =

∫ t

0

γh1(t1 | X1) exp{−γ[H1(t1 | X1) +H2(t1 | X2) +H3(t | t1,X3)}dt1,

and collectively denoted π(t | X, γ) = {π(1)(t | X, γ), π(2)(t | X, γ), π(3)(t | X, γ), π(4)(t |
X, γ)}. These probabilities sum to 1, and the integrals can be computed numerically using

standard software.

B.1 Sample Predictions from Data Application

Example individualized risk profiles are shown in Figure B.1, generated from the above AIC-

selected Weibull model with fusion penalty (shown above in column three of Figure A.1).
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The four panels of Figure B.1 correspond with sample individuals having covariates outlined

in Table B.1. At each time point, the height of each colored area of the plot gives the

probability that the individual will be in the corresponding outcome category at that time,

stacking from top to bottom π(1)(t | X, γ), π(2)(t | X, γ), π(3)(t | X, γ), and π(4)(t | X, γ).

For example, the model predicts that at 34 weeks of gestation, individual D has about a 10%

chance of having developed preeclampsia and still being pregnant (blue), a 10% chance of

having developed preeclampsia and already given birth (purple), a 2% chance of having given

birth without preeclampsia (red), and a 78% chance of being pregnant without preeclampsia

(grey).

From these detailed risk patterns, we can also read simple overall probabilities of de-

veloping preeclampsia by looking at the combined height of the blue and purple bars at

the right end of the plot. For patients A-D, the predicted overall probability of developing

preeclampsia by week 40 is about 2%, 22%, 52% and 47%, respectively.
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Figure B.1: Sample predicted risk profiles for four sample individuals. AIC-selected Weibull

model with SCAD and fusion penalty under Markov specification. Frailty value fixed at

γ = 1.
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Table B.1: Characteristics of sample individuals used in Figure B.1.

A B C D

Abn. RBC No No No No

Abn. Urine Bilinogen No No No No

Abn. Urine WBC Yes No No No

Hepatitis Infection No No No No

Leiomyoma No No No No

Hypothyroidism No No Yes Yes

Polycystic Ovarian Syndrome No No No No

Anxiety Disorder No No No No

Asthma No No Yes No

Retention of Urine No No No Yes

Anemia No Yes No No

Pre-existing Diabetes No No Yes Yes

BMI ≥ 30 No Yes Yes Yes

Race/Ethnicity White Other/Unknown White White

Public or No Insurance No No No Yes

Parity ≥ 1 Yes No Yes No

Previous Preeclampsia No No Yes No

Current or Prior Cigarette Use No No No No

Male Fetus Yes No No Yes

Maternal Age ≥ 35 Yes No Yes No

B.2 Use of Frailties in Individualized Risk Prediction

As described in the main text, the patient-specific frailty γ accounts for residual within-

patient dependence between (T1, T2). Thus, it represents a potentially important component

of variation in individualized risk predictions (Putter and Van Houwelingen, 2015). However,

γ is latent and, therefore, cannot be observed for an individual to plug into π(t | X, γ), and

must be fixed to a chosen value as in Figure B.1 with γ = 1. In practice we might also

compare predicted risk profiles for an individual across different values of γ, and in this

way, the frailty can be viewed as a way of characterizing individual-level variability in the

predicted risk profile. For example, Figure B.2 shows predicted risks across frailty values

for each sample subject at the fixed timepoint of 37 weeks of gestation. Note that now, the

x-axis does not represent time, but differing choices of frailty γ plugged into the above risk

profile formulae. Intuitively, we see that the predicted probabilities of experiencing some

combination of the outcomes by week 37 tend to be smaller for smaller frailty values, and
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larger for larger frailty values. Though individuals’ frailties are unobserved, these plots can

be used to communicate to patients the variability of possible outcome probability estimates

depending on unmeasured latent characteristics (Lee et al., 2020).

Alternatively, this prediction framework also enables risk profile estimates to be marginal-

ized over the frailty distribution by simply integrating over fγ(γ | σ), yielding the marginal

profile π(t | X) =
∫
π(t | X, γ)fγ(γ | σ)dγ. Corresponding marginal risk profile formulas

derived under a gamma frailty distribution are given here for reference:

π(1)(t | X) ={1 + eσ[H1(t2 | X1) +H2(t2 | X2)]}− exp(−σ)

π(2)(t | X) =

∫ t

0

h2(t2 | X2){1 + eσ[H1(t2 | X1) +H2(t2 | X2)]}− exp(−σ)−1dt2

π(3)(t | X) =

∫ t

0

h1(t1 | X1){1 + eσ[H1(t1 | X1) +H2(t1 | X2)]}− exp(−σ)−1dt1

−
∫ t

0

h1(t1 | X1){1 + eσ[H1(t1 | X1) +H2(t1 | X2) +H3(t | t1,X3)]}− exp(−σ)−1dt1

π(4)(t | X) =

∫ t

0

h1(t1 | X1){1 + eσ[H1(t1 | X1) +H2(t1 | X2) +H3(t | t1,X3)]}− exp(−σ)−1dt1

Because in this data application the estimated frailty variance was small, there is little

difference between the population-averaged risk profiles for the sample subject compared to

Figure B.1, so the plot is omitted.
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Figure B.2: Predicted risk at 37 weeks of gestation across values of frailty γ for four sample

individuals. AIC-selected Weibull model with SCAD and fusion penalty under Markov

specification.
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C Proof of Main Result

In this section, we present a proof of Theorem 1. This proof follows the strategy of Theorem

1 of Loh and Wainwright (2015), with several differences. In particular, the restricted strong

convexity (RSC) condition in Loh and Wainwright (2015) no longer applies in this setting,

because under certain baseline hazard specifications such as the Weibull, the resulting base-

line parameters φ have heavy-tailed deviations of the gradient and Hessian that decay at

a slower rate (see Lemmas E.2, E.3, and E.4). Therefore, we introduce and apply the al-

ternative RSC condition given in (C.2), which in Lemma E.5 is verified to hold with high

probability under the corresponding Assumptions listed in Section 4 of the main text.

Finally, we note that the same statistical rate can be immediately obtained for other

choices of penalty function pλ besides SCAD, as described by Loh and Wainwright (2015),

Section 2.2. In particular, the theorem supposition of 3/{4(ξ − 1)} < ρ for SCAD penalties

relates the level of penalty non-convexity to the Hessian eigenvalue lower bound, and can be

replaced by 3/{4ξ} < ρ for the MCP penalty of Zhang (2010), or omitted entirely for the

lasso penalty. The theorem can be correspondingly adjusted below.

Proof of Theorem 1. To begin, define the linear transformation of the regression parameters

β′ = ((β′1)T, (β′2)T, (β′3)T) = (βT

1, (β2−β1)T, (β3−β1)T). Similarly define ψ′ = ((β′)T,φT, σ)T.

Define the contrast matrix M such that ψ = Mψ′, and corresponding loss `′(ψ′) = `(Mψ′).

Under this transformation the penalized objective function Qλ given in (10) can be equiv-

alently represented by `′(ψ′) +
∑3

g=1

∑dg
j=1 pλ

(
|β′gj|

)
.

By the chain rule, ∇`′(ψ′) = MT∇`(ψ) and ∇2`′(ψ′) = MT∇2`(ψ)M. Define the jth

column of M as M·j and the induced matrix 1-norm as the maximum absolute column sum

‖M‖1 = maxj ‖M·j‖1. For this particular transformation, it can be shown that ‖M‖1 = 3.

Then repeated application of the triangle inequality and Hölder’s inequality illustrates that

the maximal values are equivalent up to a known constant:

‖∇`′(ψ′)‖∞ ≤ ‖M‖1‖∇`(ψ)‖∞ = 3‖∇`(ψ)‖∞,
‖∇2`′(ψ′)‖max ≤ ‖M‖2

1‖∇2`(ψ)‖max = 9‖∇2`(ψ)‖max.

