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Cross-reactive CD4" T cells enhance SARS-CoV-2 immune
responses upon infection and vaccination
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The functional relevance of pre-existing cross-immunity to SARS-CoV-2 is a subject of intense debate.
Here, we show that human endemic coronavirus (HCoV)-reactive and SARS-CoV-2-cross-reactive CD4* T
cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific
spike peptide (S816-830) and demonstrate that pre-existing spike- and S816-830-reactive T cells were
recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti-SARS-
CoV-2-S1-IgG antibodies. Spike-cross-reactive T cells were also activated after primary BNT162b2 COVID-
19 mRNA vaccination displaying kinetics similar to secondary immune responses. Our results highlight the
functional contribution of pre-existing spike-cross-reactive T cells in SARS-CoV-2 infection and
vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity
following primary SARS-CoV-2 immunization and the high rate of asymptomatic/mild COVID-19 disease

courses.

The majority of individuals infected with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) experience
an asymptomatic or mild course of coronavirus disease 2019
(COVID-19). However, severe or fatal disease occurs in about
5% of those infected and is primarily associated with
advanced age and comorbidities such as diabetes, chronic
cardiovascular, pulmonary, and kidney diseases (I). Given
that SARS-CoV-2 is a newly emerged human pathogen, it was
assumed that SARS-CoV-2 encounters an immunologically
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naive population. However, @ SARS-CoV-2  displays
considerable homologies with endemic, human common cold
coronaviruses (collectively referred to as “HCoV”) (2, 3).
There is now strong evidence for cellular and humoral cross-
reactivity to SARS-CoV-2 (3-14), although the role of cross-
reactive immunity in SARS-CoV-2 infection is unclear (2, 8,
15, 16). Recent HCoV infection is associated with less severe
COVID-19, suggesting a protective role (I7). A Dbetter
understanding of the extent and impact of cross-immunity in
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SARS-CoV-2 infection and vaccination is needed, as cognate
cross-immunity may influence the efficacy of vaccination
regimens.

Here we investigated the functional role of pre-existing
SARS-CoV-2- and HCoV-reactive CD4" T cells. The SARS-CoV-
2 spike glycoprotein (spike) was the dominant target of broad
T cell cross-reactivity in unexposed individuals, which
decreased with age. We identified an immunodominant
coronavirus peptide located within the fusion peptide
domain of spike (S816-830) recognized by CD4* T cells in 20%
of unexposed individuals, 50 to 60% of SARS-CoV-2
convalescents, and 97% of BNT162b2-vaccinated individuals.
S816-830- and spike-cross-reactive T cells were recruited into
primary SARS-CoV-2 immune responses and also into
BNT162b2 COVID-19 mRNA vaccination responses. Finally,
upon primary vaccination, cross-reactive immunity exhibited
kinetics akin to secondary immune responses. Already at an
early stage of the immune response, the frequencies of pre-
existing cross-reactive T cells correlated positively with
functional avidity as well as with the induction and
stabilization of anti-S1-IgG antibodies. Thus, cross-reactive
CD4" T cells accelerate the immune response in SARS-CoV-2
infection and vaccination. These findings add to the
discussion surrounding single-dose vaccination of healthy
adults and multiple-dose vaccination of the elderly.

Frequent and broad SARS-CoV-2-cross-reactivity in
unexposed healthy donors

To determine the extent of cellular cross-reactivity to SARS-
CoV-2 antigens, we stimulated CD4* T cells of 60 unexposed
healthy donors and 59 COVID-19 convalescents as controls
(table S1) with peptide pools covering all open reading frames
(ORFs) of SARS-CoV-2, referred to here as the “SARS-CoV-2
orfeome” (Fig. 1A). The SARS-CoV-2 orfeome consists of 11
ORFs, five of which (N, spike, E, M, and ORFla/b (encoding
for the non-structural proteins (NSPs) 1-16)) are also found in
HCoVs 229E, OC43, NL63, and HKU1l. Amino acid (aa)
sequence alignment revealed discrete areas of high homology
in almost all SARS-CoV-2 proteins to the corresponding
proteins in HCoVs. Parts of the ORFla/b including NSPS,
NSP10, and NSP12-16 displayed the highest degree of
homology and thus potential cross-reactive epitopes to all
HCoVs (fig. S1A). Nevertheless, COVID-19 convalescents did
not show significantly increased CD4"* T cell reactivity against
the NSPs compared to unexposed individuals (Fig. 1A and fig.
S1B). Reactivity against the combination of spike N-terminal
S-I (aa residues 1-64.3), C-terminal S-II (aa residues 633-1273),
N, and M peptide pools clearly distinguished COVID-19
convalescents from unexposed individuals irrespective of the
disease course (Fig. 1, A to C). In unexposed individuals, we
detected variable but low CD4" T cell reactivity to virtually all
SARS-CoV-2 antigens, including those exclusive to SARS-
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CoV-2 (not shared with HCoVs). However, the degree of aa
sequence homology between HCoVs and SARS-CoV-2
proteins did not correlate with cross-reactivity (fig. S1C).
Thus, apart from cognate cross-reactivity (resulting, for
example, from previous exposure to similar proteins found in
HCoVs), we also identified non-cognate cross-reactivity (i.e.,
cross-reactivity that cannot be explained by the previous
exposure to similar proteins in HCoVs). Of all 30 orfeome
peptide pools, the spike S-I/-II pools alone elicited T cell
reactivity in all COVID-19 convalescents as well as in a subset
of unexposed individuals. Since antibodies to spike induced
by SARS-CoV-2 infection can neutralize the virus (I18), and
most of the recently approved SARS-CoV-2 vaccines are
highly effective and include spike as the main vaccine
antigen, we examined cellular immunity to spike more
closely.

