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ABSTRACT Necroptosis is a form of regulated cell death associated with degenerative disorders, autoimmune and inflammatory
diseases, and cancer. To better understand the biochemical mechanisms regulating necroptosis, we constructed a detailed
computational model of tumor necrosis factor-induced necroptosis based on knownmolecular interactions from the literature. Intra-
cellular protein levels, used as model inputs, were quantified using label-free mass spectrometry, and the model was calibrated
using Bayesian parameter inference to experimental protein time course data from a well-established necroptosis-executing
cell line. The calibrated model reproduced the dynamics of phosphorylated mixed lineage kinase domain-like protein, an estab-
lished necroptosis reporter. A subsequent dynamical systems analysis identified four distinct modes of necroptosis signal execu-
tion, distinguished by rate constant values and the roles of the RIP1 deubiquitinating enzymes A20 and CYLD. In one case, A20
and CYLD both contribute to RIP1 deubiquitination, in another RIP1 deubiquitination is driven exclusively by CYLD, and in two
modes either A20 or CYLD acts as the driver with the other enzyme, counterintuitively, inhibiting necroptosis. We also performed
sensitivity analyses of initial protein concentrations and rate constants to identify potential targets for modulating necroptosis sensi-
tivity within each mode. We conclude by associating numerous contrasting and, in some cases, counterintuitive experimental re-
sults reported in the literature with one or more of the model-predicted modes of necroptosis execution. In all, we demonstrate that
a consensus pathway model of tumor necrosis factor-induced necroptosis can provide insights into unresolved controversies
regarding the molecular mechanisms driving necroptosis execution in numerous cell types under different experimental conditions.
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SIGNIFICANCE Necroptosis is an alternative form of programmed cell death, in which the cell membrane is ruptured,
leading to immune response activation. Although many of the molecular species involved in necroptosis have been
identified, including receptor-interacting protein kinase-1 (RIP1), RIP3, and mixed lineage kinase domain-like protein,
efforts to target necroptosis dysregulation, or leverage it therapeutically, are hindered by the lack of a detailed, mechanistic
understanding of the biochemical pathways driving necroptosis execution. In this work, we present a detailed, mechanistic
model of necroptosis execution that, by varying initial protein concentrations and rate constants, can resolve seeming
contradictions and counterintuitive behaviors reported in the literature. The model thus significantly advances our
understanding of the basic biochemical mechanisms underlying necroptosis.
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INTRODUCTION

Apoptosis is widely recognized as the primary form of pro-
grammed cell death, characterized by a concerted disman-
tling of the cell into apoptotic bodies that can be easily
processed by the immune system (1). Conversely, necropto-
sis is an alternative form of programmed cell death in which
the cell membrane is ruptured, leading to immune response
activation (2,3). Various human diseases, including neuro-
degenerative disorders and cancer, have been associated
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with necroptosis (4). Induction of necroptosis is also
currently being explored as an alternative anticancer
therapy, since apoptosis resistance is a hallmark of cancer
(5–7). Although many of the primary molecular species
involved in necroptosis have been identified, including
receptor-interacting protein kinase-1 (RIP1), RIP3, and
mixed lineage kinase domain-like protein (MLKL), efforts
to target necroptosis dysregulation, or leverage it therapeu-
tically, are hindered by the lack of a detailed, mechanistic
understanding of the biochemical pathways driving necrop-
tosis execution (4).

Previous studies of necroptosis (8–15) identified multiple
mechanisms of ubiquitination regulation, including K63,
K48, and M1 ubiquitin chains, which lead to phosphoryla-
tion of RIP1 and RIP3, phosphorylation and activation
of cell death marker MLKL (8), and plasma membrane per-
meabilization resulting in cell death (16). The K63-specific
deubiquitinase CYLD (cylindromatosis lysine 63 deubiquiti-
nase) (17) and the ubiquitin-editing enzyme A20 (tumor ne-
crosis factor [TNF], alpha-induced protein 3) (14) are both
known to mediate deubiquitination of RIP1, which precedes
RIP1 phosphorylation, by cleaving K63 ubiquitin chains and
facilitating the formation of complex II (9–15). Therefore,
both enzymes are generally considered drivers of necroptosis
(18). However, CYLD- and A20-driven deubiquitination of
RIP1 have been variously reported as pro- and antinecrop-
TABLE 1 Key proteins involved in necroptosis