As a result, it suffices to show the desired rate for the estimator

ψ̂ = arg min
‖ψ‖1≤R1

`(ψ) +
3∑
g=1

dg∑
j=1

pλ (|βgj|) . (C.1)

Defining ν = ψ̂ − ψ∗, then by Assumption 2 and the side constraint on (C.1), our

stationary point satisfies ‖ν‖2 ≤ ‖ν‖1 ≤ R. Then by Lemma E.5, under Assumptions 1, 3,

and 4, there exists a positive constant c establishing the following RSC condition with high

probability:

〈∇`(ψ∗ + ν)−∇`(ψ∗),ν〉 ≥ ρ‖ν‖2
2 − c

√
log(dn)

n
‖ν‖2

1. (C.2)
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Recall the defined penalty function Pλ(ψ) =
∑3

g=1

∑k
j=1 pλ (βgj). Setting pλ to be the

SCAD penalty function (6), then Pλ(ψ) + ‖ψ‖2
2/{2(ξ − 1)} is convex, so it follows that〈

∇Pλ(ψ̂),ψ∗ − ψ̂
〉
≤ Pλ(ψ

∗)− Pλ(ψ̂) +
1

2(ξ − 1)
‖ψ̂ −ψ∗‖2

2,

where ∇Pλ(ψ̂) is a subgradient of Pλ at ψ̂. Combining this with (C.2), and the first order

condition

〈∇`(ψ̂) +∇Pλ(ψ̂),ψ − ψ̂) ≥ 0 for all feasible ψ,

yields

ρ‖ν‖2
2 − c

√
log(dn)

n
‖ν‖2

1 ≤ − 〈∇`(ψ∗),ν〉+ Pλ(ψ
∗)− Pλ(ψ̂) +

1

2(ξ − 1)
‖ν‖2

2.

Rearranging and applying Hölder’s inequality gives{
ρ− 1

2(ξ − 1)

}
‖ν‖2

2 ≤ Pλ(ψ
∗)− Pλ(ψ̂) + ‖∇`(ψ∗)‖∞‖ν‖1 + c

√
log(dn)

n
‖ν‖2

1.

Under the constraint that ‖ν‖1 ≤ R, this results in{
ρ− 1

2(ξ − 1)

}
‖ν‖2

2 ≤ Pλ(ψ
∗)− Pλ(ψ̂)

+

(
‖∇`(ψ∗)‖∞ +Rc

√
log(dn)

n

)
‖ν‖1.

By Lemma E.3, ‖∇`(ψ∗)‖∞ = OP

(√
log(d)/n

)
. So for suitable choices of R and λ =

c′
√

log(dn)/n with c′ sufficiently large, then with high probability{
ρ− 1

2(ξ − 1)

}
‖ν‖2

2 ≤ Pλ(ψ
∗)− Pλ(ψ̂) +

λ

2
‖ν‖1. (C.3)

By the subadditive property of the SCAD penalty, Pλ(ν) ≤ Pλ(ψ
∗) + Pλ(ψ̂). Moreover,

Lemma 4 of Loh and Wainwright (2015) shows that for the SCAD penalty, λ|x| ≤ pλ(x) +

x2/{2(ξ − 1)} for any x ∈ R. Together, these results give that

λ

2
‖ν‖1 ≤

1

2
Pλ(ν) +

1

4(ξ − 1)
‖ν‖2

2 ≤
Pλ(ψ

∗)

2
+
Pλ(ψ̂)

2
+

1

4(ξ − 1)
‖ν‖2

2.

Combining with (C.3) and rearranging yields

0 ≤
{
ρ− 3

4(ξ − 1)

}
‖ν‖2

2 ≤
3

2
Pλ(ψ

∗)− 1

2
Pλ(ψ̂), (C.4)
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where the lower bound of 0 follows by assumption that ρ > 3/{4(ξ − 1)}. Assume without

loss of generality that the unpenalized k baseline parameters of φ and frailty log-variance

parameter σ are non-zero, so s ≥ (k + 1). Then define S to be the index set of the k + 1

unpenalized elements, plus the s− k − 1 largest elements of β. Then Lemma 5 of Loh and

Wainwright (2015) states that

3Pλ(ψ
∗)− Pλ(ψ̂) ≤ 3λ‖νS‖1 − λ‖νSc‖1.

Substituting this into (C.4) gives{
2ρ− 3

2(ξ − 1)

}
‖ν‖2

2 ≤ 3λ‖νS‖1 − λ‖νSc‖1 ≤ 3λ‖νS‖1 ≤ 3λ
√
s‖ν‖2,

which yields the final result

‖ν‖2 ≤
6λ
√
s

4ρ− 3(ξ − 1)−1
.

The statistical rate follows by the choice of λ = O
(√

log(dn)/n
)

.
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D Observed Data Likelihood Expressions for Gamma-

Frailty Illness-Death Model

In this section, we derive expressions for the observed data likelihood, gradient, and Hessian

functions for the gamma-frailty illness-death model. As in the main text, for brevity we

adopt a semi-Markov specification for h3 throughout, though only simple modifications are

required for corresponding formulae under the Markov specification.

We denote ith subject’s observed event times (y1i, y2i) and corresponding observed out-

come indicators (δ1i, δ2i). Next, denote the sum of cumulative cause-specific hazards as

Ai = H01(y1i)e
XT

1iβ1 +H02(y1i)e
XT

2iβ2 +H03(y2i − y1i)e
XT

3iβ3 .

Now, the negative log-likelihood loss can be succinctly written as

`(ψ) = − 1

n

n∑
i=1

{
δ1i log h1(y1i) + (1− δ1i)δ2i log h2(y1i) + δ1iδ2i log h3(y2i − y1i)

+ δ1iδ2i log(1 + eσ)− (e−σ + δ1i + δ2i) log(1 + eσAi)
}
.

For detailed casewise derivation of the observed data likelihood, see Appendix B of Lee et al.

(2015).

Finally, as in the main text we reduce repetition by defining unifying notation for the

observed outcomes:

ỹgi =

y1i, g ∈ {1, 2},
y2i − y1i, g = 3,

and δ̃gi =


δ1i, g = 1,

(1− δ1i)δ2i, g = 2,

δ1iδ2i, g = 3.

D.1 General Case

D.1.1 Gradient of Loss

Considering just the ith subject’s contribution, for g = 1, 2, 3 and j = 1, . . . , kg the gradient

expressions are

∂`i(ψ)

∂σ
=
δ1iδ2ie

σ

1 + eσ
+

log(1 + eσAi)

eσ
− 1 + eσ(δ1i + δ2i)

1 + eσAi
Ai, (D.1)

∂`i(ψ)

∂βT

g

=

{
δ̃gi −

1 + eσ(δ1i + δ2i)

1 + eσAi
H0g(ỹgi)e

XT
giβg

}
Xgi, (D.2)

∂`i(ψ)

∂φgj
= δ̃gi

{
∂

∂φgj
log h0g(ỹgi)

}
− {1 + eσ(δ1i + δ2i)}eXT

giβg

1 + eσAi

{
∂H0g(ỹgi)

∂φgj

}
. (D.3)

13



D.1.2 Hessian of Loss

Considering just the ith subject’s contribution, using general notation over g ∈ {1, 2, 3},
r ∈ {1, 2, 3}, j = 1, . . . , kg, and l = 1, . . . , kr, the Hessian is expressions are

∂2`i(ψ)

∂σ∂σ
=
Ai + eσAi(2Ai − δ1i − δ2i)

(1 + eσAi)2
− δ1iδ2ie

σ

(1 + eσ)2
− eσ log(1 + eσAi), (D.4)

∂2`i(ψ)

∂βg∂β
T

r

=
{1 + eσ(δ1i + δ2i)}eXT

giβg

1 + eσAi
H0g(ỹgi)

×

{
eσH0r(ỹri)e

XT
riβr

1 + eσAi
− I(g = r)

}
XriX

T

gi,

(D.5)

∂2`i(ψ)

∂σ∂βT

r

=
eσH0r(ỹri)e

XT
riβr

1 + eσAi

{
1 + eσ(δ1i + δ2i)

1 + eσAi
Ai − (δ1i + δ2i)

}
Xri, (D.6)

∂2`i(ψ)

∂σ∂φgj
=
eσeXT

giβg

1 + eσAi

{
∂H0g(ỹgi)

∂φgj

}{
1 + eσ(δ1i + δ2i)

1 + eσAi
Ai − (δ1i + δ2i)

}
, (D.7)

∂2`i(ψ)

∂φgj∂β
T

r

=
(1 + eσ(δ1i + δ2i))e

XT
giβg

1 + eσAi

{
∂H0g(ỹgi)

∂φgj

}
×

{
eσH0r(ỹri)e

XT
riβr

1 + eσAi
− I(g = r)

}
Xri,

(D.8)

∂2`i(ψ)

∂φgj∂φrl
=
{1 + eσ(δ1i + δ2i)}eXT

giβg

1 + eσAi

×

[
eσeXT

riβr

1 + eσAi

{
∂H0g(ỹgi)

∂φgj

∂H0r(ỹri)

∂φrl

}
−
{
∂2H0g(ỹgi)

∂φgj∂φrl

}]

+ δ̃gi

{
∂2

∂φgj∂φrl
log h0g(ỹgi)

}
.