SARS-CoV-2 spike S-II-cross-reactive T cells decrease
with age

A striking feature of SARS-CoV-2 infection is the strong
correlation of higher age with disease severity.
Immunosenescence is associated with a lack of newly
generated T cells and, instead, the expansion of a small
number of clones resulting from persistent infections, which
limits the breadth and quality of T cell responsiveness (19,
20). To assess the impact of age on SARS-CoV-2-(cross)-
reactive T cell immunity, we examined SARS-CoV-2 spike-
specific CD4* T cell responses in 568 unexposed individuals
and 174 COVID-19 convalescents (Fig. 2A and table S1). T cells
reacting to a peptide pool representing a mixture of selected
T cell epitopes from common pathogens (CEFX pool)
remained relatively stable with age in both cohorts (Fig. 2A).
COVID-19 convalescents displayed a significant age-
associated increase in spike S-I-reactive T cells that
correlated with higher disease severity in the elderly (table
S1). However, in line with our previous findings (3) in unexposed
individuals, T cell cross-reactivity to S-I was rare, close to the
limit of detection, and remained stable albeit at low levels with
increasing age. By contrast, reactivity to S-II was more frequent
and generally higher in wunexposed individuals which
significantly decreased with increasing age (Fig. 2A). When total
CD4* T cells were analyzed for activation-induced IFN-y or TNF-
o expression, we did not detect any age-related changes (fig.
S2A). However, among bona fide TCR-activated antigen-specific
CD40L*4-1BB* CD4* T cells, IFN-y*TNF-o* cells decreased with
age (fig. S2B). In contrast to CD40L*4-1BB* CD4* T cells, total
CD40OL* CD4* T cells, which can also be induced in partin a TCR-
independent manner (21), did not decrease with age, consistent
with the large compartment of memory T cells in older
individuals (fig. S2C). Thus, elderly individuals exhibit decreased
cognate cross-reactive immunity to the SARS-CoV-2 spike S-II
portion, which exhibits higher homology to HCoV than the S-
I portion.
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Low CD3 surface expression identifies SARS-CoV-2-
reactive T cells with high functional avidity ex vivo

To assess the quality of the spike-(cross-)reactive T cell response
in terms of functional T cell avidity, we examined the level of
CD3 surface expression in CD40L*4-1BB* CD4" T cells following
short-term in vitro stimulation (Fig. 2B). Strong TCR activation,
characteristic of T cells with high TCR avidity, blocks recycling
of the TCR-CD3 complex and can be detected by reduced CD3
surface expression (22), a phenomenon known as high
functional avidity. Thus, cognate cross-reactivity with higher
probability of high functional avidity is distinguishable from
non-cognate cross-reactivity with higher probability of low
functional avidity by analyzing the frequency of CD3" T cells
among TCR activated CD4* T cells (fig. S3, A and B). After
stimulation with spike S-I/S-II peptide pools, COVID-19
convalescents showed high frequencies of S-I- and S-II-activated
CD4" T cells that largely lacked CD3 expression characteristic of
cognate T cell activation (Fig. 2B). In unexposed individuals,
however, the frequency of CD3“ cells among S-I- and S-II-
activated CD4* T cells was markedly lower. Nevertheless,
especially in the younger, S-II stimulation induced higher
frequencies of CD3" cells than S-I stimulation indicating that
spike S-II (cross)-reactive CD4* T cells have high functional
avidity (Fig. 2B). This is consistent with the high degree of
homology between the C-terminal S-II portions of SARS-CoV-2
spike and HCoV spike proteins.

HCoV spike-reactive high functional avidity CD4* T
cells decreases with age

We hypothesized that previous HCoV exposures induce cognate
cross-reactive CD4* T cells. Therefore, we next characterized
CD4* T cell immunity to HCoV spike in unexposed individuals
and COVID-19 convalescents. HCoV-S-I- and -S-II-reactive CD4*
T cells were more readily detectable than SARS-CoV-2 spike-
specific T cells and found in 80% (S-I) and 98% (S-II) of SARS-
CoV-2 unexposed individuals, respectively (Fig. 3A).
Importantly, their frequency decreased with age and SARS-CoV-
2 infection did not result in an increase in HCoV-S-I- or -S-1I-
reactive T cells. We also examined the functional avidities of
HCoV-reactive CD4* T cells (Fig. 3B). High frequencies of CD3"
T cells were found among both HCoV S-I- and -S-II-reactive CD4*
T cells, although they significantly decreased with advancing
age. Thus, a high degree of HCoV exposure in the population
appears to lead to widespread cross-reactivity to SARS-CoV-2
spike. HCoV-reactive CD4" T cells frequently comprise cells with
high functional avidity but significantly decrease with age.

The immunodominant peptide S816-830 is recognized
by SARS-CoV-2 spike glycoprotein S-II-cross-reactive
CD4 T cells