Protein Role in necroptosis

A20 Ubiquitin-editing enzyme responsible for deubiquitinating

RIP1 in complex I

Caspase-8 Heterodimerizes with cFLIPL (long isoform), leading to

cleavage and inactivation of RIP1 and RIP3 in complex II

cFLIPL Heterodimerizes with caspase-8, leading to cleavage and

inactivation of RIP1 and RIP3 in complex II

cIAP1/2 Catalyzes, via its RING domains, the activating K63-linked

polyubiquitination of RIP1

CYLD Deubiquitinates RIP1 in either complex I or within the

RIP1-RIP3 necrosome

FADD TNFR1-interacting scaffold protein in complex II

LUBAC TNFR1-interacting protein complex (composed of HOIL-1 and HOI

recruited by cIAP1/2 in complex I that promotes RIP1 ubiquitinat

MLKL Recruited to the necrosome by RIP1, where it is phosphorylated,

leading to cell death by membrane rupture

RIP1 A multifunctional adaptor protein in the necrosome that

recruits and activates RIP3 and MLKL

RIP3 Recruited to the necrosome by binding to and

cross-phosphorylating RIP1

TNF Pleiotropic proinflammatory cytokine that activates

necroptosis in the absence of caspase activity

TNFR1 TNF receptor superfamily member death receptor

that recruits RIP1 to complex 1

TRADD TNFR1-interacting protein in complexes I and II that serves

as a docking adaptor for the binding of RIP1 to TRAF2

TRAF2 TNFR1-interacting protein that recruits cIAP1/2 to complex I,

promoting K63-linked RIP1 ubiquitination

Initial amounts are based on either mass spectrometry measurements (this work)

(www.uniprot.org) are for human proteins.
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totic in different cell types: some studies have shown that
CYLD drives RIP1 deubiquitination (11,17,19,20), while
others have implicated A20 (13,21,22) or reported equal
contributions from both enzymes (23–25). These varying re-
ports have led to unresolved controversies within the field
regarding the specific molecular mechanisms of complex II
formation and subsequent necroptotic cell death (4). For
example, Vanlangenakker et al. (25) showed that repression
of CYLD in L929 cells, a murine fibrosarcoma cell line, pro-
tects from TNF-induced necroptosis but, unexpectedly, A20
repression increases sensitivity to necroptosis. A recent time-
resolved analysis of necroptosis rates and network compo-
nents revealed an incoherent feedforward loop through
which NF-kB and A20 counteract pronecroptotic signaling
in L929 cells (26), providing one possible explanation for
this unexpected behavior. However, it remains unclear how
general or cell context-dependent this regulatory control of
necroptosis is and whether alternative explanations are
possible.

Here, we present a detailed biochemical model of TNF-
induced necroptosis that incorporates known biology ob-
tained from decades’ worth of published experimental
studies (Table 1). We calibrate the model to experimental
phosphorylated MLKL (pMLKL) time course data from
TNF-treated mouse fibrosarcoma cells at multiple TNF
doses. We then perform a dynamical systems analysis that
Initial amount UniProt ID Refs.

0.225 mM (8868 molecules) F8K9X7 (13,21)

0.096 mM (3799 molecules) Q14790 (42,107)

0.081 mM (3193 molecules) O15519 (43,108)

0.225 mM (8868 molecules) Q13075, Q13490 (25,81)

0.225 mM (8868 molecules) Q9NQC7 (11,17)

0.079 mM (3109 molecules) Q13158 (18,109,110)

P)

ion

0.180 mM (7095 molecules) Q9BYM8, Q96EP0 (25,82)

0.141 mM (5544 molecules) Q9BYM8, Q96EP0 (48,111,112)

0.500 mM (19,707 molecules) Q8NB16 (25,113,114)

0.270 mM (10,654 molecules) Q9Y572 (111,115,116)

