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Referees’ reports, first round of review 
 Reviewer 1 
-The work is very well presented and, to my knowledge, there is not other 
descriptive work of the kind for AD. The text does become too descriptive at 
times without a lot of emphasis on the biological meaning of the findings. The 
authors should consider capitalizing (i.e. further the understanding) on both main 
findings on their understanding of altered gene regulation in AD, namely, the 
identification of TFs were particularly involved in regulating AD-specific 
transcriptional programs and the identification of enhancer-like activity for 12 
candidate CREs linked to neurodegeneration-related genes. 
 
-The assay used for this work is also unique and this reviewer agrees that the 
profiling gene expression + chromatin accessibility simultaneously from the nuclei 
allows for greater confidence in the correlations linking potential cis-regulatory 
elements to target genes. 
 
-The main limitations have been discussed by the authors. 
 
Reviewer 2 
Anderson and collaborators present a single-nucleus multiomic analysis of cortical 
tissue in Alzheimer's disease (AD) aiming at identifying candidate cis-regulatory 
elements (CREs) involved in AD-associated transcriptional changes. The authors 
profiled snRNAseq + snATACseq simultaneously in individual nuclei isolated from 
cortical tissues of AD (n=7) and unaffected (n=8) donors. The authors report 
319,861 significant correlations between gene expression and cell-type specific 
accessible regions -- 40,831 unique to AD tissues. In vitro experimental validation 
supports some of the candidate regulators and regulatory links. Using correlation 
analyses of TFs, CREs, and links; the authors report ZEB1 and MAFB as candidate 
regulators playing important roles in AD-specific gene regulation in neurons and 
microglia. 
 
Developing a deeper understanding of potential genomic regulatory mechanisms 
underlying AD pathogenesis is an important and timely problem in the field of 
neurodegeneration. The data generated in this study is novel and of good quality, 
as supported by convincing cell type annotations consistent with previous single-
cell analyses of AD. However, I have conceptual and technical concerns regarding 



 

 

the soundness of the presented analyses, results, and conclusions. The results 
presented require additional statistical and biological support. As currently 
presented, the results do not seem to address the original motivation of 
identifying regulatory mechanisms responsible for the cell type specific molecular 
alterations observed in AD. More clarity and additional biological interpretation 
complementing data description would largely benefit the study. 
 
See specific comments below: 
 
Authors should provide a more comprehensive description of subject selection 
criteria. Were AD subjects defined solely based on the Braak stage? If so, what 
was the motivation of focusing on the Braak stage only? Do you have any 
information regarding amyloid (Abeta-plaque load) and/or dementia (cognitive 
decline) status of the AD subjects? This information is relevant to interpret the 
molecular changes, for example the potential role of APP dysregulation briefly 
discussed. 
 
Authors should expand on the biological interpretation of cell type-specific 
transcriptome changes identified. How do they fit with known AD molecular 
neuropathology? How do they differ? 
 
 
The authors identified 189,925 reproducible peaks across cell types (after some 
filtering) and performed feature linkage analysis using those peaks. The authors 
include some comparisons with existing data for peaks identified as being linked 
to genes. Additional analyses validating the biological relevance of the identified 
peaks and their cell type specificity, prior to analyzing peak-gene linkages, would 
further strengthen your data. Do existing epigenomic and transcriptomic data 
support the cell type specificity and physiological relevance of identified peaks? 
 
Because the statistical properties of single-nucleus data are very different from 
those of bulk data (even more so in snATAC-seq), assumptions of conventional 
correlation measures (e.g., Pearson or Spearman correlation) are violated and 
therefore do not work properly. Other than citing cellranger-arc (v2.0), the 
authors do not discuss any of these technical issues on the methods. Without this 
information it is difficult to evaluate the validity of the links and/or interpret the 
reported numbers. How exactly are correlations determined in the cellranger-arc 



 

 

(v2.0) analysis pipeline? How does it account for data sparseness? Does it account 
for cell to individual membership? Are positive correlations more likely to be 
detected than negative? Is the observation that "the majority (76.11%) of linked 
peaks were positively correlated with gene expression" really supporting an 
association between open chromatin and transcriptional activation or is it a 
byproduct of how correlations are computed using sparse data? 
 
Feature linkage analysis to identify peak-gene correlations was performed 
independently for AD and control cells. What is the rationale behind identifying 
AD-specific, control-specific, or common correlation-based peak-gene linkages? 
What would it mean for Alzheimer's disease pathogenesis and progression 
whether a putative cis-regulatory element (CRE) active in a given cell type 
correlates with a gene only in AD samples, only in control, or in both? Do you 
have any example of this "differential regulation" that can be understood on the 
basis of molecular neuropathological processes already known to be involved in 
AD? What is the logic of the underlying regulatory mechanisms being analyzed 
and how does it relate to analyses design? 
 
The authors discuss whether links are unique to one cell-type or shared across cell 
types. However, it is not clear from the description how cell type specificity is 
addressed. According to the authors, "cell type specificity of each link was 
determined by the cell type(s) in which the ATAC peak was identified". Were 
feature linkages calculated across all cells irrespective of cell type and then 
annotated by cell type based only where the ATAC peak was detected? Was cell 
type specific gene expression also considered? If the inference was performed 
across all cells, how can the authors be sure that correlations are not largely 
driven by expression and epigenomic differences across cell types? Please clarify. 
 