All SARS-CoV-2-cross-reactive unexposed donors showed a
response against at least two (S-I) or three (S-II) HCoVs,
suggesting that repeated infection with different HCoVs
establishes a detectable prominent SARS-CoV-2 cross-
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reactive T cell pool already early in life and/or that specific T
cells are directed against highly homologous sequences
shared across multiple HCoVs and SARS-CoV-2 (Fig. 4A). We
next examined whether HCoV spike glycoprotein-specific T
cells directly cross-react to SARS-CoV-2 spike glycoprotein.
Therefore, short-term CD40L*4-1BB* OC43 S-I or S-II-reactive
CD4* T cell lines were restimulated with OC43- or SARS-CoV-
2 spike pool S-I and S-II, respectively. Six out of 18 OC43 S-II-
specific T cell lines displayed cross-reactivity against SARS-
CoV-2 S-11, whereas OC43 S-I-specific T cell lines lacked cross-
reactivity against SARS-CoV-2 S-I (Fig. 4B). We further
identified and validated two overlapping T cell-stimulating
peptides (peptides 204 (SKRSFIEDLLFNKVT, aa 813-827)
and 205 (FIEDLLFNKVTLADA, aa 817-831)) derived from the
S-II portion, in all five donors analyzed (fig. S4, A to D). Only
one donor responded to other identified peptides (peptides
188, 189, and 251) (fig. S4B). Sequence alignment revealed
that S-II peptides 204 and 205 together covered the fusion
peptide domain of spike, which is characterized by strong
homology with HCoV (fig. S4C). By analyzing additional 15-
aa peptides along the sequence covered by the peptides 204
and 205, we identified the sequence SFIEDLLFNKVTLAD (aa
816-830) as an immunodominant coronavirus peptide,
hereafter referred to as S816-830 (peptide 204_3, fig. S4D).
We next examined direct ex vivo T cell reactivity against S816-
830 compared to a control peptide 284 (aa 1133-1147,
hereafter referred to as S1133-1147) and the SARS-CoV-2 spike
S-II peptide pool in 48 unexposed individuals and 22 COVID-
19 convalescents. S816-830-reactive CD4* T cells were
detected in 50% of convalescents and 20% of unexposed
individuals with significantly higher frequencies in the
former (Fig. 4C). Antibodies to the SARS-CoV-2 spike aa
residues S809-826 were previously reported in COVID-19
patients but also in unexposed individuals (23, 24). When we
examined the sera of responders and non-responders to the
S816-830 T cell assay, we detected S809-826 binding
antibodies in all individuals. However, significantly higher
concentrations of these antibodies were found in COVID-19
convalescents with substantially more S816-830-reactive T
cells (Fig. 4D). Compared to definite non-responders
(stimulation index (SI)<1.5), definite S816-830 peptide
responders (SI=3) were more frequently positive for HLA-
DPB1*02:01, HLA-DPB1*04:02, and especially homozygous
expression of HLA-DPB1*04:01 (Fig. 4E). Since HLA-
DPA1*01:03 was found in 100% of the responders and 94.8%
of the non-responders, we investigated if combinations of
HLA-DPA1*01:03 and HLA-DPB1*02:01/DPB1*04:01/
DPB1*04:02 were likely to present peptide S816-830 or
fragments thereof. @ HLA-peptide-binding predictions
identified excellent potential binders (fig. S4E), which was
also true for the homologous S816-830 peptide in other
HCoVs (fig. S4F).
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Pre-existing SARS-CoV-2 S-II-cross-reactive T cells are
recruited into primary SARS-CoV-2 immune responses
A still open question is whether and the extent to which
SARS-CoV-2-cross-reactive T cells influence the disease
course of primary SARS-CoV-2 infection. By monitoring the
healthy unexposed study participants for primary SARS-CoV-
2 infection, we identified 17 cases of acute primary SARS-CoV-
2 infection (Fig. 5 and table S2). All 17 patients showed
detectable virus titers (fig. S5A) and mild COVID-19 disease
course (no hospitalization required) (table S2). Robust CD4*
T cell responses specific of SARS-CoV-2 spike S-I and S-II
were detected and the proportions of HLADR*CD38* cells
among CD40L*4-1BB* CD4* T cells significantly increased at
follow-up time points 1 and 2 (3-16 days), indicating their in
vivo activation (Fig. 5, A and B). CD3¥ cells substantially
increased during acute primary SARS-CoV-2 infection and
remained at high levels after the infection resolved (Fig. 5C).
Individuals who already had spike S-II-cross-reactive CD4* T
cells with a SI=3 at baseline showed significantly higher
functional avidity throughout the initiation of the T cell
response (Fig. 5D). S816-830-reactive T cells increased in
both frequency and in functional avidity in 10 of 17 donors
after infection (Fig. 5, E and F). Notably, IgG antibodies
against the S809-826 peptide were boosted as early as 3-9
days (follow-up time point 1) after the presumed infection
(Fig. 5G). Anti-SARS-CoV-2-S1-IgG serum antibodies were
detectable at follow-up time point 2 and peaked after day 20
in most individuals, although their kinetics and quantity
varied widely (Fig. 5H). Anti-SARS-CoV-2-S1 binding
antibody (IgG) units (BAU) at late time points positively
correlated with S-II- but not S-I-cross-reactive T cell levels at
dO suggesting that pre-existing cross-reactive CD4* T cells
enhance SARS-CoV-2-specific humoral immunity (Fig. 51,
left). Moreover, the neutralizing antibody titers also
positively correlated with S-II- but not S-I-cross-reactive CD4*
T cells at baseline, pointing to a protective role of cross-
reactive CD4* T cells (Fig. 51, middle and right). Finally, the
frequency of HCoV-reactive CD4* T cells also increased in
almost all individuals shortly after primary SARS-CoV-2
infection (Fig. 5J). There was a concomitant increase in the
frequency of CD3" cells (fig. S5B) and HLADR*CD38* cells
(fig. S5C) among HCoV-reactive CD4* T cells, demonstrating
that pre-existing HCoV-reactive cellular immunity was
activated and transiently expanded during primary SARS-
CoV-2 infection. Clearly, pre-existing SARS-CoV-2 S-II-cross-
reactive CD4* T cells were recruited into primary SARS-CoV-
2 immune responses in healthy previously unexposed
individuals. Thus, the quantity and functional avidity of pre-
existing cross-reactive cellular immunity corresponds to the
quality and magnitude of specific cellular and humoral anti-
SARS-CoV-2 responses. It may therefore contribute to a
milder course of COVID-19 by limiting viral propagation.
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BNT162b2 vaccination reactivates pre-existing SARS-
CoV-2 spike S-II-cross-reactive T cells