0.1–100 ng/mL (2–2413 molecules) Q13546 (117)

0.125 mM (4927 molecules) Q9Y572 (33,118)

0.119 mM (4696 molecules) P01375 (35,118)

0.299 mM (11,776 molecules) P19438 (109,119)

or estimates from the literature (see materials and methods). All UniProt IDs

http://www.uniprot.org/
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identifies four modes of necroptosis signal execution. In one
case, A20 and CYLD contribute approximately equally to
RIP1 deubiquitination, such that both must be knocked
out to delay necroptosis induction (knocking out one has
no effect, since the signal can be rerouted through the other).
In another, RIP1 deubiquitination is driven exclusively by
CYLD, with A20 being effectively inactive. In the other
two modes, either A20 or CYLD acts as the driver of
RIP1 deubiquitination, with the other enzyme, counterintu-
itively, acting to inhibit necroptosis (consistent with
the observation by Vanlangenakker et al. (25) mentioned
above). We also perform sensitivity analyses to identify pro-
teins and kinetic parameters that can be targeted within each
mode to modulate pMLKL dynamics and time-to-death
(TTD) by necroptosis. We find that, for two modes, proteins
and rate constants centered around RIP1 ubiquitination
regulation in complex I have the most significant effect on
necroptosis signal execution. For the other two, potential
targets include factors involved in the balance between com-
plex II degradation and necrosome formation. Overall, our
results show that a consensus pathway model of TNF-
induced necroptosis can explain numerous experimentally
observed behaviors, including conflicting and counterintui-
tive results from multiple studies involving different cell
types. Following a detailed description of our proposed
model, we present results of the parameter calibration,
dynamical systems analysis, in silico knockout (KO) exper-
FIGURE 1 Schematic of the necroptosis execution model. The diagram is colo

plex II, complex IIa, complex IIb, and the necrosome. Arrows are labeled with ‘‘R

In many cases (but not all; see text), ‘‘RN-M’’ denotes a set of reversible reaction

Created with BioRender.com.
iments, and sensitivity analyses. We conclude with a discus-
sion of the broader implications of our results, including
important insights into the molecular mechanisms of nec-
roptosis execution and the potential for extending and using
the model to identify novel pro- and antinecroptosis thera-
peutic targets.
RESULTS

A biochemical model of TNF-induced necroptosis
describes the formation of key signaling
complexes along the path to cell death

The death receptor ligand TNF (27), an extensively studied
inducer of necroptosis and well-known master regulator of
inflammation, has been at the forefront of numerous funda-
mental discoveries concerning the interplay between cell
death and survival pathways (25). Here, we propose a
detailed, mechanistic model of TNF-induced necroptosis
based on an extensive review of the literature (Table 1).
The model includes 14 proteins interacting via 40 reactions
(all mass action; Fig. 1; Table 2) to produce 37 biochemical
species, comprising complex I, complex II, and the ne-
crosome, three key macromolecular complexes along the
path from cell death cue to necroptosis execution. Below,
we describe in detail how we model the steps involved in
the formation of each complex, beginning with TNF binding
r coded to highlight the processes involved in formation of complex I, com-

N’’ or ‘‘RN-M,’’, where N andM correspond to reaction indices in the model.

s, with N the index of the forward reaction and M the index of the reverse.
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TABLE 2 Rate constants for all reactions in the necroptosis model

Parameter Reaction Medians Units

P1 R1: association of TNF to TNFR 10 [1.07, 0.39, 0.91, 0.49] mM�1 min�1

P2 R2: dissociation of TNF:TNFR 10 [�2.00, �2.22, �3.40, �2.20] min�1

P3 R3: degradation of TNF 10 [�1.52, �1.70, �1.62, �1.62] min�1

P4 R4: association of TRADD to complex I 10 [0.11, 0.45, 0.71, 1.19] mM�1 min�1

P5 R5: dissociation of TRADD from complex I 10 [1.22, 1.51, 1.84, 1.30] min�1

P6 R6: association of RIP1-u to complex I 10 [6.30, 5.91, 6.19, 5.94] mM�1 min�1

P7 R7: dissociation of RIP1-u from complex I 10 [�1.70, �1.82, �1.70, �1.70] min�1