Related to the previous comment, the authors report a total of 319,905 links. Link 
estimations were performed independently in AD and control cells. This means 
that any correlation was estimated based on expression and accessibility patterns 
across either only 7 (AD) or 8 (control) subjects. Given such small sample sizes, 
such a large number of "significant" correlations is questionable. I understand 
that correlations might be computed across all cells, thus ending up with a large 
sample size of observations. However, the phenotype being analyzed and 
discussed corresponds to the diagnostic group of the actual individuals. Since the 
authors present the identification of peak-gene correlations independently in 



 

 

control and AD datasets as something unique and one of the main contributions 
of the study, more care should be taken in verifying the veracity of the inferences 
and their AD-specificity given such a small sample size. Are these correlations 
supported by the data when accounting for cell-individual membership using, for 
example, pseudo bulk or hierarchical mixture models? 
 
If correlations are computed across all AD cells, regardless of subject 
membership, are the resulting peak-gene correlations reproducible across AD 
subjects and not detectable across cells of individual control subjects? 
 
The study would also benefit from deeper analyses of the relationship between 
cell type specific peaks and cell type specific genes? Are genes preferentially 
expressed in a given cell type having links with peaks that are also preferentially 
active in the same cell type? Is it more likely to identify links for cell type specific 
genes than for more broadly expressed genes? 
 
Genes with more links (>40 or more linked peaks) were longer and more highly 
expressed than those with fewer links (Figure S3C), raising the possibility that 
whether a link is detected or not might be heavily influenced by technical aspects 
of how the correlations are being computed and the extent to which peak and 
gene activity can be captured and measured a single-nucleus resolution. Thus, the 
study would benefit from additional, integrative analyses using existing 
epigenomic and expression data from brain cells that support the physiological 
relevance of the identified links for the different cell types. Do links identified as 
cell type specific involve molecular processes of relevance for the physiology of 
the cell type in question? 
 
A motivation for this study is to "rigorously interrogate the regulatory 
mechanisms responsible for these alterations" (i.e., cell type-specific 
transcriptional differences). However, despite the attempt to provide an example 
with the gene KANSL1, it is not clear to me how DEGs relate to peak-gene links, 
and how the two analyses (cell type-specific transcriptome changes and peak-
gene correlations) fit together in the study. How do the links explain the 
differential expression? What are the regulatory mechanisms responsible for the 
observed alterations? 
 
Similar to the situation with peak-gene links, the authors discuss whether peak-



 

 

gene-TF trios are cell type specific or not. However, it is not completely clear how 
specificity is defined in this case. Is it by peak activity, gene activity, TF activity or a 
combination? Or is it by computing correlations across only cells of a given type? 
According to methods, correlations for these analyses were computed on average 
counts within metacells using Pearson's coefficient. Were cells averaged by 
individually defining pseudo bulk profiles per cell type? Why were these 
correlations computed in a different way than those used to define links? What 
approach is more reliable given the data and goal? 
 
Similar to the question above, what is the rationale behind peak-gene-TF trios and 
their relevance for disease? Do the authors have a conceptual model for how 
peak-gene-TF trios might affect disease? What could we learn based on this type 
of analysis about what might be happening in a specific AD subject? 
 
What does it mean that links were significantly enriched for heritability of AD? 
How were links annotated to perform (sLDSC) regression? Were both the peak 
and gene of the link used for genome annotation and therefore the union of all 
peaks and genes in a link set used as one single annotation across the genome? If 
so, what would be the difference with performing sLDSC only with cell type 
specific enhancers (CREs) or only with cell type specific genes as performed in 
previous studies? Does a link provide any additional information? 
What does AD-specific CREs mean? Similarly, please clarify how AD-specific links 
and their cell type specificity were defined for sLDSC regression analyses. 
 

Authors’ response to the first round of review 

We appreciate the reviewer’s thoughtful consideration of our manuscript (CELL-
GENOMICS-D-22-00197) and thank the editors for the opportunity to respond as 
the manuscript is greatly improved. We have revised our manuscript in 
accordance with reviewer recommendations and included two new figure panels 
and several additional analyses in addition to changes to the text. In improving 
clarity throughout the manuscript, we removed Figure S4B which showed a 
separate analysis of excitatory-specific trios and instead included them in the 
neuron-specific trio analysis in Figure 4F as the distinction was confusing and the 
results were similar. We also added a GO analysis of cell type-specific links as 
requested by the reviewer as Figure S3E. We performed a permutation analysis to 
address the validity of our AD- and control-specific links and included this as 
Figure S3D. The changes to the main text are indicated by track changes in the 



 

 

revised version of the manuscript and are described in detail below.  

Reviewer #1:  

-The work is very well presented and, to my knowledge, there is not other 
descriptive work of the kind for AD. The text does become too descriptive at 
times without a lot of emphasis on the biological meaning of the findings. The 
authors should consider capitalizing (i.e. further the understanding) on both main 
findings on their understanding of altered gene regulation in AD, namely, the 
identification of TFs were particularly involved in regulating AD-specific 
transcriptional programs and the identification of enhancer-like activity for 12 
candidate CREs linked to neurodegeneration-related genes.  