(D.9)

D.2 Piecewise Constant Baseline Hazard

Recall that for the gth transition baseline hazard, the piecewise constant specification re-

quires a user-defined set of knots 0 = t
(1)
g < · · · < t

(kg)
g < t

(kg+1)
g = ∞ defining the intervals

over which the hazard is constant. Using general notation over g ∈ {1, 2, 3}, r ∈ {1, 2, 3},
j = 1, . . . , kg, and l = 1, . . . , kr, the cause-specific log-baseline hazard and its first two
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derivatives are

log h0g(t) =

kg∑
j=1

φgjI(t(j) ≤ t < t(j+1)),

∂

∂φgj
log h0g(t) = I(t(j) ≤ t < t(j+1)), (D.10)

∂2

∂φgj∂φrl
log h0g(t) = 0. (D.11)

For the gth transition, define Bgj(t) = (min(t, t
(j+1)
g )−t(j)g )I(t ≥ t

(j)
g ) to represent the amount

of time spent in the jth interval. Then the cumulative cause-specific hazard is

H0g(t) =

k1∑
j=1

eφgjBgj(t), (D.12)

∂

∂φgj
H0g(t) = eφgjBgj(t), (D.13)

∂2

∂φgj∂φrl
H0g(t) = eφgjBgj(t)I(g = r, j = l). (D.14)

D.3 Weibull Baseline Hazard

Using general notation over g ∈ {1, 2, 3}, r ∈ {1, 2, 3}, j = 1, . . . , kg, and l = 1, . . . , kr, the

cause-specific log-baseline hazard and its first two derivatives are

log h0g(t) = φg1 + φg2 + (eφg1 − 1) log t,

∂

∂φgj
log h0g(t) = 1 + (eφg1 log t)I(j = 1), (D.15)

∂2

∂φgj∂φrl
log h0g(t) = (eφg1 log t)I(g = r, j = l = 1). (D.16)

The cause-specific cumulative hazard and its first two derivatives are then

H0g(t) = eφg2texp(φg1), (D.17)

∂

∂φgj
H0g(t) = eφg2texp(φg1)(eφg1 log t)I(j=1), (D.18)

∂2

∂φgj∂φrl
H0g(t) = eφg2texp(φg1)(eφg1 log t){I(j=1)+I(l=1)}I(g = r)

+ {eφg2eφg1texp(φg1) log t}I(g = r, j = l = 1).

(D.19)
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E Technical Lemmas

This section presents supporting details underlying the theoretical results. To summarize,

• Under Assumption 1, Lemma E.1 verifies that the piecewise constant baseline hazard

specification satisfies Assumption 4.

• Under Assumption 1, Lemma E.2 verifies that the Weibull baseline hazard specification

satisfies Assumption 4.

• Under Assumption 1 and Assumption 4, Lemma E.3 confirms a probabilistic bound

on the largest gradient element.

• Under Assumption 1 and Assumption 4, Lemma E.4 confirms a probabilistic bound

on the largest deviation of a Hessian element from its mean.

• Under Assumption 3 and the above Hessian bound, a Restricted Strong Convexity

condition follows with high probability.

Lemma E.1. Under Assumption 1, the piecewise constant baseline hazard specification sat-

isfies Assumption 4.

Proof. Assumption 4a follows by inspection of the baseline cumulative hazard function

(D.12), and its derivatives (D.13), and (D.14), which are piecewise linear and therefore

bounded on a closed interval. Assumption 4c follows trivially, as any second derivatives

of the log baseline hazard function (D.11) are the zero function. Finally, note that any

first derivative of the log baseline hazard function (D.10) is just an indicator function, so

∆̃gi

{
∂ log h0g(Ỹgi)/∂φgj

}
is itself a Bernoulli random variable. Therefore, it must have finite

variance, and Assumption 4b is established.

Lemma E.2. Under Assumption 1, the Weibull baseline hazard specification satisfies As-

sumption 4.

Proof. We start with a proof of Assumption 4a. Note that {ψ : ‖ψ−ψ∗‖2 ≤ R} is a compact

subset of Rd+k+1, and [0, t] is a closed interval. Then because the baseline cumulative hazard

function (D.17) and its derivatives (D.18) and (D.19) are continuous in t and ψ, by the

Extreme Value Theorem the functions are bounded over the given space.

To prove Assumption 4b, note that for each so-called ‘scale’ parameter φg2, the corre-

sponding derivative of the log baseline hazard (D.15) is one, so

Var

{
∆̃gi

∂

∂φg2
log h0g(Ỹgi)

}
= Var

(
∆̃gi

)
,

which is finite, as ∆̃gi is a binary random variable.
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However, for each ‘shape’ parameter φg1, (D.15) is an unbounded function as t → 0.

Using the law of total variance, then

Var
(

∆̃gi log Ỹgi

)
=E∆̃gi

{
Var

(
∆̃gi log Ỹgi | ∆̃gi

)}
+ Var∆̃gi

{
E
(

∆̃gi log Ỹgi | ∆̃gi

)}
= Pr

(
∆̃gi = 1

)
Var

(
log Ỹgi | ∆̃gi = 1

)
+ Pr

(
∆̃gi = 1

)
Pr
(

∆̃gi = 0
)
E
(

log Ỹgi | ∆̃gi = 1
)2

.

Thus, to show Var
(

∆̃gi log Ỹgi

)
is finite it suffices to show finiteness of E

(
log Ỹgi | ∆̃gi = 1

)
and E

(
log2 Ỹgi | ∆̃gi = 1

)
.

Because the three transition submodels are analogous, without loss of generality we will

focus on showing finite variance in the case of g = 1. To start, assume no censoring, and no

covariates. Then the marginal distribution of Y1i depends on the correlation of T1i and T2i

induced by γi. Under the assumption that φ11 = φ21, Jiang and Haneuse (2015) show that

Pr(∆1i = 1) =

(
eφ12

eφ12 + eφ22

)
,

and derive the conditional distribution of Y1i as

fY1i<∞(y1i | ∆1i = 1) =

(
eφ12 + eφ22

eφ12

)
eφ12+φ11ye

φ11−1
1i

{1 + eσ(eφ12 + eφ22)ye
φ11

1i }e
−σ+1

=

(
eφ12 + eφ22

)
eφ11ye

φ11−1
1i

{1 + eσ(eφ12 + eφ22)ye
φ11

1i }e
−σ+1

.

By these formulas, it can be shown that

E (log Y1i | ∆1i = 1) =

∫ ∞
0

log(y1i)fY1i<∞(y1i | ∆1i = 1)dy1i <∞,

E
(
log2 Y1i | ∆1i = 1

)
=

∫ ∞
0

log2(y1i)fY1i<∞(y1i | ∆1i = 1)dy1i <∞,

and thus we conclude that Var(∆1i log Y1i) is finite. As long as the random censoring distri-

bution satisfies Var(logCi) <∞, our conclusion remains true if we incorporate censoring. It

also remains true in the presence of covariates, by adding XT
i1β1 and XT

i2β2 to φ12 and φ22

respectively. Finally, our conclusion holds if we allow the shape parameters to differ, though

the closed form expressions become more complicated.

The proof of Assumption 4c follows directly. When j = 1 and l = 1 the form of the

second derivative of the log baseline hazard (D.16) decomposes into wgrjl (ψ) = eφg1 and

zgrjl (t) = log t, so Var
{

∆̃giz
gr
jl

(
Ỹgi

)}
= Var

(
∆̃gi log Ỹgi

)
, which is finite by the previous

result. When either j 6= 1 or l 6= 1, (D.16) is the zero function and the condition follows

trivially.
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Lemma E.3. Under Assumption 1 and Assumption 4, then there exist positive constants

c1, c2 such that with probability 1− ε the gradient of the negative log-likelihood loss satisfies

‖∇`(ψ∗)‖∞ ≤

√
log{4(d+ 1)/ε}

2c1n
+

√
2kc2

nε
.