P8 R8: association of TRAF2 to complex I 10 [5.34, 5.51, 5.22, 5.16] mM�1 min�1

P9 R9: dissociation of TRAF2 from complex I 10 [�2.26, �1.82, �2.40, �1.70] min�1

P10 R10: association of cIAP to complex I 10 [4.70, 4.58, 4.63, 4.57] mM�1 min�1

P11 R11: dissociation of cIAP from complex I 10 [�0.01, �0.33, �0.05, �0.24] min�1

P12 R12: ubiquitination of RIP1-u by cIAP in complex I 10 [�1.52, �2.00, �2.00, �1.70] min�1

P13 R13: association of LUBAC to RIP1-Ub in complex I 10 [2.41, 2.01, 2.12, 2.42] mM�1 min�1

P14 R14: dissociation of LUBAC from RIP1-Ub in complex I 10 [�3.80, �3.74, �4.44, �3.74] min�1

P15 R15: association of A20 to RIP1-Ub in complex I 10 [4.88, 4.05, 5.18, �0.43] mM�1 min�1

P16 R16: dissociation of A20 from complex I 10 [�1.40, �2.00, �2.00, �4.05] min�1

P17 R17: association of CYLD to RIP1-Ub in complex I 10 [7.62, 1.84, 7.43, 1.71] mM�1 min�1

P18 R18: dissociation of CYLD from complex I 10 [0.28, 0.11, 0.59, 0.71] min�1

P19 R19: deubiquitination of RIP1-Ub by A20 in complex I 10 [�1.52, �1.00, �1.10, �1.52] min�1

P20 R20: deubiquitination of RIP1-Ub by CYLD in complex I 10 [�1.22, 2.67, 2.84, 2.59] min�1

P21 R21: association of FADD to RIP1-u:TRADD in complex II 10 [7.47, 7.73, 7.53, 7.37] mM�1 min�1

P22 R22: dissociation of FADD from RIP1-u:TRADD in complex II 10 [�0.17, �0.15, �0.31, �0.10] min�1

P23 R23: association of C8i to FADD in complex IIa 10 [1.49, 1.48, 1.49, 1.15] mM�1 min�1

P24 R24: dissociation of C8i from complex IIa 10 [�2.10, �2.10, �2.00, �1.72] min�1

P25 R25: association of FLIP to C8i in complex IIa 10 [3.73, 3.85, 3.93, 3.72] mM�1 min�1

P26 R26: dissociation of FLIP from C8i in complex IIa 10 [�4.10, �4.70, �5.40, �3.96] min�1

P27 R27: activation of C8i in complex IIa 10 [�2.05, �2.30, �2.30, 1.66] min�1

P28 R28: inactivation of C8a in complex IIa 10 [1.41, 1.53, 1.36, �2.41] min�1

P29 R29: degradation of RIP1-u by C8a:FLIP in complex IIa 10 [�0.12, �0.38, �0.21, �0.10] min�1

P30 R30: association RIP3 to RIP1-u in complex IIb 10 [6.22, 6.10, 6.09, 6.26] mM�1 min�1

P31 R31: dissociation of RIP3 from RIP1-u in complex IIb 10 [�0.79, �0.81, �0.53, �0.97] min�1

P32 R32: association of C8a:FLIP to complex IIb 10 [3.28, 3.83, 3.18, 3.19] mM�1 min�1

P33 R33: dissociation of C8a:FLIP from complex IIb 10 [�3.00, �3.00, �2.21, �2.26] min�1

P34 R34: degradation of RIP1-u by C8a:FLIP in complex IIb 10 [�2.60, �2.40, �3.85, �1.75] min�1

P35 R35: dissociation of RIP1-u:RIP3 from complex IIb 10 [�3.30, �2.44, �2.42, �2.41] min�1

P36 R36: phosphorylation of RIP1-p by RIP3 in the necrosome 10 [�2.28, �2.14, �2.32, �2.31] min�1

P37 R37: phosphorylation of RIP3 by RIP1-p in the necrosome 10 [�2.62, �2.55, �2.61, �3.01] min�1