-The assay used for this work is also unique and this reviewer agrees that the 
profiling gene expression + chromatin accessibility simultaneously from the nuclei 
allows for greater confidence in the correlations linking potential cisregulatory 
elements to target genes.  

-The main limitations have been discussed by the authors.  

We thank Reviewer 1 for their positive comments and address their 
recommendation to elaborate on our findings both in response to Reviewer 2 
(included in the Results) and in the Discussion section. Specifically, we point out 
additional DEGs that indicate disrupted calcium homeostasis in AD which has 
been proposed as a potential disease mechanism. We also add more information 
on the AD-associated target genes for which we validated CREs.  

Lines 454-472: “We identified many DEGs associated with calcium homeostasis 
consistent with the calcium hypothesis of AD which postulates that a synergistic 

relationship between A accumulation and Ca2+ levels promotes 
neurodegeneration 74. In AD neurons, we found decreased expression of 
ryanodine receptor 3 (RYR3) and inositol 1,4,5-trisphosphate receptor type 2 
(ITPR2) that both release internal stores of Ca2+ from the endoplasmic reticulum 
75. We also measured decreased expression of the Ca2+ sensors calmodulin 
(CALM1, CALM2, CALM3) and VILIP-1 (VSNL1), the latter which is associated with 
neuropathologic lesions 49,76. In contrast, two genes encoding calcium channel 
subunits (CACNA1C and CACNA1B) were upregulated in AD neurons. In addition, 
astrocytes also demonstrated decreased expression of calneuron 1 (CALN1, a 
Ca2+ sensor similar to calmodulin), glutamate receptor 2 subunit (GRIA2, limits 
Ca2+ permeability of AMPA receptors), and glutamate receptor NMDA 2C 
(GRIN2C, a subunit of the NMDA receptors). Both AD neurons and astrocytes 
showed decreased expression of the glutamate transporter GLT-1 (SLC1A2). We 



 

 

identified AD-specific links for all these genes except GRIN2C. Altered expression 
of these calciumassociated proteins is likely to exhibit complex and cell type-
specific effects making the resulting network effect on excitability uncertain. 
However, one possibility is that this altered expression could lead to increased 
sensitivity of neurons to glutamate and thus neurotoxicity 75,77. Further study of 
the candidate regulatory elements we identified for these genes would improve 
our understanding of how these genes become dysregulated in AD and the 
emergent resulting effects.”  

Lines 445-452: ”Amyloid precursor protein (APP) is the precursor to the AD 
hallmark pathology Ab, and, while characteristic of lewy body diseases, a-
synuclein (SNCA) aggregates are highly prevalent in AD postmortem brains as well 
82 . PHF24 is a modulator of GABAB receptor activity 83 and was recently 
identified in a study of AD resilience genes 84. ADAMTS1 has been implicated in 
AD both biochemically 85 and genetically 6 . Our study lays the groundwork for 
additional functional validation in future studies to confirm these genes as targets 
of these CREs. Understanding how these genes are regulated and by which TFs 
could provide new therapeutic targets. In fact, a recent study 86 identified TFs 
contributing to disruption of gene regulatory networks in AD, demonstrated their 
ability to predict AD cognitive phenotypes, and used them to prioritize candidate 
drugs that could be repurposed for AD.“  

Reviewer #2:  

Anderson and collaborators present a single-nucleus multiomic analysis of cortical 
tissue in Alzheimer's disease (AD) aiming at identifying candidate cis-regulatory 
elements (CREs) involved in AD-associated transcriptional changes. The authors 
profiled snRNAseq + snATACseq simultaneously in individual nuclei isolated from 
cortical tissues of AD (n=7) and unaffected (n=8) donors. The authors report 
319,861 significant correlations between gene expression and cell-type specific 
accessible regions -- 40,831 unique to AD tissues. In vitro experimental validation 
supports some of the candidate regulators and regulatory links. Using correlation 
analyses of TFs, CREs, and links; Response to Reviewers the authors report ZEB1 
and MAFB as candidate regulators playing important roles in AD-specific gene 
regulation in neurons and microglia.  

Developing a deeper understanding of potential genomic regulatory mechanisms 
underlying AD pathogenesis is an important and timely problem in the field of 
neurodegeneration. The data generated in this study is novel and of good quality, 
as supported by convincing cell type annotations consistent with previous single-
cell analyses of AD. However, I have conceptual and technical concerns regarding 



 

 

the soundness of the presented analyses, results, and conclusions. The results 
presented require additional statistical and biological support. As currently 
presented, the results do not seem to address the original motivation of 
identifying regulatory mechanisms responsible for the cell type specific molecular 
alterations observed in AD. More clarity and additional biological interpretation 
complementing data description would largely benefit the study.  

See specific comments below:  

Authors should provide a more comprehensive description of subject selection 
criteria. Were AD subjects defined solely based on the Braak stage? If so, what 
was the motivation of focusing on the Braak stage only? Do you have any 
information regarding amyloid (Abeta-plaque load) and/or dementia (cognitive 
decline) status of the AD subjects? This information is relevant to interpret the 
molecular changes, for example the potential role of APP dysregulation briefly 
discussed.  