Finally, we investigated how pre-existing SARS-CoV-2 S-II-
cross-reactive T cells in healthy unexposed individuals
influence the course of BNT162b2 COVID-19 spike mRNA
vaccine responses. We monitored baseline and follow-up
humoral and T cell responses against SARS-CoV-2- and HCoV
spike glycoproteins in 31 healthy adults who underwent
primary (day 0) and booster vaccination (day 21) with
BNT162b2. At day 21, 30 of 31 donors had detectable anti-
SARS-CoV-2 S1 IgG and all donors had detectable anti-SARS-
CoV-2 S1 IgA levels (Fig. 6A). Booster vaccination further
increased these antibody levels. Primary vaccination also
induced robust S-I- and S-II-reactive CD4* T cell responses in
all individuals which were only slightly enhanced by booster
vaccination (Fig. 6B). The Kinetics of S-I- and S-II-reactive T
cells differed in that S-II-reactive T cells showed a sharp
increase from baseline to day 7 but not thereafter, whereas S-
I-reactive T cells showed an additional significant increase
from day 7 to day 14 (Fig. 6, B and C). This was indicative of
secondary response Kinetics of S-II-reactive cells and primary
response Kinetics of S-I-reactive cells (22). High-functional-
avidity, CD3" CD40L*‘4-1BB* CD4* T cells increased more
rapidly in cross-reactive donors (Fig. 6, D and E). Moreover,
at day 14, S-I- and S-II-reactive CD4* T cells included high
frequencies of HLADR*CD38" cells in all but three donors
indicating their recent in vivo activation (Fig. 6F). Like SARS-
CoV-2-specific T cells, HCoV S-II-reactive T cells were
significantly increased 7 days after primary vaccination (Fig.
6G). This was associated with an increased frequency of
HCoV S-II-reactive HLADR*CD38" T cells (Fig. 6H). Thus,
cognate cross-reactive T cells were activated early in response
to SARS-CoV-2 spike-specific vaccination but did not expand
thereafter. All but 2 of 31 donors (94%) responded with T cells
that had high functional avidity to S816-830 at days 7 and 14
(Fig. 6,1 and J). S816-830-reactive T cells initially contributed
up to 100% of the CD40L*4-1BB* cells in S-II stimulations but
their proportion decreased as other specificities increased
during the course of the SARS-CoV-2 S-II-specific immune
response (Fig. 6K). Thus, HCoV imprinting does not appear
to hamper an immune response tailored to SARS-CoV-2. We
observed a correlation between the S816-830-reactive T cell
response and the S-II-reactive T cell response at day O that
was even more pronounced at day 7 emphasizing the
importance of the S816-830 peptide in the early stages of the
of the anti-SARS-CoV-2 cellular immune response (Fig. 6L). A
humoral response to S809-826 (overlapping with S816-830)
was detectable upon vaccination as early as 7 days after
primary vaccination (Fig. 6M) that was distinct from the
slower anti-SARS-CoV-2-S1-IgG response. This supports the
concept that pre-existing cross-reactive immunity mediates
secondary response kinetics (26).
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Discussion

The functional relevance of pre-existing cognate cross-
immunity to SARS-CoV-2 is a subject of intense debate. Non-
cognate cross-reactivity has been reported, but appears to
play a minor role, compared to HCoV-mediated cognate
cross-reactivity (16, 26). A recent HCoV infection is associated
with a less severe course of COVID-19 (17). Interestingly, more
than 90% of the population is HCoV-seropositive. Thus, a
large proportion of the population might benefit from cross-
reactive humoral immunity (27, 28). However, pre-pandemic
serum from PCR-validated HCoV-positive individuals
contains neutralizing antibodies against all HCoVs but not
SARS-CoV-2 (27). In a subsequent study, only low spike-
specific cross-reactive antibody activity was detected in just 5
of 34 donors with recent HCoV infection and in just 1 of 31
donors without recent HCoV infection, indicating that
humoral cross-immunity is weak and decays rapidly (12).
Finally, although infection with SARS-CoV-2 increases the
prevalence of antibodies against seasonal HCoVs, they do not
provide protection, which highlights the role of cross-reactive
cellular immunity (9, 27, 28).

Recently T cells, cross-reactive to several SARS-CoV-2
antigens, were identified in unexposed individuals using
predicted peptides individually (4, 5) or as megapools (8, 29).
Our work reveals significant cross-reactivity of ORFla/b-
encoded proteins, but also shows that most of the anti-SARS-
CoV-2 reactivity is directed against the spike, N, and M
proteins. We further demonstrate that the magnitude and
quality of SARS-CoV-2 cross-reactivity and HCoV-reactivity
declines with age. The failure of an aging immune system to
maintain HCoV-induced SARS-CoV-2-cross-reactive T cells
along with a smaller pool of naive T cells, which can be
recruited into SARS-CoV-2-specific responses (20), may
contribute to the increased susceptibility of elderly to severe
COVID-19. Our results show that HCoV-specific, SARS-CoV-
2-cross-reactive T cells contribute to SARS-CoV-2 immune
responses upon infection and vaccination. Additionally, such
cognate cross-reactivity correlates with a rapid cellular and
enhanced humoral response, which may both favor mild
disease courses. The sequential administration of different
haptens sharing the same carrier to mice induces pre-existing
T cell help for the second hapten, leading to more efficient B
cell recruitment in secondary immunization (30).
Accordingly, B cells recognizing SARS-CoV-2 may benefit
from HCoV-reactive T cells cross-reacting with SARS-CoV-2
peptides. Further studies in mice showed that increasing the
numbers of antigen-specific T cells at the onset of the
immune response also increased B cell activation and
proliferation. Moreover, the presence of cognate T cell help
during viral infection promotes germinal center formation,
which is required for fast and high-affinity antibody
generation (30-32). Since the early induction of SARS-CoV-2
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T cell reactivity has been associated with rapid viral clearance
and mild disease (33), cross-reactive T cells that enhance the
immune response to SARS-CoV-2 may well serve as a
correlate of immune protection against severe COVID-19
disease courses (34, 35).