Proof. By Assumption 1, the elements of Xi are bounded on [−τX , τX ], and 0 < Y1i ≤
Y2i ≤ τY . Then by Assumption 4a, for fixed parameter ψ∗ the gradient functions (D.1)

and (D.2) corresponding to σ and β are bounded over this domain. Therefore, choose

positive constant c1 such that c1 ≥ max{‖∇β`i(ψ∗)‖∞, |∇σ`i(ψ
∗)|}, where ∇β`i(ψ∗) is the

ith subject’s contribution to the gradient component corresponding to β evaluated at ψ∗,

and ∇σ`i(ψ
∗) is analogously defined.

Now, using the property that random variables bounded by [−c1, c1] are sub-Gaussian

with variance proxy c2
1, we may apply Hoeffding’s inequality to each gradient component

and take a union bound over all (d+ 1) elements, yielding

Pr [max{‖∇β`(ψ∗)‖∞, |∇σ`(ψ
∗)|} > t] ≤ 2(d+ 1) exp

(
−nt

2

2c2
1

)
. (E.1)

However, because the gradient contributions from φ may instead be heavy tailed, we

introduce a moment inequality approach to bound these random variables. The form of each

such gradient element as given in (D.3) has two terms: the first term has finite variance by

Assumption 4b, while the second term is bounded by Assumption 1 and Assumption 4a.

Because bounded random variables have finite variance, then all elements of ∇φ(ψ∗) have

finite variance.

Choose positive constant c2 ≥ maxj{Var([∇φ`i(ψ∗)]j)} to be an upper bound on the

variance of the ith subject’s contributions to all gradient elements in φ evaluated at ψ∗.

Then using Chebyshev’s inequality, and taking a union bound over all k elements, yields

Pr(‖∇φ`(ψ∗)‖∞ > t) ≤ kc2

nt2
. (E.2)

Having addressed each major component of the gradient ∇`(ψ∗), then combining (E.1)

and (E.2) using a union bound, then the maximum over all of the gradient elements is

bounded by

Pr(‖∇`(ψ∗)‖∞ > t) ≤ Pr (max{‖∇β`(ψ∗)‖∞, |∇σ`(ψ
∗)|} > t) + Pr(‖∇φ`(ψ∗)‖∞ > t)

≤ 2(d+ 1) exp

(
−nt

2

2c2
1

)
+
kc2

nt2
.

Inverting this result, we have that with probability 1− ε,

‖∇`(ψ∗)‖∞ ≤

√
log(4(d+ 1)/ε)

2c1n
+

√
2kc2

nε
.
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Note that the first term implies a
√

log(d)/n rate, while the second implies a 1/
√
n rate,

yielding the desired overall result

‖∇`(ψ∗)‖∞ = OP

(√
log d

n

)
.

Lemma E.4. For any scalar u ∈ [0, 1] and any (d + k + 1)-vector ν satisfying ‖ν‖2 ≤ R,

consider the ith subject’s Hessian contribution evaluated at ψ∗ + uν. Define the matrix of

elementwise deviations from its expectation as

Gν(u) = ∇2`(ψ∗ + uν)− Σ(ψ∗ + uν).

Then for a grid of points um = m/n for m = 1, . . . , n, there exist positive constants

c3, c4, c5, c6 <∞ such that

Pr
(

max
1≤m≤n

‖Gν(um)‖max > t
)
≤ 2n[(d+ k + 1)2 − k2] exp

(
−nt

2

2c2
3

)
+ 2nk2 exp

(
−nt

2

2c2
4

)
+

4k2c2
5c6

nt2
.

Proof. This result is similar in spirit to Lemma E.3, in controlling the maximum deviation

of a collection of random variables from their means. However, now our approach needs to

also account for a grid of parameter values ψ∗ + umν, where um = m/n for m = 1, . . . , n.

Let ∇2
ββ`i(ψ) be the submatrix of the ith subject’s Hessian contribution corresponding

with the second derivatives of β evaluated at ψ. Denote

Gνββ(u) = ∇2
ββ`(ψ

∗ + uν)− E[∇2
ββ(ψ∗ + uν)],

and define all other submatrices similarly.

Step 1: Elements corresponding to partial derivatives of β and σ

By Assumption 1, the elements of Xi are bounded on [−τX , τX ], and 0 < Y1i ≤ Y2i ≤ τY .

Moreover, ψ∗ + uν lies in an `2-ball of radius R around ψ∗. Then by Assumption 4a, the

Hessian functions (D.4), (D.5), (D.6), (D.7), and (D.8) corresponding with partial derivatives

of σ and β are bounded over this domain. Choose positive upper bound c3 on these (d +

k + 1)2 − k2 elements, such that

c3 ≥ max
‖ψ−ψ∗‖2≤R

{
‖∇2

ββ`i(ψ)‖max, ‖∇2
βσ`i(ψ)‖max,

‖∇2
βφ`i(ψ)‖max, ‖∇2

φσ`i(ψ)‖max, |∇2
σσ`i(ψ)|

}
.

This means that each element is a random variable bounded by [−c3, c3], so is sub-Gaussian

with variance proxy c2
3. Then using Hoeffding’s inequality and taking a union bound over
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the Hessian components and over the n points of the um grid yields

Pr
(

max
1≤m≤n

{
‖Gνββ(um)‖max, ‖Gνβσ(um)‖max,

‖Gνβφ(um)‖max, ‖Gνφσ(um)‖max, |Gνσσ(um)|
}
> t
)

≤ 2n[(d+ k + 1)2 − k2] exp

(
−nt

2

2c2
3

)
.

(E.3)

Step 2: Elements corresponding to second derivatives of φ

Importantly, the remaining elements of the Hessian which correspond to the second

derivatives of baseline hazard parameters φ may be unbounded on this domain. However,

under Assumption 1, Assumption 4a, and Assumption 4c, then by (D.9) the random Hessian

element corresponding to the partial derivatives of φgj and φrl takes the form

∂2li(ψ)

∂φgj∂φrl
= Bgr

jl (ψ,Xi,Yi,∆i) + ∆̃gi

(
wgrjl (ψ)zgrjl (Ỹ )

)
, (E.4)

where each Bgr
jl is a function bounded on the domain ‖ψ − ψ∗‖2 ≤ R, 0 ≤ Y1i ≤ Y2i ≤ τY ,

∆i ∈ {0, 1}2, and ‖Xi‖∞ ≤ τX . So, the goal is to control each of term of (E.4), and then

combine the results.

Towards bounding the first term, choose positive constant c4 that upper bounds all Bgr
jl

over the inputs:

c4 ≥ max
g,r,j,l

 max
‖ψ−ψ∗‖2≤R

 max
0≤Y1i≤Y2i≤τY ,

∆i∈{0,1}2

(
max

‖Xi‖∞≤τX
Bgr
jl (ψ,Xi,Yi,∆i)

) .

Therefore, each Bgr
jl is sub-Gaussian with with variance proxy c2

4, so applying Hoeffding’s

inequality and a union bound over m = 1, . . . , n yields

Pr

(
max

1≤m≤n

1

n

n∑
i=1

∣∣Bgr
jl (ψ∗ + umν,Xi,Yi,∆i)− E[Bgr

jl (ψ∗ + umν,Xi,Yi,∆i)]
∣∣ > t

)
≤ 2n exp

(
−nt

2

2c2
4

)
.

(E.5)

To control the second term, note that each wgrjl is continuous, so by the Extreme Value

Theorem is bounded on ‖ψ −ψ∗‖2 ≤ R. Choose positive constant

c5 ≥ max
g,r,j,l

{
max

‖ψ−ψ∗‖2≤R
|wgrjl (ψ)|

}
.