By focusing on later Braak stages (IV-VI), we sought to identify general regulatory 
changes associated with AD. Aside from Braak staging and CERAD criteria, we 
were not provided with quantitative information on plaque load, though we do 
note that we are confident in the neuropathological diagnosis given it is from a 
reliable source, the NIH Neurobiobank. We have included additional information 
about AD selection criteria in our Methods: Lines 648-651: “AD donors were 
neuropathologically diagnosed according to CERAD criteria and Braak staging. All 
AD donors had a clinical diagnosis of AD and evidence of both amyloid beta 
plaques and neurofibrillary tangles.”  

Authors should expand on the biological interpretation of cell type-specific 
transcriptome changes identified. How do they fit with known AD molecular 
neuropathology? How do they differ?  

We agree that this is a particularly important point as it is always critical to 
consider where studies exhibit replication. We have highlighted where our results 
agree with other single cell RNA-seq datasets including comparison to a recent 
meta-analysis. We have also provided additional information on the DEGs we 
provide as examples, including MDGA2 which is associated with Braak stage, 
CERAD score, and cognition (https://agora.adknowledgeportal.org). Further, we 
elaborate on many DEGs involved in calcium homeostasis and how dysregulation 
is associated with AD. See section “Cell type-specific transcriptome changes in 
Alzheimer’s DLPFC” Lines 110-128 Also, see Lines 454-472 included above in 
response to Reviewer 1.  



 

 

The authors identified 189,925 reproducible peaks across cell types (after some 
filtering) and performed feature linkage analysis using those peaks. The authors 
include some comparisons with existing data for peaks identified as being linked 
to genes. Additional analyses validating the biological relevance of the identified 
peaks and their cell type specificity, prior to analyzing peak-gene linkages, would 
further strengthen your data. Do existing epigenomic and transcriptomic data 
support the cell type specificity and physiological relevance of identified peaks?  

The overlap of all ATAC peaks with H3K27ac from corresponding cell types and 
ENCODE CREs was similar to that of the linked ATAC peaks. We have included 
these findings in the results. Lines 149-150: “Nearly half of all peaks overlapped 
H3K27ac (46%) from the corresponding cell type and 43% overlapped ENCODE 
distal enhancer-like sequences.”  

Because the statistical properties of single-nucleus data are very different from 
those of bulk data (even more so in snATAC-seq), assumptions of conventional 
correlation measures (e.g., Pearson or Spearman correlation) are violated and 
therefore do not work properly. Other than citing cellranger-arc (v2.0), the 
authors do not discuss any of these technical issues on the methods. Without this 
information it is difficult to evaluate the validity of the links and/or interpret the 
reported numbers. How exactly are correlations determined in the cellranger-arc 
(v2.0) analysis pipeline? How does it account for data sparseness? Does it account 
for cell to individual membership?  

The code for the cellranger-arc (v2.0) pipeline is publicly available from 10X 
Genomics and there is a publication describing the Hotspot algorithm in detail 
(DeTomaso 2021, PMID: 33951459). Information borrowing across similar cells 
allows for increased sensitivity to overcome sparsity in the data. These smoothed 
values are then used in the correlation calculations. We have included a more 
detailed description of the feature linkage calculation in the methods. Individual is 
not included for the feature linkage scoring. Lines 788-796: “For feature linkage 
calculation, ATAC and gene expression counts were normalized independently 
using depth-adaptive negative binomial normalization. To account for sparsity in 
the data, the normalized counts were smoothed by taking the weighted sum of 
the 30 closest neighbors from the KNN graph. The cell weights are determined by 
using a Gaussian kernel transformation of the euclidean distance. Feature linkage 
scores were calculated by taking the Pearson correlation between the smoothed 
counts, while the significance of the correlation was determined using the 
Hotspot algorithm.”  

Are positive correlations more likely to be detected than negative? Is the 



 

 

observation that "the majority (76.11%) of linked peaks were positively correlated 
with gene expression" really supporting an association between open chromatin 
and transcriptional activation or is it a byproduct of how correlations are 
computed using sparse data?  

The set of significant feature linkages includes links between a promoter and its 
gene as well as links to peaks within the gene body. The positive correlation 
between chromatin accessibility and gene expression in these regions is well 
supported in the literature (PMIDs: 30795793, 25503965, 28077088, 25103404, 
35614386), including from our own previous work (Rizzardi 2019, PMID: 
30643296) and added these references to the manuscript. Accessible peaks within 
the promoter and gene body of the linked-gene(s) account for 38% of the 
positively correlated links. We require that a gene have at least 200 UMIs across 
the entire dataset in order to be evaluated in this analysis such that many cell 
types will have little to no expression of many genes. Therefore, we have not 
biased our calculations in any way by requiring expression across all cell types or 
in a large percentage of cells. Lines 207-210: ”The majority (76.11%) of linked 
peaks were positively correlated with gene expression, as is expected given the 
association between open chromatin and transcriptional activation 37–41, though 
negative correlations may be indicative of repressor binding 37,40.”  