Upon BNT162b2 vaccination, we observed immune
responses that exceeded the response to actual SARS-CoV-2
infection in terms of spike-specific T cell and antibody levels.
Responses to S-II, unlike responses to the non-cross-reactive
S-I, however, displayed Kkinetics reminiscent of a secondary
immune response (25, 26). These observations may provide
an explanation for the results of large studies showing high
efficacy of SARS-CoV-2 vaccines. Protection levels against
SARS-CoV-2 infection have been reported to be greater than
75% as early as 15-28 days after primary vaccination with
BNT162b2 (36). In addition, just one dose of the BNT162b2 or
the Astra Zeneca ChAdOx1 vaccine reduced the risk of
hospitalization by 85% and 94%, respectively, at days 28-34
post primary vaccination, pointing to an unusually high
vaccine efficacy for a primary vaccination (36). Similarly, a
single-shot vaccination based on AdV26 adenovirus-encoded
modified spike protein from Johnson & Johnson has been
reported to have a vaccine efficacy of 66% was recently
approved by the FDA and the EMA (37, 38). Our results may
provide an immunological explanation for the reported high
efficacies. Conversely, in the elderly, with waning HCoV T cell
reactivity and thus reduced SARS-CoV-2 T cell cross-
reactivity, additional booster vaccinations may be critical
(39).

The immunodominant cross-reactive peptide (S816-830)
identified here is located within the highly conserved spike
fusion peptide domain downstream of the S2' cleavage site
(40). We demonstrate that S816-830-reactive T cells are
efficiently recruited into the SARS-CoV-2 response in the
majority of infected and nearly all vaccinated individuals.
Previous reports have also shown that specific antibodies
against this region are generated after SARS-CoV-2 infection
and vaccination with BNT162b2 (23, 24). In addition, it has
been proposed that antibodies specific to the S2 portion of
spike possess neutralizing activity and may be involved in the
early induction of protection before SARS-CoV-2-S1-specifc
antibodies emerged (28, 41-43). In summary, the S816-830
peptide may serve as a conserved universal coronavirus
target in the S2 portion of spike for both B cells and T cells.
Enhancing the immune response to S816-830 may induce
efficient protection and should be a focus of future studies.

Materials and Methods

Study participants

This study was approved by the Institutional Review board of
the Charite” (EA/152/20). Written informed consent was
obtained from all included participants (44) and the study
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was conducted in agreement with the declaration of Helsinki.
Participants who had tested positive for SARS-CoV-2 RNA
(RT-qPCR from nasopharyngeal swabs) were classified as
convalescent donors. All donors were assessed for age,
gender, BMI, comorbidities, and medications (table S1).
Convalescent donors were subclassified according to their
symptoms into WHO severity grades and information about
hospitalization or admission to an intensive care unit (ICU)
is given in table S1. Day of infection was set as day -3 prior
to reported symptom onset. Measurement day post symptom
onset is indicated in the graphs or table S1. Study participants
who reported symptoms typical for a SARS-CoV-2 infection
were RT-qPCR tested for virus RNA and positive donors were
enrolled for follow-up measurements. Details of the follow-
up cohort (age, gender, comorbidities, symptoms,
measurement timepoints post symptom onset) are provided
in table S2.

Coronavirus RT-qPCR

RNA was extracted using the MagNA Pure 96 system and the
MagNA Pure Viral NA Small Volume Kit (Roche, Germany).
RNA extraction was performed from a 200-ul swab dilution
(swab suspended in 4.3 ml of Cobas PCR Media, Roche),
eluted in 100 ul of elution buffer. Coronavirus detection using
5 ul of the RNA eluate was based on two genomic targets (E-
and N gene, TIB Molbiol, Berlin, Germany). An in-vitro
transcribed RNA of equine arteritis virus was used as an
internal RT and PCR control. SARS-CoV-2 was quantified
using the E-gene target and by applying calibration curves
and using serial diluted photometrically quantified in-vitro
transcribed RNA as described before (45). All RT-qPCRs were
performed using a LightCycler 480 II (Roche).

Blood and serum sampling and PBMC isolation

Whole blood was collected in lithium heparin tubes for
peripheral blood mononuclear cells (PBMC) isolation and
SSTII advance (all Vacutainer®, BD) tubes for serology. SSTII
advance tubes were centrifuged for 10 min at 1000g prior to
removing serum. Serum aliquots were frozen at -20°C until
further use. PBMCs were isolated by gradient density
centrifugation according to the manufacturer’s instructions
(Leucosep tubes, Greiner; Biocoll, Bio&SELL).

Ex vivo T cell stimulation

Freshly isolated PBMC were cultivated at a concentration of
5x10° PBMC/ml in AB-medium containing RPMI 1640
medium (Gibco) supplemented with 10% heat inactivated AB
serum (Pan Biotech), 100 U/ml of penicillin (Biochrom), and
0.1 mg/ml of streptomycin (Biochrom). Stimulations were
conducted with PepMix™ overlapping peptide pools (15-aa
length with 11-aa overlaps, JPT Peptide Technologies)
covering the proteins of interest, including the entire SARS-
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CoV-2 orfeome i.e., the spike glycoprotein (S), NCAP-1 (N),
VEMP-1 (E), VME-1 (M), AP3A (ORF3a), NS6, NS7A, NS7B,
NS8, ORF9B, ORF10, Y14 (ORF9c), the ORFla/b proteins
(NSP0O1, NSP02, NSP03a, NSP03b, NSP04, NSP05, NSPO6,
NSPO07, NSP08, NSP09, NSP10, NSP11, NSP12, NSP13, NSP14,
NSP15, and NSP16), as well as the spike glycoproteins of
HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKUI1 (all
JPT Peptide Technologies). Single peptide stimulations were
conducted with the following peptides: 204 (N'-
SKRSFIEDLLFNKVT-C'), 204_1 (N'-KRSFIEDLLFNKVTL-
C’"), 2042 (N'-RSFIEDLLFNKVTLA-C'), 204 .3 (N'-
SFIEDLLFNKVTLAD-C'), 205 (N'-FIEDLLFNKVTLADA-
C"), and the control peptide 284 (N'-VNNTVYDPLQPELDS-
C") (all JPT Peptide Technologies). All stimulations (peptide
pools and single peptides) were performed at final
concentrations of 1 ug/ml per peptide. For negative control
the stimulation peptide solvent DMSO diluted 1:1 in PBS was
used at the same concentration as in peptide-stimulated
tubes. SEB/TSST-1 (1.5 mg/ml and 1.0 mg/ml, respectively)
(Sigma) and/or the CEFX Ultra SuperStim pool (1 ug/ml per
peptide) (JPT Peptide Technologies) were used as positive
stimulation controls. For optimized costimulation, purified
anti-CD28 (clone CD28.2, BD Biosciences) was added to each
stimulation at a final concentration of 1 ug/ml. Incubation
was performed at 37°C, 5% CO, for 16 hours in the presence
of 10 pg/ml brefeldin A (Sigma-Aldrich) during the last 14
hours. CD4* T cell activation was calculated as a stimulation
index (SI)=% of CD40L*4-1BB* CD4* T cells in the stimulation
/ % of CD40L*4-1BB* CD4* T cells in the unstimulated
control. Dotted lines indicate an SI of 1.5 (positive with
uncertainty) and 3 (definite positive).