P38 R38: association of MLKL to the necrosome 10 [5.03, 4.16, 3.98, 4.11] mM�1 min�1

P39 R39: dissociation of MLKL from the necrosome 10 [0.29, 0.47, 0.02, 0.16] min�1

P40 R40: phosphorylation of MLKL 10 [2.10, 2.63, 2.46, 2.53] min�1

C8i, C8a: inactive and active caspase-8; RIP1-u, RIP1-Ub, RIP1-p: unmodified, ubiquitinated, and phosphorylated RIP1; RIP3-p: phosphorylated RIP3. Me-

dian values are ordered as 10 [M1, M2, M3, M4].
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to TNF receptor 1 (TNFR1) and ending at phosphorylation
of the necroptosis cell death reporter MLKL. A model sche-
matic is provided as a visual aid (Fig. 1), with reactions,
including association, dissociation, phosphorylation, ubiq-
uitination, deubiquitination, and degradation, denoted as
‘‘RN,’’ where N is the reaction index. Note that protein
synthesis is assumed negligible and omitted from the model.
Also, while relatively complex, the proposed model is still a
highly simplified representation of the true biochemical
events involved in necroptosis execution (28). Many pro-
teins in the pathway (e.g., RIP1, TRADD, FADD,
caspase-8, and FLIP) are also involved in related pathways,
such as apoptosis, which we do not consider in this work
(29–31). Abstractions and simplifications such as these are
standard practice in computational modeling and necessary
820 Biophysical Journal 122, 817–834, March 7, 2023
for gaining critical insights into complex biological phe-
nomena (32).

In the model (Fig. 1), signaling through the necroptosis
pathway is initiated when the cytokine TNF binds to the
extracellular domain of TNFR1 (R1-2), which protects
TNF from degradation (R3) and activates the receptor by
causing a conformational change in its intracellular domain
(25,33,34). The adaptor protein TRADD (TNFR1-associ-
ated death domain) is then recruited to the intracellular
domain of TNFR1 (R4-5) to facilitate binding of RIP1 (un-
modified; R6-7) and TRAF2 (TNFR-associated factor 2)
(R8-9) (35–37). TRAF2 recruits and binds cIAP1/2 (cellular
inhibitor of apoptosis proteins 1 and 2) (R10-11), which add
nondegradative polyubiquitin chains to RIP1 (R12) (8).
Ubiquitinated RIP1 recruits other necessary components



A biochemical model of necroptosis
to the complex, including LUBAC (linear ubiquitin chain
assembly complex) (R13-14). We refer to the supramolecular
structure that is anchored to the cell membrane and
composed of TNF, TNFR1, TRADD, ubiquitinated RIP1,
TRAF2, cIAP1/2, and LUBAC as complex I (38,39)
(Fig. 1, pink). Biologically, complex I is known to drive
multiple pathways in addition to necroptosis, including
apoptosis and the inflammatory NF-kB pathway (40).

Formation of complex I is followed by deubiquitination
of RIP1 by the enzymes A20 (14,21) and CYLD
(11,17,19,20), which competitively bind to RIP1 in its ubiq-
uitinated state (R15-18), causing cleavage, deubiquitination,
and release in association with TRADD and the dissolution
of complex I (R19-20). The deubiquitinated RIP1:TRADD
heterodimer then recruits FADD (Fas-associated protein
with death domain) (R21-22), initiating the formation of com-
plex II, also known as the cytosolic death-inducing signaling
complex (Fig. 1, orange). Complex II can be modified via
two competing paths, one antinecroptotic and one prone-
croptotic. We model the antinecroptotic path beginning
with FADD, via its death effector domain, mediating the
recruitment of inactive caspase-8 (C8i) (R23-24) (41), which
subsequently binds long-form FLIP (cellular FADD-like IL-
1b-converting enzyme-inhibitory protein) (R25-26), resulting
in the complex commonly referred to as complex IIa (25,41)
(Fig. 1, green). FLIP then oligomerizes with C8i to produce
the active form of caspase-8 in necroptosis (C8a) (R27-28)
(42,43), which proceeds to cleave RIP1 for truncation
(i.e., degradation), resulting in dissolution of the complex
and release of the active C8a:FLIP heterodimer (44,45)
(R29) that directly inhibits necroptosis (R32-34).