Feature linkage analysis to identify peak-gene correlations was performed 
independently for AD and control cells. What is the rationale behind identifying 
AD-specific, control-specific, or common correlation-based peak-gene linkages? 
What would it mean for Alzheimer's disease pathogenesis and progression 
whether a putative cisregulatory element (CRE) active in a given cell type 
correlates with a gene only in AD samples, only in control, or in both? Do you 
have any example of this "differential regulation" that can be understood on the 
basis of molecular neuropathological processes already known to be involved in 
AD?  

We hypothesized that gene regulatory programs would be disrupted in AD as 
gene expression changes have been readily detected in both bulk and single cell 
analyses. We performed our linkage analysis in each condition to identify which 
potential regulatory elements were uniquely utilized in AD and which TFs might 
be responsible for their activity. One important orthogonally validated example is 
the BIN1 enhancer identified in microglia from unaffected donor brain tissue in 
Nott et al 2019 in which deletion of this region reduced BIN1 expression. In 
primary mouse microglia, loss or reduction of BIN1 expression impaired 
inflammatory response to LPS (Sudwarts et al 2022, PMID: 35526014). We 



 

 

identified the same region as a controlspecific microglial link in our dataset and 
saw reduced BIN1 expression in AD microglia. Together these findings suggest 
that this regulatory region may no longer be utilized in AD microglia resulting in 
the decreased expression observed. Additionally, unique peak-gene associations 
gained or lost in AD could harbor genetic variants that contribute to disease risk 
such as rs733839 in the microglial BIN1 enhancer. Indeed in microglia, we did find 
enrichment of AD-associated SNPs in AD-specific links. These results provide 
several new avenues of inquiry into both specific loci and TFs (through our peak-
gene-TF trio analyses) that contribute to altered gene regulation contributing or 
responding to the AD disease state. Further investigations are needed to 
determine if any particular SNP drives the AD-specific associations. We have made 
this point and provided this additional example in the results section: Lines 153-
156: “Given the gene expression changes observed in AD, we hypothesized that 
there would be differential usage of CREs between AD and control samples that 
would be identified in this analysis as ADor control-specific links.” Lines 218-225: 
“For example, BIN1 expression is significantly reduced in AD microglia compared 
to controls and this reduced expression hampers proinflammatory microglial 
responses. We identified six control- specific links and no AD-specific links for 
BIN1 in microglia. One of these control-specific links was validated as a microglia-
specific BIN1 enhancer in Nott et al. and harbors an AD-associated SNP 
(rs733839). Together, these findings suggest that this CRE may no longer be 
utilized in AD microglia leading to lower BIN1 expression, though it remains 
possible that these observations could also result from less sensitive detection 
with lower expression.”  

What is the logic of the underlying regulatory mechanisms being analyzed and 
how does it relate to analyses design?  

The underlying logic for this project is to link non-coding, AD-associated variants 
to their target genes in the affected cell types. By doing so, we can better 
understand how these genetic variants promote disease onset and/or 
progression. Further, we identify new regulatory regions for known AD-associated 
genes that could be amenable to intervention through genome editing or 
manipulation of TFs that bind the region. For this reason, we identified disease- 
and control-specific links and the TFs most likely to bind these regions. The 
common linkages identify CREs that could be important for more general cell 
type-specific functions of interest for many aspects of neurobiology. While this 
study is focused on identifying CREs, there are several other non-coding 
regulatory mechanisms that could also be involved in regulating gene expression 



 

 

including miRNAs (PMID: 30123182), lncRNAs (PMID: 33353982), transposable 
elements (PMID:35228718), etc. that this study does not address and we now 
mention these in the text. Lines 520-522: “While this study is focused on 
identifying CREs, there are other non-coding regulatory mechanisms that could 
alter gene expression in AD including miRNAs 90, lncRNAs 92, transposable 
elements 94, etc. that are not assessed.”  

The authors discuss whether links are unique to one cell-type or shared across cell 
types. However, it is not clear from the description how cell type specificity is 
addressed. According to the authors, "cell type specificity of each link was 
determined by the cell type(s) in which the ATAC peak was identified". Were 
feature linkages calculated across all cells irrespective of cell type and then 
annotated by cell type based only where the ATAC peak was detected?  

We have added text throughout the manuscript to clarify that cell type specificity 
of links and trios are based on the cell type in which the associated ATAC peak 
was identified. By calculating feature linkages across all cell types, we increase the 
dynamic range of both expression and accessibility to better establish peak-gene 
correlations. We explicitly refer to linked-peaks when we discuss the region of 
accessibility in the context of links or trios. Lines 139-143:”...identify cell type- and 
disease-specific CREs and their target genes by correlating gene expression with 
chromatin accessibility across all nuclei in the dataset. …A feature linkage, or link, 
is defined as a significant correlation between accessibility of an ATAC peak and 
the expression of a gene.” Line 153: “We consider the linked-peaks to be 
candidate CREs.” Lines 265-266: “Cell type specificity was defined based on the 
cell type in which the linked-peak was identified.“  

Was cell type specific gene expression also considered?  

All genes with at least 200 UMIs in at least one cell type were considered in the 
linkage analysis. Lines 798-799: “Links with an absolute correlation score < 0.2 and 
linked to a gene with < 200 UMIs were removed.”  

If the inference was performed across all cells, how can the authors be sure that 
correlations are not largely driven by expression and epigenomic differences 
across cell types? Please clarify.  