T cell enrichment and expansion

Activated cells were enriched from stimulated PBMCs by
magnetic cell sorting (MACS). Cells were stimulated with
indicated PepMixes in the presence of 1 ug/ml of purified
anti-CD28 (clone CD28.2, BD Biosciences) and 1 pg/ml of
purified anti-CD40 (5C3, Biolegend) for 16 hours followed by
staining with anti-CD40L-APC (5C8, Miltenyi) and anti-4-
1BB-PE (4B4-1, BD). The activated cells were enriched using
anti-PE MultiSort MicroBeads (Miltenyi) according to the
manufacturer’s instructions. After release of anti-PE beads a
second, analogous enrichment step was performed using
anti-APC MicroBeads (Miltenyi). The purity of the enriched
population was routinely checked to >80% of live cells.
Feeder cells were obtained from the 4-1BB-PE negative
fraction of the initial enrichment step by CD3 MicroBeads
(Miltenyi) depletion and subsequent irradiation at 50 Gy.
Enriched CD40L*4-1BB* cells were co-cultured with feeder
cells at a ratio of 1:1 in AB-medium supplemented with 10
ng/ml of IL-7 and 10 ng/ml of IL-15 (both from Miltenyi) for
10 days followed by 2 days of cytokine starvation. They were
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then restimulated in the presence of CD3-depleted
autologous feeder cells as described above and indicated in
the figure legends. For spike glycoprotein epitope
identification, restimulation was performed with the Epitope
Mapping Peptide Set SARS-CoV-2 (JPT) according to the
manufacturer’s instructions.

Flow cytometry

Stimulations were stopped by incubation in 2 mM EDTA for
5 min. Surface staining was performed for 15 min in the
presence of 1 mg/ml of Beriglobin (CSL Behring) with the
following fluorochrome-conjugated antibodies titrated to
their optimal concentrations as specified in table S3: FITC-
conjugated anti-CD3 (Miltenyi), VioGreen-conjugated anti-
CD4 (Miltenyi), VioBlue-conjugated anti-CD8 (Miltenyi),
APC-conjugated anti-CD38 (Miltenyi), and PerCP-Vio 700-
conjugated anti-HLA-DR (Miltenyi). During the last 10 min
of incubation, Zombie Yellow fixable viability staining
(Biolegend) was added. Fixation and permeabilization were
performed with eBioscience™ FoxP3 fixation and PermBuffer
(Invitrogen) according to the manufacturer’s protocol.
Intracellular staining was carried out for 30 min in the dark
at room temperature with PE-conjugated anti-4-1BB
(Miltenyi), PE-Vio 770-conjugated anti-CD40L (Miltenyi),
Alexa Fluor 700-conjugated anti-IFN-y (Biolegend), and
Brilliant Violet 605-conjugated anti-TNF-o (Biolegend,). All
samples were measured on a MACSQuant® Analyzer 16
(Miltenyi). Instrument performance was monitored prior to
every measurement with Rainbow Calibration Particles (BD
Biosciences).

Anti-SARS-CoV-2 IgG and IgA ELISA specific for the S
subunit 1 (S1) was performed using the commercial Kits
((QuantivVac for IgG), EUROIMMUN Medizinische
Labordiagnostika AG) according to the manufacturer’s
instructions and as described previously (46). Upper and
lower cut-offs were set at 3900 and 32 for IgG, respectively,
and at 0.6 and 10 for IgA, respectively.

SARS-CoV-2 neutralization assay

Neutralization activity of SARS-CoV-2 specific antibodies was
assessed with a plaque reduction neutralization test (PRNT)
as described before (39).

Epitope specific antibody ELISA

Biotinylated peptide S809-826 (Biotin-Ttds-
PSKPSKRSFIEDLLFNKV-OH, Ttds linker=N-(3-{2-[2-(3-
Amino-propoxy)-ethoxy]-ethoxy}-propyl)-succinamic  acid,
JPT Peptide Technologies) (400 nM) was immobilized on a
96-well Streptavidin plate (Steffens Biotechnische Analysen
GmbH) for 1 hour at RT. After blocking (1 hour, 30°C) serum
samples were diluted 1:100 and incubated for 1 hour at 30°C.
HRP-coupled, anti-human-IgG secondary antibody (Jackson
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Immunoresearch) was diluted 1:5000 (Jackson
Immunoresearch) and added to the serum samples for 1 hour at
30°C, then HRP substrate was added (TMB, Kem-En-Tec). The
reaction was stopped by adding sulfuric acid and absorption was
measured at 450 nm using a FlexStation 3.