The pronecroptotic path is modeled as involving forma-
tion of complex IIb (Fig. 1, blue), which occurs when deu-
biquitinated RIP1 in complex II recruits RIP3 (R30-31),
blocking C8i recruitment (R23-24). The C8a:FLIP hetero-
dimer can then be recruited to complex IIb (R32-33), which
cleaves RIP1 for truncation, leading to dissolution of the
complex (R34). Alternatively, RIP3 and deubiquitinated
RIP1 can dissociate from complex IIb as a heterodimer
(R35) (25). Cross-phosphorylation of RIP3 (R36) and then
RIP1 (R37), followed by recruitment of MLKL (R38-39)
(46,47), results in the necroptosis signaling complex known
as the necrosome (Fig. 1, yellow) (25). Phosphorylation of
MLKL (48) in the necrosome by phosphorylated RIP1 and
RIP3 is followed by release of pMLKL from the phosphor-
ylated RIP1:RIP3 heterodimer (R40), which is again free to
bind MLKL. We assume that dephosphorylation and degra-
dation of the phosphorylated RIP1:RIP3 heterodimer is
negligible, consistent with experimental reports (49). Bio-
logically, translocation of pMLKL to the cell membrane
(50) then causes rapid plasma membrane rupture and in-
flammatory response due to the release of damage-associ-
ated molecular patterns and cytokines (51), ultimately
resulting in cell death. These latter steps are not included
in the present model.
Western blots and mass spectrometry enable
Bayesian parameter estimation of the necroptosis
model

To explore the dynamics of our computational necroptosis
model, we first calibrated it to experimental protein time
course data using a Bayesian parameter estimation approach
(52). In brief, we used L929 cells, a murine fibrosarcoma
cell line that is a well-established model system for studying
necroptosis (25). Cells were treated with 100, 10, 1, and
0.1 ng/mL of TNF over 16 h and pMLKL levels were esti-
mated at multiple time points via western blot using densi-
tometry (Fig. 2 A). To quantify initial protein abundances,
used as inputs to the model, we used label-free mass spec-
trometry in untreated L929 cells for the proteins C8,
FADD, MLKL, RIP3, TRADD, and TRAF2 (Fig. 2 B).
All other initial protein levels (other than TNF, which de-
pends on applied dose) were set to values based on biolog-
ically plausible assumptions (Table 1). Parameter estimation
was then performed using PyDREAM (52) (Fig. 2 C), a
multichain Monte Carlo sampling tool, with a multiobjec-
tive cost function that included data from the two highest
TNF doses (100 and 10 ng/mL; Fig. S1). In all, an ensemble
of 10,628 parameter sets was obtained (Fig. S2), all of
which reproduce the experimental data reasonably well
(53) (see materials and methods for additional details).
Model simulations at the two lowest TNF doses (1 and
0.1 ng/mL; Fig. 2 C) showed good correspondence to exper-
imental data, providing a simple validation of the model fits.
A dynamical systems analysis identifies four
distinct necroptosis executionmodes differing by
mechanism of RIP1 ubiquitination regulation

We performed a dynamical systems analysis to explore the
possibility that distinct ‘‘modes of necroptosis execution’’
exist within the parameter set ensemble obtained from
Bayesian parameter estimation. The rationale is that, while
different parameterizations of the model achieve cell death
at approximately equal times, they may arrive there via
significantly different sequences of molecular events. We
utilized a computational tool (54) that identifies subnet-
works of reactions that dominate the production or con-
sumption of a target species, pMLKL in this case, at user-
specified times along a time course. Each subnetwork is
given an integer label and each time point is associated
with a subnetwork. Thus, a continuous concentration time
course is ‘‘digitized’’ into a sequence of integers, which
we refer to as a ‘‘dynamical signature.’’ This transformation
enables simple comparisons between time courses obtained
with different parameter sets using standard dissimilarity
metrics, such as the longest common subsequence (55).
Applying this approach to all 10,628 parameter sets ob-
tained from Bayesian parameter estimation of our necropto-
sis model and clustering the resulting dynamical signatures
Biophysical Journal 122, 817–834, March 7, 2023 821



