Table 1. Regression coefficients for social cognition and drinking variables.

Predictors	Unstandardized coefficients		Standardized coefficients	t	p	Model
	В	SE	β			VD
						ERT
Maximum drinks	133	.058	269	-2.272	.026	Correct responses sadness
Maximum drinks	210	.065	370	-3.240	.002	Correct responses disgust AGN
Total drinks	.684	.172	.442	3.976	.001	Total latency for correct responses

Gender and psychopathology (STAI trait and BDI) were included as covariables

Table 3. Regression coefficients for short chain fatty acids and drinking variables.

Predictors	Unstandardized coefficients		Standardized coefficients	t	p	Model
	В	SE	β			VD
Coffee	4.037	1.574	.299	2.566	.013	Acetate
High fat dairy products	4.016	1.541	2.97	2.606	.011	Propionate
BMI	.909	.415	.250	2.191	.032	
Processed meats	.535	.218	.290	2.460	.017	Isobutyrate
Grains	4.843	.816	.407	3.789	.001	Butyrate
Maximum drinks	1.278	.247	.354	3.299	.002	-
Maximum drinks	031	.013	278	-2.349	.022	Isovalerate

PERMANOVA

s2(dist.clr ~ MaxDrinks_Tertiles, data = metadata, method = "euclidean", permutations = 1000)

Permutation test for adonis under reduced model

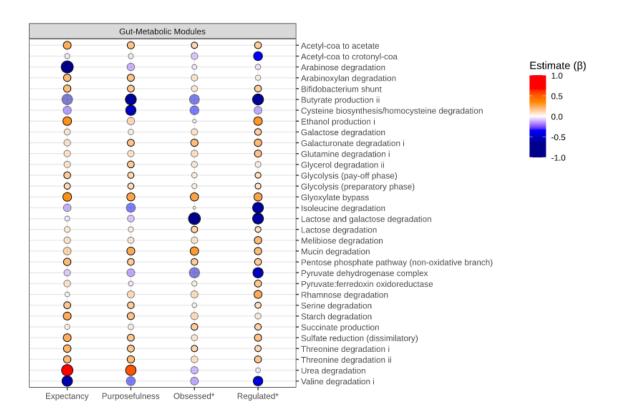
Terms added sequentially (first to last)

Permutation: free

Number of permutations: 1000

adonis2(formula = dist.clr ~ MaxDrinks_Tertiles, data = metadata, permutations = 1000, method = "euclidean")

Df SumOfSqs R2 F Pr(>F)


MaxDrinks_Tertiles 1 2897 0.02295 1.5969 0.006993 **

Residual 68 123353 0.97705

Total 69 126250 1.00000

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Figure 1. Gut metabolic modules and craving. A number of gut-metabolic modules showed associations with craving, such as reduced butyrate production, cysteine degradation, increased glycoxylate bypass, acetyl-coa to acetate, ethanol production. Craving dimensions at baseline that showed significant associations were expectancy and purposefulness, while obsessed and regulated were significant at follow-up.