HILA typing and analysis

HLA typing was performed by LABType® CWD assays (One
Lambda, West Hills, CA, USA) based on reverse sequence-
specific oligonucleotides (rSSO) according to the manufacturer’s
instructions. Briefly, the HLA genomic region was amplified
individually using locus-specific biotinylated primers for HLA-
DRB1, HLA-DQAI1, HLA-DQB1, HLA-DPAI, and HLA-DPBI.
Amplicons were hybridized to HLA allele- and allele-group-
specific probes attached to Luminex® beads. Complementary
binding was detected by addition of R-phycoerythrin-conjugated
streptavidin and acquired using a FLEXMAP 3D flow analyzer
(Luminex, Austin, TX, USA). HLA alleles were derived at two-
field code resolution (highest probability) as referenced in the
catalog of common and well-documented HLA alleles version
2.0.0 33. MHC class II binding prediction were performed using
the IEDB Analysis Resource (www.IEDB.org) (47, 48), based on
the IEDB recommended method version 2.22. For the purpose of
this analysis, we refer to an individual as “homozygous” if the
two corresponding alleles of the same locus are identical in the
first two fields.

Homology score

For the calculation of the homology score, all possible 9-mers
were generated for each respective PepMix of SARS-CoV-2. Each
of the 9-mers was scored against each unique 9-mer from the
proteomes of the corona viruses 229E, NL63, OC43, and HKU1
(isolates N1, N2, and N5) using the PAM30 substitution matrix.
The homology score is the percentage of comparisons with a
pairwise 9-mer score above 30.