The largest source of variance is indeed across cell types, as has been shown in 
multiple single cell studies. This analysis is designed to identify cis regulatory 
elements rather than explain a portion of the expression/accessibility variance by 
disease status. Therefore, correlations are largely driven by cell type as the 
variation in expression and accessibility across cell types provides the dynamic 



 

 

range needed to identify the correlations. The majority of our links are shared 
between AD and control and are likely important for cell type-specific regulation 
of many genes with cell type-specific functions. Many of these linked-peaks 
harbor GWAS SNPs associated with a variety of neurological diseases even though 
they aren’t found in diseasespecific links (Fig5A). We think these are important to 
identify. Performing our analyses in a single cell type greatly limits our power of 
detection. This is exemplified by a new analysis (only described in this response) 
in which we recall links within microglia using AD and control samples together. 
We identified only 73 links, 35 of which were also identified as microglial links in 
our original analysis. In addition, 94% of DEGs between AD and control within 
each cell type also have a link within the same cell type. For genes upregulated in 
AD, 72% of their positively-correlated links were AD-specific, while for 
downregulated genes 62% were control-specific. These results support the 
hypothesis that these linkedpeaks could contribute to the differential expression 
observed in AD and identification of these regions was a major goal of this study. 
This information has been added to text both in response to this comment and a 
comment below. Lines 211-216: “Nearly all (94%) the DEGs identified between AD 
and control nuclei had a linked peak in the same cell type where the gene was 
differentially expressed and 85% of these linked peaks overlapped H3K27ac in the 
same cell type. In addition, we observed that some CREs of differentially 
expressed genes were uniquely identified in either AD or control datasets. For 
genes upregulated in AD, 72% of their positively correlated links were AD-specific, 
while for downregulated genes 62% were control-specific. “  

Related to the previous comment, the authors report a total of 319,905 links. Link 
estimations were performed independently in AD and control cells. This means 
that any correlation was estimated based on expression and accessibility patterns 
across either only 7 (AD) or 8 (control) subjects. Given such small sample sizes, 
such a large number of "significant" correlations is questionable. I understand 
that correlations might be computed across all cells, thus ending up with a large 
sample size of observations. However, the phenotype being analyzed and 
discussed corresponds to the diagnostic group of the actual individuals. Since the 
authors present the identification of peakgene correlations independently in 
control and AD datasets as something unique and one of the main contributions 
of the study, more care should be taken in verifying the veracity of the inferences 
and their AD-specificity given such a small sample size. Are these correlations 
supported by the data when accounting for cell-individual membership using, for 
example, pseudo bulk or hierarchical mixture models? If correlations are 



 

 

computed across all AD cells, regardless of subject membership, are the resulting 
peak-gene correlations reproducible across AD subjects and not detectable across 
cells of individual control subjects?  

The reviewer raises an important point that we have addressed through 
permutation analyses. We performed 100 sample permutations calling links to 
evaluate the accuracy of AD and control specific links. We chose 100 as these 
permutation calculations are computationally intensive. For each permutation, 7 
or 8 individuals were randomly selected regardless of disease status and links 
were calculated with the same parameters as the true data. We overlapped 
permutation pairs to determine the proportion of links that were specific to either 
group of individuals. The average proportion of group-specific links for 
permutation pairs was 0.25. This represents the proportion of links that we 
expect to be specific to any 2 groups given our sample size. In the true data, AD 
and control-specific links made up 36% of the total links. This proportion was a 
significant outlier for group-specificity compared to the permutations (Z-test; p-
value = 0.027), suggesting that these links are partially driven by phenotype. We 
have included this distribution as a supplementary figure (Figure S3D) and added 
a line to the text describing this result We also evaluated the effect of cell-
individual membership by calling links on counts that were pseudobulked by 
individual and cell type. A total of 16,421 links were identified, of which 9,853 
(60%) were found in the original links. Additionally, of the pseudobulk links that 
overlap our original AD-specific links, 63% of them were also called as AD-specific 
in the pseudobulk analysis, showing that our approach has high concordance with 
methods that account for cell-individual membership. We find that a pseudobulk 
link analysis is not well suited for our study given its small sample size, and that 
permutation testing better addresses the question of a cell-individual 
membership so we did not include this analysis in the manuscript. Pseudobulking 
with a small sample size decreases the dynamic range and leads to decreased 
sensitivity and fewer links called. However, this approach could be more 
appropriate for studies with a larger sample size. Lines 190-192: “We performed 
permutation analyses and determined that this fraction of AD/control-specific 
links (0.36 of total links) was greater than expected by chance (Z-test, p-
value=0.027; Figure S3D” Methods section “Permutation Testing” Lines: 801-809  

The study would also benefit from deeper analyses of the relationship between 
cell type specific peaks and cell type specific genes? Are genes preferentially 
expressed in a given cell type having links with peaks that are also preferentially 
active in the same cell type?  



 

 

The majority of cell type specific genes are linked to cell type specific peaks. 
However, a third of the cell type specific genes are linked to peaks specific to a 
different cell type and these links are enriched for negative correlations, 
suggesting there may be active repression at these regions in other cell types.  

Is it more likely to identify links for cell type specific genes than for more broadly 
expressed genes?  

