## Supplementary Information

Block catiomers with flanking hydrolyzable tyrosinate groups enhance *in vivo* mRNA delivery *via*  $\pi$ - $\pi$  stacking-assisted micellar assembly

Wenqian Yang<sup>a,b#</sup>, Takuya Miyazaki<sup>c#</sup>, Yasuhiro Nakagawa<sup>d</sup>, Eger Boonstra<sup>a</sup>, Keita Masuda<sup>a</sup>, Yuki Nakashima<sup>a</sup>, Pengwen Chen<sup>a</sup>, Lucas Mixich<sup>a</sup>, Kevin Barthelmes<sup>c</sup>, Akira Matsumoto<sup>e</sup>, Peng Mi<sup>b</sup>, Satoshi Uchida<sup>f</sup>, Horacio Cabral<sup>a\*</sup>

<sup>a</sup>Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan, <sup>b</sup>Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China, <sup>c</sup>Kanagawa Institute of Industrial Science and Technology, Ebina, Kanagawa, Japan, <sup>d</sup>Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan, <sup>e</sup>Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan, <sup>f</sup>Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.

#These authors contributed equally to this work.

Corresponding author: Horacio Cabral E-mail address: <u>horacio@bmw.t.u-tokyo.ac.jp</u>

Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan



**Supplementary Figure 1.** <sup>1</sup>H-NMR of a) Homo-PBLA (polymer concentration: 10 mg/mL, solvent: DMSO, and temperature: 80 °C), b) Homo-PAsp (polymer concentration: 10 mg/mL, solvent: D<sub>2</sub>O, and temperature: 25 °C)



**Supplementary Figure 2.** <sup>1</sup>H-NMR of PEG-OH (polymer concentration: 10 mg/mL, solvent: Toluene-d8, and temperature: 80 °C).



**Supplementary Figure 3.** SEC curves of (a) PEG-OH, (b) PEG-PECH, and (c) PEG-PG (Polymer concentration: 1 mg/mL, solvent: DMF with 10 mM lithium chloride, temperature: 40 °C).

Supporting Table 1. Elementary analysis of PEG-PECH

| Polymer  | Cl (%) | C (%) | H (%) | O (%) |
|----------|--------|-------|-------|-------|
| PEG-PECH | 14.7   | 48.6  | 7.67  | 29.0  |



**Supplementary Figure 4.** <sup>1</sup>H-NMR of a) PEG-PGGly, b) PEG-PGLeu and c) PEG-PGTyr (polymer concentration: 10 mg/mL, solvent: D<sub>2</sub>O, and temperature: 25 °C).



**Supplementary Figure 5**. Electrophoretic analysis of the PEG-PGGly/m (a), PEG-PGLeu/m (b) and PEG-PGTyr/m (c) at N/P ratios ranging from 1 to 5 on 1% agarose gel (15  $\mu$ L sample solution containing 500 ng of mRNA were applied to each well and mRNA was visualized using Midori Green Direct dye).



**Supplementary Figure 6**. DLS characterization of micelles from PEG-PGGly, PEG-PGleu and PEG-PGTyr. (a) Z-average diameter, (b) polydispersity index (PDI), and (c) normalized derived count rate (normalization with derived count rate of N/P = 1) of micelles in 10 mM HEPES buffer.