FIGURE 2 Proteomics, parameter calibration, and time-to-death. (A) Western blots for phosphorylated MLKL (pMLKL) at multiple time points in L929

(murine fibrosarcoma) cells under 0.1–100 ng/mL TNF stimulation. Actin, used as a loading control, is also shown for comparison. (B) Mass spectrometry

data from untreated L929 cells for multiple proteins involved in necroptosis execution. Points represent the median of three replicates (used as input to the

computational model); error bars span the interquartile range. (C) Simulated pMLKL time courses (plotted as 95% probability envelopes) for 0.1–100 ng/mL

TNF stimulation (same concentrations as in (A)) based on 10,628 parameter sets obtained using Bayesian parameter estimation. The model was calibrated to

the 100 and 10 ng/mLTNF data only (shaded regions with diagonal lines); time courses for the lowest TNF concentrations (shaded regions with no diagonal

lines) amount to a simple model validation. Points correspond to the western blot data in (A), quantified via densitometry. Points and shaded regions are

colored the same, based on TNF dose. (D) Illustration of the time-to-death (TTD) metric used to quantify cell death in silico. A hard threshold of 2772 mol-

ecules (half the median MLKL level in (B)) was chosen to signify cell death (see materials and methods). MLKL, mixed lineage kinase domain-like protein;

TNF, tumor necrosis factor.
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using a spectral clustering algorithm (56), we obtained
four distinct clusters, or modes of necroptosis execution
(Figs. 3 A and S3; see materials and methods for additional
details).

Interestingly, two of the execution modes identified
(modes 1 and 2) exhibit significantly more variability in
pMLKL temporal dynamics and TTD (defined in Fig. 2
D; see materials and methods) across their associated
parameter sets than the other two (Fig. 3 B). This suggests
that the modes harbor fundamental differences in rate con-
stant values that lead to differential robustness to parameter
variations. To explore this further, we compared the distri-
butions of rate constants across modes and identified eight
(out of 40) with significant differences (>7.5-fold) between
the largest and smallest mean (Fig. 3 C; additional distribu-
tions are shown in Fig. S4). We also consider distributions
for two rate constants (P12 and P13; see Fig. 1 and Table 2)
with much smaller differences across means (�threefold in
both cases) but for which the model exhibits high sensitivity
(discussed in the next subsection). In all, these 10 rate con-
stants correspond to reactions spanning the model topology,
starting with the association of TRADD to complex I (P4),
which has a somewhat increased rate in mode 4. Further
downstream, the rate constant for ubiquitination of RIP1
822 Biophysical Journal 122, 817–834, March 7, 2023
by cIAP (P12) is slightly larger in mode 1 than in the other
modes. Small differences are also seen for the binding rate
of LUBAC to complex I (P13). The rate constant for binding
of A20 to ubiquitinated RIP1 (P15) is significantly smaller
in mode 4 than in the other modes and somewhat smaller
in mode 2 relative to modes 1 and 3. Deubiquitination of
RIP1 by A20 (P19) is significantly reduced in modes 2
and 4, while, interestingly, the rate constant for RIP1 deubi-
quitination by CYLD (P20) in mode 1 is reduced by almost
the same amount relative to the other modes. For activation/
deactivation of C8 in complex IIa, which is a critical step in
the pathway for determining whether the cell will progress
to necroptosis, mode 4 has both a significantly larger activa-
tion (P27) and significantly smaller deactivation (P28) rate
constant. The rate constant for subsequent RIP1 degradation
by the active C8a:FLIP heterodimer to complex IIb (P34),
which inhibits necroptosis, is somewhat smaller in mode 3
and larger in mode 4 relative to the other modes. Finally,
the binding rate constant for MLKL to the phosphorylated
RIP1:RIP3 heterodimer (P38), the final step in the formation
of the necrosome, is somewhat increased in mode 1. These
results clearly illustrate that significant differences exist in
the values of rate constants across the modes of execution,
despite similarities in pMLKL temporal dynamics.