Cell type-specific genes do have a higher average number of links. This is expected 
as there is a larger dynamic range of expression over which correlations can be 
calculated. In addition, previous work has shown that housekeeping genes (with 
similar expression levels across cell types) are less dependent on enhancers to 
regulate their expression (Bergman 2022, PMID: 35594906); thus, having more 
links in cell type specific genes is consistent with this finding and expected.  

Genes with more links (>40 or more linked peaks) were longer and more highly 
expressed than those with fewer links (Figure S3C), raising the possibility that 
whether a link is detected or not might be heavily influenced by technical aspects 
of how the correlations are being computed and the extent to which peak and 
gene activity can be captured and measured a single-nucleus resolution.  

Longer genes most likely have more links because of the larger number of peaks 
called within the gene body. If we exclude links within a target gene’s own gene 
body, there is not a significant difference in the number of links for longer genes 
(t-test; p-value = 0.118). Across the entire dataset, 17.8% of linked peaks are 
present in the promoter or gene body of the target gene. We include these peaks 
in our analyses as enhancers are often located within the introns of their target 
genes. We have added this information to the text. Lines 177-183: “This finding is 
likely due to links being called for peaks within the gene body of longer genes as 
excluding these peaks abolishes the difference in number of links (t-test, p = 
0.12). Across the entire dataset, 17.8% of linked peaks are present in the 
promoter or gene body of the target gene. While positively correlated links in 
gene bodies may often be a merely consequence of target gene expression, we 
retained these peaks in our analyses as enhancers are often located within the 
introns of their target genes.”  

Thus, the study would benefit from additional, integrative analyses using existing 
epigenomic and expression data from brain cells that support the physiological 
relevance of the identified links for the different cell types. Do links identified as 
cell type specific involve molecular processes of relevance for the physiology of 
the cell type in question?  



 

 

We have integrated our data with previously published functional genomic 
datasets that include eQTLs, MPRAs, and HiC in brain tissues and/or cell types (Fig 
5B). We also intersect our data with H3K27ac data generated from neuronal and 
glial cell types isolated from human DLPFC (from Nott et al 2019 and Kozlenkov et 
al 2018) (Fig 3E). We have also performed a new GO analysis of the target genes 
of cell typespecific links identified in both AD and control samples and added 
these results as Figure S3E along with a brief description in the results. We find 
enrichment of myelination pathways in oligodendrocytes, oligodendrocyte 
differentiation in OPCs, neutrophil-associated processes in microglia, nervous 
system development in astrocytes, and synaptic and ion channel categories in 
neurons. Lines 194-195: “Target genes of cell type-specific links identified in both 
AD and control samples were enriched in expected pathways (Figure S3E).”  

A motivation for this study is to "rigorously interrogate the regulatory 
mechanisms responsible for these alterations" (i.e., cell type-specific 
transcriptional differences). However, despite the attempt to provide an example 
with the gene KANSL1, it is not clear to me how DEGs relate to peak-gene links, 
and how the two analyses (cell type-specific transcriptome changes and peak-
gene correlations) fit together in the study. How do the links explain the 
differential expression? What are the regulatory mechanisms responsible for the 
observed alterations?  

Thank you for pointing out this omission. We have included this additional 
information in the results section. We hypothesized that CREs most likely to 
contribute to altered gene expression in a particular cell type would be uniquely 
identified in that cell type within either AD or control datasets. Lines 213-250: 
“...Nearly all (94%) the DEGs identified between AD and control nuclei had a 
linked-peak in the same cell type where the gene was differentially expressed and 
85% of these linked-peaks overlapped H3K27ac in the same cell type. In addition, 
we observed that some links to differentially expressed genes were uniquely 
identified in either AD or control datasets. For genes upregulated in AD, 72% of 
their positively correlated links were AD-specific, while for downregulated genes 
62% were control-specific. ………These results support the hypothesis that these 
regions could contribute to the differential expression observed in AD.”  

Similar to the situation with peak-gene links, the authors discuss whether peak-
gene-TF trios are cell type specific or not. However, it is not completely clear how 
specificity is defined in this case. Is it by peak activity, gene activity, TF activity or a 
combination?  

We have made numerous edits throughout the manuscript to clarify how cell type 



 

 

specificity is defined for each of our analyses. This definition is based on the cell 
type that the linked-peak was initially identified in. Whether a link or trio is 
categorized as AD-specific, control-specific or common is based on which dataset 
the correlation was found to be significant in. We have clarified this in the results. 
Lines 261-266: “To identify trios, we performed these additional correlation 
analyses (linked-peak : TF expression and TF expression : target gene expression) 
separately using either AD or control data sets to enable identification of TFs 
whose activities may be associated with disease. AD- or control-specific trios were 
those uniquely identified in the AD or control dataset, respectively. Cell type 
specificity was defined based on the cell type in which the linked-peak was 
identified.”  

Or is it by computing correlations across only cells of a given type? According to 
methods, correlations for these analyses were computed on average counts 
within metacells using Pearson's coefficient. Were cells averaged by individually 
defining pseudo bulk profiles per cell type?  