Next, by Assumption 4c, each Var
(

∆̃giz
gr
jl (Ỹi)

)
is finite, so choose

c6 ≥ max
g,r,j,l

{
Var

(
∆̃giz

gr
jl (Ỹi)

)}
.
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Then by bounding |wgrjl (ψ
∗+umν)| over m = 1, . . . , n by c5, and using Chebyshev’s inequality

on ∆̃giz
gr
jl (Ỹi), we have

Pr

(
max

1≤m≤n

1

n

n∑
i=1

∣∣∣∆̃giw
gr
jl (ψ

∗ + umν)zgrjl (Ỹi)− E
[
∆̃giw

gr
jl (ψ

∗ + umν)zgrjl (Ỹi)
]∣∣∣ > t

)

≤ Pr

({
max

1≤m≤n
|wgrjl (ψ

∗ + umν)|
}

1

n

n∑
i=1

|∆̃giz
gr
jl (Ỹ )− E[∆̃giz

gr
jl (Ỹi)]| > t

)
≤ Pr

(
c5

n

n∑
i=1

|∆̃giz
gr
jl (Ỹi)− E[∆̃giz

gr
jl (Ỹi)]| > t

)
≤ c2

5c6

nt2
.

(E.6)

To bring these pieces together, we denote the Hessian component Gνφφ(um) such that

‖Gνφφ(um)‖max = max
g,r,j,l

1

n

n∑
i=1

{
|Bgr

jl (ψ∗ + umν,Xi,Yi,∆i)− E[Bgr
jl (ψ∗ + umν,Xi,Yi,∆i)]|

+
∣∣∣∆̃gi

(
wgrjl (ψ

∗ + umν)zgrjl (Ỹi)
)
− E

[
∆̃gi

(
wgrjl (ψ

∗ + umν)zgrjl (Ỹi)
)]∣∣∣ }.

Then combining (E.5) and (E.6), and taking a union bound over all k2 elements of this

Hessian submatrix yields

Pr

(
max

1≤m≤n
‖Gνφφ(um)‖max > t

)
≤ 2k2

[
4c2

5c6

nt2
+ 2n exp

(
−nt

2

2c2
4

)]
. (E.7)

Step 3: Combine result for overall bound on max1≤m≤n ‖Gν(um)‖max.

From the definition of Gν , we have that

‖Gν(um)‖max = max
{
‖Gνφφ(um)‖max, ‖Gνββ(um)‖max, ‖Gνβσ(um)‖max,

‖Gνβφ(um)‖max, ‖Gνφσ(um)‖max, |Gνσσ(um)|
}
.

So combining the results of (E.3) and (E.7) via a union bound yields the desired result.

Equivalently, we may invert the result such that with probability 1− ε,

max
1≤m≤n

‖Gν(um)‖max ≤
√

2c2
3 log(6n[(d+ k + 1)2 − k2]/ε)

n

+

√
2c2

4 log(6nk2/ε)

n
+

√
12k2c2

5c6

nε
.

Lemma E.5. Under Assumptions 1, 2 and 3, and a model satisfying Assumption 4, then

with probability 1− ε, for some positive constant c the following holds:

〈∇`(ψ∗ + ν)−∇`(ψ∗),ν〉 ≥ ρ‖ν‖2
2 − c

√
log(dn)

n
‖ν‖2

1 ∀‖ν‖2 ≤ R.
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Proof. Using the integral definition of the mean-value theorem generalized to vector-valued

functions, for some u ∈ [0, 1] we have

〈∇`(ψ∗ + ν)−∇`(ψ∗),ν〉 = νT

(∫ 1

0

∇2`(ψ∗ + uν)du

)
ν,

where the integral is understood to be elementwise. Recall the definition Σ(ψ) = E[∇2`(ψ)],

and decompose

νT

(∫ 1

0

∇2`(ψ∗ + uν)du

)
ν =νT

(∫ 1

0

Σ(ψ∗ + uν)du

)
ν

+ νT

(∫ 1

0

[
∇2`(ψ∗ + uν)− Σ(ψ∗ + uν)

]
du

)
ν.

(E.8)

To yield our final RSC condition, we bound each of these two righthand terms.

Step 1: Bound minimum eigenvalue of the population Hessian in a ball

Starting with the first term on the righthand side of (E.8), and recalling that λmin(·)
denotes the matrix minimum eigenvalue,

νT

(∫ 1

0

Σ(ψ∗ + uν)du

)
ν =

∫ 1

0

νTΣ(ψ∗ + uν)νdu (E.9)

≥
∫ 1

0

λmin (Σ(ψ∗ + uν)) ‖ν‖2
2du.

Now, under Assumption 3, the population Hessian matrix minimum eigenvalue is bounded

away from 0 by ρ over the ball ‖ν‖2 ≤ R. For any u ∈ [0, 1] then ψ∗ + uν will be within

that ball, yielding the bound

νT

(∫ 1

0

Σ(ψ∗ + uν)du

)
ν ≥

∫ 1

0

ρ‖ν‖2
2du = ρ‖ν‖2

2 > 0.

Step 2: Bound elementwise maximum deviation between sample and population Hessian

To simplify notation, define the matrix-valued deviation functionGν(u) = ∇2`(ψ∗+uν)−
Σ(ψ∗+uν) as in Lemma E.4. For an arbitrary matrix A, denote Ajl its (j, l)th element, and

‖A‖max = maxj,l |Ajl|. Then repeatedly using the triangle inequality and Hölder’s inequality

yields ∣∣∣∣νT

(∫ 1

0

Gν(u)du

)
ν

∣∣∣∣ ≤ ‖ν‖2
1

∫ 1

0

‖Gν(u)‖max du.

Our goal is then to find an upper bound for ‖G(u)‖max over u, as∫ 1

0

‖Gν(u)‖max du ≤ sup
u∈[0,1]

‖G(u)‖max .
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Lemma E.3 shows an approach to bounding the maximum of a collection of bounded random

variables, but now we must bound the maximum both over the elements and over the interval

u ∈ [0, 1]. For this we use an ε-net argument. Define a grid of points um = m/n for

m = 1, . . . , n, then for any u there exists m such that |u− um| ≤ 1
n
. Then

‖Gν(u)‖max ≤ sup
u∈[0,1]

max
j,l
|[Gν(u)]jl|

≤ max
1≤m≤n

max
j,l
|[Gν(um)]jl|+ sup

|u−um|≤1/n

max
j,l
|[Gν(u)]jl − [Gν(um)]jl|.

(E.10)

By Lemma E.4, the first term on the RHS of (E.10) is bounded with probability 1− ε by

max
1≤m≤n

‖Gν(um)‖max ≤
√

2c2
3 log(6n[(d+ k + 1)2 − k2]/ε)

n

+

√
2c2

4 log(6nk2/ε)

n
+

√
12k2c2

5c6

nε
.

(E.11)

To bound the final term of (E.10), each of the (j, l)th elements Gνjl(u) is continuous in u

over the closed interval [0, 1] and is therefore locally Lipschitz on the interval. Define c′ <∞
such that for all j, l, Gνjl is c′-Lipschitz smooth on the interval [0, 1]. Then

sup
|u−um|≤1/n

max
j,l
|Gνjl(u)−Gνjl(um)| ≤ sup

|u−um|≤1/n

c′|u− um| ≤
c′

n
.

Then putting this result and (E.11) into (E.10), we have that with probability 1− ε,

sup
u∈[0,1]

max
j,l
|Gνjl(u)| ≤

√
2c2

3 log(6n[(d+ k + 1)2 − k2]/ε)

n

+

√
2c2

4 log(6nk2/ε)

n
+

√
12k2c2

5c6

nε
+
c′

n
.

(E.12)

Step 3: Plug bounds into final expression

By plugging (E.9) and (E.12) into (E.8), we conclude that with probability 1 − ε there

exists some positive constant c such that

〈∇`(ψ∗ + ν)−∇`(ψ∗),ν〉 ≥ ρ‖ν‖2
2 − c

√
log(dn)

n
‖ν‖2

1 ∀‖ν‖2 ≤ R.
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F Additional Simulation Details

In this section, we present additional details on simulation settings, and simulation results.

We specifically point out that the non-zero elements of β∗ shown below are always within

the first 15 elements of X, so due to the AR(0.25) serial auto-correlation specification of the

covariates X, the correlation between covariates with non-zero effects ranges from 0.25 for

neighboring covariates to 0.25−14 between X1 and X15.

Table F.1: Summary of simulation settings run for each sample size n = 300, 500, 1000.