Data analysis and statistics

Study data were collected and managed using REDCap
electronic data capture tools hosted at Charité (49, 50). Flow
cytometry data were analyzed with FlowJo 10.6 (FlowJo LLC)
and statistical analysis conducted with GraphPad Prism 9. If not
stated otherwise, data are plotted as means. N indicates the
number of donors. P-values were set as follows: *P <0.05, **P
<0.01, and ***P<0.001.
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Fig.1.CD4* T cell cross-reactivity against the SARS-CoV-2 orfeome. (A) Ex vivo stimulation of PBMCs from COVID-
19 convalescent patients (upper panel, n=59) and unexposed individuals (lower panel, n=60). The percentage of
CD40L*4-1BB* CD4* T cells among stimulated PBMC was divided by the percentage of these cells among
unstimulated PBMC to determine the stimulation index (SI) shown on the y-axis. The SARS-CoV-2-orfeome peptide
pools used for stimulation are shown below the lower panel. Gray labels highlight proteins exclusive for SARS-CoV-2
(i.e., those not shared with HCoVs). Gray (COVID-19) or red circles (unexposed) identify donors with an SI=3. Dotted
lines indicate an Sl of 1.5 and 3. Statistically significant differences between COVID-19 convalescents and unexposed
groups (with respect to each peptide pool) are indicated above the lower panel (¥*P<0.05, **P<0.01, ***P<0.001, and
ns=not significant at P>0.05; unpaired Student's t test). (B) Bars show the proportions of individuals with the
indicated number of SARS-CoV-2-orfeome peptide pool stimulations with an SI=3. (C) Proportions of individuals with
an SI=3 for each stimulation in each indicated stimulation combination.
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Fig. 2. The magnitude of SARS-CoV-2-cross-reactivity decreases with age. (A) Scatter plots show the
S| (CD40L*41BB* CD4* T cells) among PBMCs stimulated with SARS-CoV-2 S-I, SARS-CoV-2 S-I, or
CEFX (known T cell-stimulating peptides from CMV, EBV, flu and other common pathogens) plotted
against age in n=568 unexposed donors and n=174 COVID-19 convalescents. Dotted lines indicate an S
of 1.5and 3. (B) Frequencies of CD3" cells among S-I-, S-1I-, or CEFX-reactive CD40L*4-1BB* CD4* T cells
over age. CD3P frequencies are shown for T cell responses with an SI=1.5. Regression lines denote linear
regression on age in each group. The corresponding Pearson correlation coefficients are shown.
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Fig. 3. High-functional-avidity T cells specific for spike S-Il from HCoVs decrease with age. (A) Scatter plots
show the Sl of CD40L*4-1BB* CD4* T cells in unexposed (n=568) and COVID-19 convalescents (n=174) after PBMC
stimulation with HCoV (229E, NL63, OC43, and HKU1) spike glycoprotein S-1 or S-Il peptide pools plotted against
age. Dotted lines indicate an Sl of 1.5 and 3. (B) Frequencies of CD3" cells in CD40L*4-1BB* CD4* T cells from
unexposed and COVID-19 convalescents plotted against age. CD3" frequencies are shown for T cell responses with
an SI=1.5. Regression lines denote linear regression on age in each group; the corresponding Pearson correlation
coefficients are shown.
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Fig. 4. Peptide S816-830 constitutes an immunodominant epitope of SARS-CoV-2 T cell cross-reactivity. (A)
Bars show the proportions of unexposed individuals aged below 65 (n=491) and COVID-19 convalescents (n=174)
with S-l or S-ll-specific T cell responses to HCoV and/or SARS-CoV-2 with an SI=3. (B) Plots show the SI (CD40L*4-
1BB* CD4* T cells) of short-term T cell lines derived from OC43 S-I- and S-ll-reactive primary T cells after
restimulation with autologous antigen presenting cells (APCs) in the presence of OC43 or SARS-CoV-2 spike
glycoprotein pools S-1 and S-Il. The dotted line indicates an Sl of 3. (C) The Sls of CD40L*4-1BB* CD4* T cells from
unexposed (n=48) or COVID-19 convalescents (n=22) after stimulation with the single peptide 204_3 (S816-830),
the control single peptide 284 (S1133-1147) or the S-Il peptide pool are shown. (D) Levels (optical density, OD) of
anti-S809-826-peptide IgG (ELISA) in unexposed young (<65 years) and elderly (>65 years) individuals as well as
COVID-19 convalescents. ELISA plates were coated with an 18 amino acid-peptide overlapping by 11 amino acids
with S816-30. Serum was diluted 1:100. (E) Bars show the frequencies of common class-Il HLA alleles in definite
S816-830 responders (S1=3) and definite non-responders (SI<1.5), n=308, */*=homozygous, * =heterozygous.
*P<0.05, **P<0.01, ***P<0.001 and ns for P>0.05 (Student’s t test).
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Fig. 5. HCoV-specific SARS-CoV-2-cross-reactive T cells are recruited into the primary SARS-CoV-2 infection
response. (A-C) Sl of CD40L*4-1BB* CD4* T cells (A), frequencies of HLADR*CD38* cells (B), and frequencies of
CD3" cells (C) among CD40L*4-1BB* CD4* T cells after stimulation with SARS-CoV-2 S-I, S-Il, and CEFX peptide
pools of donors prior to infection (baseline) and at four different follow-up time points (table S2) post symptom
onset. CD3" frequencies are shown for T cell responses with an SI=1.5 only. (D) Changes to CD3"° frequencies
among CD40L*4-1BB* CD4* T cells between baseline, follow-up 2 (10-16 days) and follow-up 4 (29-71 days after
symptom onset) (left plot), and statistics (right plot) for baseline and follow-up measurement time point 2 in
cross-reactive donors (baseline SI=3, red circles) and non-cross-reactive donors (baseline SI<3, white circles).
(E) Sl of CD40L*4-1BB* CD4* T cells and (F) frequency of CD3"° of CD40L*4-1BB* CD4* T cells after stimulation
with peptide S816-830 or control peptide S1133-1147. CD3° frequencies are shown for T cell responses with an
SI=1.5. (G) Levels (optical density, OD) of anti-S809-826-peptide IgG (ELISA) at baseline and follow-up time point
1(3-9 days) post symptom onset. ELISA plates were coated with an 18 amino acid peptide overlapping by 11 amino
acids with S816-830. (H) Anti-S1-IgG binding antibody units (BAU) in cross-reactive (baseline SI=3, red circles)
and non-cross-reactive donors (baseline SI<3, white circles) were plotted against time (left), and compared
between baseline and follow-up 3 (right). (1) Scatter plots show the relationship between anti-SARS-CoV-2 S1 I1gG
antibody levels (OD) at follow-up 4 and the S| of CD40L*4-1BB* CD4* T cells upon S-1l stimulation at baseline
(left), the relationship between neutralizing antibody titers (PRNT50) at follow-up 4 and the S| of CD40L*4-1BB*
CD4* T cells upon S-ll stimulation (left) or S-I stimulation (right) at baseline. (J) Heat map showing the delta (A)
Sl of CD40L*4-1BB* CD4* T cells after stimulation with S-1l pools of indicated HCoVs. A represents the change of
the parameter at the given time point relative to baseline (i.e., white depicts no increase). “*" indicates S816-830
peptide responders. A, B, E, F: ¥*P<0.05, **P<0.01, ***P<0.001 and ns for P>0.05 (repeated measure one-way-
ANOVA with Dunnett"s correction). C, G: *P<0.05, **P<0.01, ***P<0.001 and ns for P>0.05 (paired Student's t
test). D, H: *P<0.05, **P<0.01, ***P<0.001 and ns for P>0.05 (Student's t test). E: ns for P>0.05 (paired
Student's t test). |, J: Pearson correlation.
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Fig. 6. HCoV-specific SARS-CoV-2-cross-reactive T cells are recruited into the BNT162b2 vaccine response.
(A) Serum anti-SARS-CoV-2 S1 IgG binding antibody units (BAU) and IgA titer ratio were determined at baseline,
d7, and d14 after primary vaccination with BNT162b, immediately before secondary vaccination (d21) as well as 1
(d28) and 2 weeks (d35) after secondary vaccination. All values below 1 were set to 1. The lower and upper cut-off
levels for IgG were set at 32 and 3900, respectively, the corresponding IgA cut-offs at 0.6 and 10, respectively,
indicated by dotted lines. (B) Plots show the Sl of CD40L*4-1BB* CD4* T cells after stimulation with S-I, S-Il, and
CEFX at baseline and indicated time points. (C) Difference in Sl after stimulation with S-1 and S-II at each time
point relative to the previous time point. (D) Plots show the frequencies of CD3" of CD40L*4-1BB* CD4* T cells
after stimulation with S-1, S-Il, and CEFX for responses with an SI=1.5. (E) Frequencies of CD3" of CD40L*4-1BB*
CD4* T cells at dO and d7 in cross-reactive donors (baseline SI=3, red circles) and non-cross-reactive donors
(baseline SI<3, white circles). (F) Frequencies of HLADR*CD38* cells among CD40L*4-1BB* CD4* T cells after
stimulation with S-1, S-1l, and CEFX at the indicated time points. (G) S| of CD40L*4-1BB* CD4* T cells and (H)
frequencies of HLADR*CD38* among these cells after stimulation with HCoV S-Il peptide pools at baseline and
indicated time points. (1) SI of CD40L*4-1BB* CD4* T cells and (J) frequencies of CD3" events (SI=1.5) among
these cells after stimulation with peptide S816-830 and control peptide S1133-1147 at baseline and indicated time
points. (K) Proportion of S816-830-reactive T cells over SARS-CoV-2 S-ll-reactive T cells. (L) The relationship
between responses to S816-830 and SARS-CoV-2 S-1l peptide pool stimulation at dO (left) and d7 (right). (M) OD
of anti-S809-826-peptide IgG ELISA from sera before and 7 days after primary vaccination. A, F, G, H, |, J:
*P<0.05, **P<0.01, ***P<0.001 and ns for P>0.05 (repeated measure one-way-ANOVA with Dunnett's
correction). B, C, D, M: *P<0.05, **P<0.01, ***P<0.001 and ns for P>0.05 (paired Student’s t test). E: *P<0.05,
**¥P<0.01, ***P<0.001 and ns for P>0.05 (Student’s t test). L: Pearson correlation.
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