The pseudobulk profiles were defined by WNN clusters to create metacells. 
Metacells were not restricted to a cell type and were determined solely on 
clustering. However, there weren't any metacells that contained cells from 
multiple cell types. Metacells were used to address the sparsity of the data as an 
alternative to smoothing and to decrease computation time given the large 
number of TF motifs to analyze. However, note that the peak-gene links were not 
recalculated.  

Why were these correlations computed in a different way than those used to 
define links? What approach is more reliable given the data and goal?  

Both analyses determined associations using a Pearson correlation. They differed 
primarily on how significance was assigned. The significance for links using the 
Hotspot algorithm is more stringent as genepeak links with a -log10(q-value) >= 5 
were classified as significant. The significance for TF associations is less stringent 
because TF inclusion in trios is first defined by motif presence in the linked-peak 
thus increasing the prior probability of correlation. TF expression had to be 
significantly and positively correlated with the linked-peak and significantly 
correlated with the linked-gene. Significant TF correlations with both the linked-
peak and linked-gene were defined as those with Pearson correlation -log10(p-
value) > 3. As trios assess a three-way regulatory relationship, we therefore 
accept a lower threshold for TF associations given that all 3 directions must be 
significant for a trio to be called and the likelihood of spurious correlations for all 
3 directions is small. This allows us to identify trios where TF expression may only 



 

 

be weakly correlated with linked-gene expression.  

Similar to the question above, what is the rationale behind peak-gene-TF trios and 
their relevance for disease? Do the authors have a conceptual model for how 
peak-gene-TF trios might affect disease? What could we learn based on this type 
of analysis about what might be happening in a specific AD subject?  

Many AD GWAS variants are located in noncoding regions and may disrupt or 
create TF binding motifs. Identification of trios allows us to link a CRE (that may 
harbor a GWAS SNP) with a target gene and TF that may regulate target gene 
expression. Should a SNP disrupt that TFs motif, we then have a testable 
hypothesis as to why that SNP is associated with disease risk. Further, a recent 
computational study (PMID:35849618) took a similar conceptual approach using 
publicly available snRNA-seq and chromatin data to identify gene regulatory 
networks rewired in AD and the TFs that contributed most to these changes in 
regulation. They went on to show the predictive value of the top TFs to predict AD 
cognitive phenotypes and to prioritize cell type candidate drugs that could be 
repurposed for AD. We now elaborate on this point in the text. Lines 493-498: 
“Our study lays the groundwork for additional functional validation in future 
studies to confirm these genes as targets of these CREs. Understanding how these 
genes are regulated and by which TFs could provide new therapeutic targets. In 
fact, a recent study identified TFs contributing to disruption of gene regulatory 
networks in AD, demonstrated their ability to predict AD cognitive phenotypes, 
and used them to prioritize candidate drugs that could be repurposed for AD.“  

What does it mean that links were significantly enriched for heritability of AD? 
How were links annotated to perform (sLDSC) regression? Were both the peak 
and gene of the link used for genome annotation and therefore the union of all 
peaks and genes in a link set used as one single annotation across the genome? If 
so, what would be the difference with performing sLDSC only with cell type 
specific enhancers (CREs) or only with cell type specific genes as performed in 
previous studies? Does a link provide any additional information? What does AD-
specific CREs mean? Similarly, please clarify how AD-specific links and their cell 
type specificity were defined for sLDSC regression analyses.  

We have clarified link annotations throughout the manuscript and now refer to 
linked-peaks rather than links in reference to this analysis. We also now define a 
candidate CRE early in the manuscript, but did replace “AD-specific CREs” with 
“AD-specific linked-peaks” in this section for clarity. We added a detailed 
description of the link categories in both the results and methods sections. We 
note that a peak can have multiple links that fall into multiple categories. 



 

 

Importantly, we point out that within each cell type, less than a third of the peaks 
with AD-specific links also have a control-specific link. This emphasizes the 
specificity of the enrichments we observe for GWAS traits. These results are 
similar to what has been reported for cell type-specific CREs, but we can further 
“partition” this signal into disease-associated CREs. Line 153: ”We consider the 
linked-peaks to be candidate CREs.” Lines 339-353: ”Link categories are defined as 
“AD” or “Control” if the links were only identified in the analysis of AD or control 
samples, respectively. “Common” links were identified in both analyses, and “All” 
is the union of all linked-peaks. While a peak with multiple links can be duplicated 
across categories, less than a third of peaks with AD-specific links also have a 
control-specific link emphasizing the specificity of these linked-peaks. Within each 
link category for each cell type, the union of linked-peaks was used for this 
analysis. Cell type was assigned based on the cell type(s) in which the linked-peak 
was identified.” Lines 838-843 (Methods): ”Each category (all, common, AD, 
control) corresponds to the analysis in which the peak-gene link was identified. 
Cell type is assigned based on the cell type(s) in which the linked-peak was 
identified. Peaks were resized to 1 kb and each set of unique peaks with these 
categories was tested individually along with the full baseline model (baseline-LD 
model v2.2.) that included 97 categories capturing a broad set of genomic 
annotations. Note that a peak can have multiple links that fall in different 
categories. ” 

 

Referees’ report, second round of review 

  

Reviewer 2: 
The authors have addressed all my concerns and improved the manuscript. 
 
Authors’ response to the second round of review 
n/a 