Simulation Settings

1 2 3 4 5 6 7 8

True Baseline Parameters

Moderate Non-Terminal Event Rateφ
∗
1

φ∗2
φ∗3

 =

(0.005, 0.015, 0.050, 0.0125)T

(0.010, 0.040, 0.075, 0.0500)T

(0.010, 0.040, 0.075, 0.0750)T

 X X X X

Low Non-Terminal Event Rateφ
∗
1

φ∗2
φ∗3

 =

(0.035, 0.025, 0.020, 0.025)T

(0.005, 0.010, 0.025, 0.018)T

(0.008, 0.015, 0.024, 0.024)T

 X X X X

True Regression Parameters

Shared Supportβ
∗
1

β∗2
β∗3

 =

(0.3,−0.4, 0.5, 0.2,−0.4, 0.3,−0.4, 0.5, 0.2,−0.4,0)T

(0.8,−1.0, 0.6, 0.3,−0.5, 0.8,−1.0, 0.6, 0.3,−0.5,0)T

(0.6,−0.7, 0.7, 0.4,−0.3, 0.6,−0.7, 0.7, 0.4,−0.3,0)T

 X X X X

Partially Shared Supportβ
∗
1

β∗2
β∗3

 =

 (0.3,−0.4, 0.5, 0.2,−0.4, 0.3,−0.4, 0.5, 0.2,−0.4,0)T

(05, 0.6,−0.7, 0.5, 0.2,−0.4, 0.3,−0.4, 0.5, 0.2,−0.4,0)T

(05, 0.6,−0.7, 0.7, 0.4,−0.3, 0.6,−0.7, 0.7, 0.4,−0.3,0)T

 X X X X

Dimensionality Regime

Low Dimension (dg = 25) X X X X

High Dimension (dg = 350) X X X X

F.1 Failures of MLE and Forward Selection Optimization

The MLE and forward selection comparator methods use the optim function built into R,

which flags failure to converge. In Table F.2 we summarize the proportion of MLE and

forward selection simulations that failed, by simulation setting. In all subsequent tables, we

report results from the subset of successful iterations.
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Table F.2: Optimization failure proportions for maximum likelihood and forward selection

comparator models, by specification and simulation setting. Maximum likelihood estimates

only available for low-dimensional setting.

n = 300 n = 500 n = 1000

Weibull MLE Forward MLE Forward MLE Forward

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.00 0.00 0.00 0.00 0.00 0.00

High-Dimension — 0.67 — 0.09 — 0.00

Partially Non-Overlapping Support

Low-Dimension 0.00 0.00 0.00 0.00 0.00 0.00

High-Dimension — 0.70 — 0.10 — 0.00

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.01 0.10 0.00 0.06 0.00 0.03

High-Dimension — 0.90 — 0.47 — 0.07

Partially Non-Overlapping Support

Low-Dimension 0.00 0.00 0.00 0.00 0.00 0.00

High-Dimension — 0.83 — 0.23 — 0.00

n = 300 n = 500 n = 1000

Piecewise Constant MLE Forward MLE Forward MLE Forward

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.00 0.00 0.00 0.00 0.00 0.00

High-Dimension — 0.02 — 0.00 — 0.00

Partially Non-Overlapping Support

Low-Dimension 0.00 0.00 0.00 0.00 0.00 0.00

High-Dimension — 0.01 — 0.00 — 0.00

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.01 0.09 0.00 0.06 0.00 0.03

High-Dimension — 0.55 — 0.24 — 0.06

Partially Non-Overlapping Support

Low-Dimension 0.00 0.01 0.00 0.00 0.00 0.00

High-Dimension — 0.26 — 0.02 — 0.00
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F.2 Estimation Error Results

F.2.1 Main Results (n = 500, 1000), Piecewise Constant Model

Table F.3: Mean `2 estimation error of β̂, piecewise constant baseline hazard specification.

Maximum likelihood estimates only available for low-dimensional setting.

n = 500 Oracle MLE Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.74 1.31 1.48 2.06 1.37 1.51 0.98

High-Dimension 0.74 — 2.83 2.76 2.22 2.22 1.22

Partially Non-Overlapping Support

Low-Dimension 0.71 1.27 1.32 1.89 1.25 1.61 1.16

High-Dimension 0.73 — 2.71 2.49 2.18 2.28 1.43

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.92 1.78 1.88 2.23 1.91 1.47 1.18

High-Dimension 0.89 — 3.87 2.56 2.21 2.34 1.30

Partially Non-Overlapping Support

Low-Dimension 0.83 1.55 1.54 2.04 1.49 1.71 1.25

High-Dimension 0.82 — 3.44 2.43 2.18 2.32 1.58

n = 1000 Oracle MLE Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.50 0.82 0.76 1.53 0.73 1.39 0.75

High-Dimension 0.49 — 1.22 2.41 1.48 1.83 0.80

Partially Non-Overlapping Support

Low-Dimension 0.48 0.80 0.71 1.27 0.71 1.35 0.83

High-Dimension 0.48 — 1.15 2.18 1.22 1.84 0.98

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.58 0.97 1.24 2.03 1.12 1.34 0.82

High-Dimension 0.59 — 1.85 2.39 2.09 1.78 0.89

Partially Non-Overlapping Support

Low-Dimension 0.55 0.92 0.85 1.48 0.85 1.42 0.94

High-Dimension 0.55 — 1.42 2.22 1.76 1.93 1.04
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F.2.2 Small Sample Result (n = 300), Weibull and Piecewise Constant Models

Table F.4: Mean `2 estimation error of β̂, Weibull and piecewise constant baseline hazard

specifications, sample size n = 300. Maximum likelihood estimates only available for low-

dimensional setting.

Weibull

n = 300 Oracle MLE Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 1.05 2.24 1.94 2.53 1.90 1.64 1.23

High-Dimension 1.05 — 6.02 2.96 22.04 2.88 22.04

Partially Non-Overlapping Support

Low-Dimension 1.02 2.12 1.86 2.37 1.79 2.02 1.47

High-Dimension 1.00 — 6.98 2.53 20.47 2.52 20.47

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 1.33 5.49 2.11 2.37 2.15 1.78 1.53

High-Dimension 1.33 — 5.67 2.75 20.90 2.71 20.87

Partially Non-Overlapping Support

Low-Dimension 1.15 3.18 1.99 2.28 2.04 2.04 1.56

High-Dimension 1.14 — 5.96 2.50 20.93 2.52 20.93

Piecewise Constant

n = 300 Oracle MLE Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 1.02 2.09 1.94 2.52 1.88 1.67 1.25

High-Dimension 1.02 — 6.72 2.97 25.92 2.86 24.97

Partially Non-Overlapping Support

Low-Dimension 0.99 2.01 1.84 2.37 1.75 2.03 1.47

High-Dimension 0.98 — 7.11 2.53 26.37 2.52 26.05

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 1.32 4.65 2.11 2.35 2.14 1.76 1.52

High-Dimension 1.31 — 7.42 2.77 21.46 2.71 19.28

Partially Non-Overlapping Support

Low-Dimension 1.16 2.88 2.00 2.28 2.01 2.04 1.54

High-Dimension 1.16 — 7.78 2.51 24.34 2.52 23.57
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F.3 Sign Inconsistency Results

F.3.1 Main Results (n = 500, 1000), Piecewise Constant Model

Table F.5: Mean count of sign-inconsistent β̂ estimates, piecewise constant baseline hazard

specification.

n = 500 Oracle Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.12 11.52 15.21 10.46 11.55 3.56

High-Dimension 0.13 35.43 26.20 30.09 21.51 20.79

Partially Non-Overlapping Support

Low-Dimension 0.13 10.70 15.47 10.10 15.21 8.19

High-Dimension 0.15 33.50 27.06 35.51 22.86 26.78

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.28 16.02 19.45 16.98 13.05 5.28

High-Dimension 0.26 40.10 26.66 25.24 23.64 14.43

Partially Non-Overlapping Support

Low-Dimension 0.23 12.42 17.34 12.17 16.76 9.27

High-Dimension 0.20 37.24 26.66 29.50 24.50 23.75

n = 1000 Oracle Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.01 4.05 13.58 3.96 8.33 1.66

High-Dimension 0.00 15.59 20.81 18.45 19.05 6.38

Partially Non-Overlapping Support

Low-Dimension 0.02 4.10 13.40 4.27 12.14 3.94

High-Dimension 0.03 15.24 19.87 16.66 21.40 8.24

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.05 8.81 16.64 8.54 8.76 1.65

High-Dimension 0.06 22.83 24.67 22.04 19.69 6.01

Partially Non-Overlapping Support

Low-Dimension 0.03 5.14 14.84 5.63 13.53 4.79

High-Dimension 0.02 17.00 22.64 22.43 22.94 8.49
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F.3.2 Small Sample Result (n = 300), Weibull and Piecewise Constant Models

Table F.6: Mean count of sign-inconsistent β̂ estimates, Weibull and piecewise constant

baseline hazard specifications, sample size n = 300.

Weibull

n = 300 Oracle Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.48 17.11 21.26 16.21 14.17 6.93

High-Dimension 0.48 50.56 28.73 209.17 26.88 209.17

Partially Non-Overlapping Support

Low-Dimension 0.50 16.96 23.95 15.80 19.35 12.75

High-Dimension 0.55 50.21 28.72 208.05 28.49 208.05

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.91 19.07 21.01 19.84 16.38 10.24

High-Dimension 0.93 44.83 27.66 217.74 26.89 217.48

Partially Non-Overlapping Support

Low-Dimension 0.66 18.31 22.05 17.72 19.45 13.61

High-Dimension 0.68 48.14 28.23 231.49 28.63 231.49

Piecewise Constant

n = 300 Oracle Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.47 17.12 21.15 16.06 13.84 7.14

High-Dimension 0.49 53.07 28.79 177.87 27.06 173.04

Partially Non-Overlapping Support

Low-Dimension 0.49 16.85 23.90 15.51 19.37 12.63

High-Dimension 0.54 53.45 28.65 184.61 28.72 183.47

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.88 19.05 21.14 19.63 16.75 10.27

High-Dimension 0.90 49.42 28.18 174.62 27.17 158.78

Partially Non-Overlapping Support

Low-Dimension 0.67 18.17 22.16 17.85 20.02 13.35

High-Dimension 0.67 52.44 28.60 191.24 28.74 186.23
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F.4 False Inclusion Results

F.4.1 Main Results (n = 500, 1000), Weibull and Piecewise Constant Models

Table F.7: Mean count of false inclusions, Weibull model specification.

n = 500 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.77 6.18 1.70 11.66 0.79

High-Dimension 23.68 3.52 18.93 18.23 16.13

Partially Non-Overlapping Support

Low-Dimension 0.82 5.97 1.97 12.24 1.53

High-Dimension 23.59 0.86 23.95 6.18 16.89

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.94 3.97 1.82 11.41 0.89

High-Dimension 23.15 5.51 4.28 11.97 10.61

Partially Non-Overlapping Support

Low-Dimension 0.82 4.13 1.99 11.06 1.67

High-Dimension 22.49 2.10 9.97 4.64 12.62

n = 1000 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.54 11.37 1.13 8.45 0.60

High-Dimension 11.79 7.32 10.41 19.43 6.47

Partially Non-Overlapping Support

Low-Dimension 0.56 12.39 1.05 11.99 0.82

High-Dimension 11.57 6.93 12.16 17.41 5.02

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.55 5.25 2.08 8.28 0.41

High-Dimension 13.06 6.48 3.67 18.06 5.57

Partially Non-Overlapping Support

Low-Dimension 0.43 10.79 1.67 11.83 1.06

High-Dimension 11.54 5.65 8.91 15.09 4.05
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Table F.8: Mean count of false inclusions, piecewise constant model specification.

n = 500 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.74 6.28 1.61 11.30 0.81

High-Dimension 23.12 3.60 13.24 17.62 18.15

Partially Non-Overlapping Support

Low-Dimension 0.86 5.87 1.81 12.48 1.45

High-Dimension 22.43 0.89 20.48 6.36 19.38

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.94 4.13 1.72 11.44 0.85

High-Dimension 23.96 6.06 4.68 11.73 9.92

Partially Non-Overlapping Support

Low-Dimension 0.84 4.46 2.12 11.48 1.59

High-Dimension 23.69 2.23 10.14 5.18 13.05

n = 1000 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 0.53 11.44 1.00 8.29 0.61

High-Dimension 11.54 7.21 9.27 18.70 5.53

Partially Non-Overlapping Support

Low-Dimension 0.56 11.90 0.94 11.56 0.84

High-Dimension 11.28 7.01 8.96 17.65 4.75

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 0.53 5.57 2.05 8.59 0.51

High-Dimension 13.18 6.78 3.67 18.73 4.64

Partially Non-Overlapping Support

Low-Dimension 0.47 11.38 1.55 12.21 0.93

High-Dimension 11.77 6.47 9.83 16.45 3.89
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F.4.2 Small Sample Result (n = 300), Weibull and Piecewise Constant Models

Table F.9: Mean count of false inclusions, Weibull and piecewise constant baseline hazard

specifications, sample size n = 300.

Weibull

n = 300 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 1.22 2.76 1.94 12.70 1.27

High-Dimension 32.84 1.14 194.58 2.67 194.58

Partially Non-Overlapping Support

Low-Dimension 1.08 1.20 2.29 6.69 1.75

High-Dimension 32.56 1.03 193.72 0.98 193.72

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 1.14 3.38 1.87 10.47 1.32

High-Dimension 25.76 4.15 200.79 5.56 200.57

Partially Non-Overlapping Support

Low-Dimension 1.18 2.08 2.34 6.15 2.14

High-Dimension 29.12 1.71 216.09 1.08 216.09

Piecewise Constant

n = 300 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 1.20 2.89 2.20 12.13 1.21

High-Dimension 35.64 1.09 162.64 3.42 158.58

Partially Non-Overlapping Support

Low-Dimension 1.12 1.31 2.08 6.81 1.73

High-Dimension 35.82 1.17 169.88 1.10 169.27

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 1.18 3.66 1.76 10.72 1.27

High-Dimension 30.79 4.17 156.88 5.90 142.89

Partially Non-Overlapping Support

Low-Dimension 1.22 2.05 2.45 6.42 2.17

High-Dimension 33.62 1.56 174.97 1.04 170.26

32



F.5 False Exclusion Results

F.5.1 Main Results (n = 500, 1000), Weibull and Piecewise Constant Models

Table F.10: Mean count of false exclusions, Weibull model specification.

n = 500 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 10.74 8.85 8.58 0.24 2.66

High-Dimension 12.12 22.87 16.29 3.66 2.76

Partially Non-Overlapping Support

Low-Dimension 9.90 9.40 8.21 2.80 6.37

High-Dimension 10.96 26.35 14.57 17.18 7.46

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 15.29 15.34 15.32 1.35 4.56

High-Dimension 16.33 20.57 20.65 11.43 3.81

Partially Non-Overlapping Support

Low-Dimension 11.88 12.97 10.43 5.24 7.80

High-Dimension 13.71 23.98 19.54 19.89 10.26

n = 1000 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 3.49 2.15 2.86 0.04 0.91

High-Dimension 4.04 13.60 9.51 0.39 0.74

Partially Non-Overlapping Support

Low-Dimension 3.56 1.42 3.22 0.59 3.18

High-Dimension 4.01 12.93 7.14 3.87 3.42

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 9.16 11.33 6.94 0.15 1.45

High-Dimension 10.67 17.81 18.49 1.02 1.37

Partially Non-Overlapping Support

Low-Dimension 4.86 3.75 4.08 1.43 3.91

High-Dimension 5.42 16.32 13.27 6.89 4.66
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Table F.11: Mean count of false exclusions, piecewise constant model specification.

n = 500 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 10.77 8.89 8.85 0.25 2.75

High-Dimension 12.30 22.60 16.85 3.89 2.64

Partially Non-Overlapping Support

Low-Dimension 9.84 9.59 8.29 2.72 6.74

High-Dimension 11.07 26.18 15.02 16.50 7.40

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 15.08 15.30 15.25 1.61 4.42

High-Dimension 16.11 20.60 20.56 11.91 4.52

Partially Non-Overlapping Support

Low-Dimension 11.57 12.87 10.05 5.24 7.69

High-Dimension 13.54 24.43 19.36 19.31 10.70

n = 1000 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 3.52 2.14 2.95 0.04 1.05

High-Dimension 4.05 13.60 9.18 0.36 0.85

Partially Non-Overlapping Support

Low-Dimension 3.54 1.50 3.33 0.57 3.10

High-Dimension 3.96 12.86 7.71 3.75 3.49

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 8.28 11.05 6.49 0.17 1.14

High-Dimension 9.65 17.90 18.37 0.96 1.36

Partially Non-Overlapping Support

Low-Dimension 4.67 3.45 4.08 1.32 3.86

High-Dimension 5.23 16.18 12.61 6.49 4.61
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F.5.2 Small Sample Result (n = 300), Weibull and Piecewise Constant Models

Table F.12: Mean count of false exclusions, Weibull and piecewise constant baseline hazard

specifications, sample size n = 300.

Weibull

n = 300 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 15.88 18.48 14.25 1.47 5.66

High-Dimension 17.69 27.59 14.30 24.21 14.30

Partially Non-Overlapping Support

Low-Dimension 15.87 22.75 13.50 12.65 11.00

High-Dimension 17.64 27.69 14.06 27.51 14.06

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 17.90 17.59 17.92 5.89 8.90

High-Dimension 19.00 23.51 16.59 21.32 16.55

Partially Non-Overlapping Support

Low-Dimension 17.12 19.96 15.34 13.28 11.46

High-Dimension 18.98 26.51 15.06 27.55 15.06

Piecewise Constant

n = 300 Forward Lasso SCAD Lasso + Fusion SCAD + Fusion

Moderate Non-Terminal Event Rate

Shared Support

Low-Dimension 15.91 18.23 13.83 1.71 5.92

High-Dimension 17.39 27.70 14.95 23.64 14.19

Partially Non-Overlapping Support

Low-Dimension 15.72 22.58 13.42 12.55 10.90

High-Dimension 17.59 27.49 14.48 27.61 13.95

Low Non-Terminal Event Rate

Shared Support

Low-Dimension 17.83 17.43 17.82 6.02 8.99

High-Dimension 18.56 24.00 17.45 21.27 15.64

Partially Non-Overlapping Support

Low-Dimension 16.94 20.11 15.38 13.57 11.18

High-Dimension 18.78 27.04 16.02 27.70 15.74
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G Additional Algorithmic Details

G.1 Tuning the Nesterov smoothing parameter µ

The Nesterov smoothing parameter µ defined in (8) is important for optimization under the

proposed structured fusion penalty. If µ is too large then the approximation may be too

loose to induce fusion, while if µ is too small the approximation will be insufficiently smooth,

and the optimization algorithm will exhibit poor performance.

In our proposed optimization algorithm, we therefore avoid pre-specifying a single µ

value, and instead adopt a simple algorithmic approach following Hahn et al. (2020) called

‘progressive smoothing’. For each fixed set of regularization parameters (λ1, λ2), we first

iterate proximal gradient descent to convergence with µ large (e.g., 10−2 in our applications),

and then decrease µ and further iterate to convergence, and so on until µ is sufficiently

small. (In our applications, we decrease µ over the sequence {10−2, 10−3, 10−4, 10−5, 10−6}
). This approach allows for tight approximations of the fusion penalty to be achieved, while

remaining computationally efficient because optimizing for each new µ typically requires only

a handful of proximal gradient descent iterations from the preceding µ. This progressive

smoothing procedure is fully implemented in our SemiCompRisksPen package.

H Spline-Based Baseline Hazard Specifications

In this section, we summarize several spline-based specifications for the baseline hazards in

the illness-death model, to which the proposed estimation framework can be readily extended.

H.1 Polynomial B-Spline on Log-Hazard Scale

One choice is to specify each log baseline hazard as a polynomial B-spline function of degree

bg. This approach specifies

log h0g(t) =

kg∑
j=1

φgjBgj(t)

where kg ≥ bg + 1 is the number of desired baseline parameters for the gth hazard, and

Bgj(·) is the jth B-spline basis function (de Boor, 2001). These basis functions are defined

according to the placement of kg + bg − 1 knots, such that linear combinations of these

basis functions can express a range of shapes constrained at those knots. Usually bg = 3

such that the resulting spline function must be continuously twice-differentiable. B-splines

are only well-defined over the interval spanned by the knots, so the boundary knots are

typically fixed at 0 and the maximum observed time in the gth hazard, with inner knots

typically placed at appropriate deciles. While extremely flexible, this specification requires
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numerical integration to compute the cumulative hazard, making it slower in practice than

other specifications.

Using general notation over g ∈ {1, 2, 3}, r ∈ {1, 2, 3}, j = 1, . . . , kg, and l = 1, . . . , kr,

the first two derivatives of the cause-specific log-baseline are

∂

∂φgj
log h0g(t) =Bgj(t)

∂2

∂φgj∂φrl
log h0g(t) =0

The cause-specific cumulative hazard and its first two derivatives do not have closed form,

but can be written as

H0g(t) =

∫ t

0

exp

(
kg∑
j=1

φgjBgj(s)

)
ds

∂

∂φgj
H0g(t) =

∫ t

0

Bgj(s) exp

(
kg∑
j′=1

φgj′Bgj′(s)

)
ds

∂2

∂φgj∂φrl
H0g(t) =

∫ t

0

Bgj(s)Bgl(s) exp

(
kg∑
j′=1

φgj′Bgj′(s)

)
I(g = r)ds

H.2 Restricted Cubic Spline on Log-Cumulative Hazard Scale

A final spline-based approach follows Royston and Parmar (2002) in specifying the log-

cumulative baseline hazard as a natural (or ‘restricted’) cubic spline function. Whereas B-

splines are only defined over range spanned by the chosen knots, natural cubic splines extend

linearly beyond the boundary knots. Set z = log(t), and to generate kg total parameters,

consider a set of kg knots 0 ≤ z
(1)
g < · · · < z

(kg)
g . Define vg1(z) = 1, vg2(z) = z, and for

j = 3, . . . , kg define natural cubic spline basis functions as

vgj(z) = (z − z(j)
g )3

+ − ζj(z − z(1)
g )3

+ − (1− ζj)(z − z(kg)
g )3

+,

where ζgj = (z
(kg)
g − z(j)

g )/(z
(kg)
g − z(1)

g ) and (z)+ = max(0, z). Then this model specifies the

baseline hazard as

logH0g(t) =

kg∑
j=1

φgjvgj(z).

By specifying the spline model of the log-cumulative hazard, evaluation does not require

numerical integration. However, while the log-cumulative hazard is constrained to be mono-

tonically increasing, there is no such constraint inherently on the natural cubic spline. While

in principle this might require putting formal constraints on φg during optimization, in prac-

tice standard unconstrained methods suffice as long as the starting point is feasible and there
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is a modest amount of data (Herndon and Harrell, 1990; Royston and Parmar, 2002). The

Weibull model is a special case of the Royston-Parmar model, fixing no internal knots (e.g.,

setting kg = 2).

The cumulative cause-specific hazard and its first two derivatives are

H0g(t) = exp

(
kg∑
j=1

φgjvgj(z)

)
∂

∂φgj
H0g(t) =vgj(z) exp

(
kg∑
j=1

φgjvgj(z)

)
∂2

∂φgj∂φrl
H0g(t) =vgj(z)vgl(z) exp

(
kg∑
j=1

φgjvgj(z)

)
I(g = r)

Now, define v′g1(z) = 0, and v′g2(z) = 1, and for j = 3, . . . , kg,

v′gj(z) = 3(z − z(j)
g )2

+ − 3ζj(z − z(1)
g )2

+ − 3(1− ζj)(z − z(kg)
g )2

+.

Using general notation over g ∈ {1, 2, 3}, r ∈ {1, 2, 3}, j = 1, . . . , kg, and l = 1, . . . , kr, the

cause-specific log-baseline hazard and its first two derivatives are

log h0g(t) = log

(
kg∑
j=1

φgjv
′
gj(z)

)
+

kg∑
j=1

φgjvgj(z)− log t

∂

∂φgj
log h0g(t) =

v′gj(z)∑kg
j′=1 φgj′v

′
gj′(z)

+ vgj(z)

∂2

∂φgj∂φrl
log h0g(t) =−

v′gj(z)v′gl(z)(∑kg
j′=1 φgj′v

′
gj′(z)

)2 I(g = r)
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