FIGURE 3 Four modes of necroptosis execution exhibit variability in temporal dynamics and differ in rate constant values and responses to CYLD and

A20 knockouts. (A) Clustering analysis of simulated time courses (100 ng/mL TNF) from 10,628 parameter sets reveals four distinct modes of execution

(M1, ., M4). Dissimilarity (‘‘distance’’) between dynamical signatures (digitized time courses) was quantified using the longest common subsequence

(see materials and methods). (B) Simulated time courses (100 ng/mL TNF) of the necroptosis marker, pMLKL, show significantly more variability in TTD

(defined as the time at which pMLKL reaches its half-maximal value) in modes 1 and 2 than in modes 3 and 4. Time courses for all parameter sets associated

with each mode are shown. Experimental western blot data (black circles; quantified from Fig. 2 A) are included to illustrate the model fit for each mode. (C)

Variations in the values of 10 rate constants distinguish the four modes of execution. Parameter indices (PN) match reaction indices (RN) in Fig. 1 and Table 2.

Note that second-order rate constants (P4, P13, P15, and P38; see Table 2) were converted from units of mM�1 min�1 to min�1 assuming a spherical cell of

diameter 5 mm (see materials and methods). (D) Knockouts of CYLD and A20 (100 ng/mLTNF) differentially affect TTD, relative to wild-type (WT), across

the four modes of execution (each dot corresponds to a parameter set). Note that CYLD;A20 double knockout inhibits cell death in all cases (TTD ¼N). The

number of parameter sets that do not result in cell death (nN) are included for all modes under all conditions. KO, knockout; DKO, double knockout.

A biochemical model of necroptosis
CYLD and A20 are known regulators of RIP1 deubiqui-
tination (9–15) but have been reported as both drivers
and inhibitors of necroptosis in different cell types
(11,17,19,20,23–25). To investigate the roles of CYLD
and A20 in our necroptosis model, we performed in silico
CYLD and A20 KO experiments and compared TTD distri-
butions with the unperturbed, i.e., ‘‘wild-type’’, case (Fig. 3
D). Unsurprisingly, in all cases CYLD;A20 double KO
(DKO) prevents cell death (TTD ¼N). However, for single
CYLD and A20 KOs, we see highly variable responses
across the four modes of execution. For mode 1, we see
that knocking out A20 leads to a general increase in TTD
(i.e., decrease in necroptosis sensitivity) across the param-
eter sets, consistent with A20 acting as a regulator of
RIP1 ubiquitination and driver of necroptosis (14,21).
Conversely, CYLD KO results in a general reduction in
TTD (i.e., increase in sensitivity), indicating that CYLD in
mode 1 counterintuitively operates as an inhibitor of necrop-
tosis. We see the opposite trends in mode 2: A20 KO reduces
TTD, while CYLD KO leads to a general increase in TTD
across the parameter sets. Interestingly, this result is consis-
tent with observations by Vanlangenakker et al. (25) that
A20 depletion can sensitize cells to death by necroptosis.
In mode 3, we see that single KOs of A20 and CYLD
have no effect on TTD. Since DKO prevents cell death in
all cases, this reveals that A20 and CYLD both drive RIP1
deubiquitination and, hence, when one enzyme is knocked
out signal flow diverts through the other. Finally, in
Biophysical Journal 122, 817–834, March 7, 2023 823
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mode 4, CYLD KO leads to a general increase in TTD, like
mode 2; however, A20 KO has no effect, as in mode 3. In all,
the results of in silico KO experiments reveal distinct differ-
ences in the roles of A20 and CYLD in RIP1 ubiquitination
regulation among the four model-predicted modes of nec-
roptosis execution (summarized in Fig. 4).
Ubiquitination of RIP1 by cIAP in complex I and
binding of LUBAC to complex I are global
modulators of necroptosis sensitivity across
execution modes

Targeting necroptosis by small-molecule modulators has
emerged as a promising approach for both cancer therapy
and treatment of inflammatory diseases (57). It is of interest,
therefore, to determine if modulating factors exist that are
common across all model-predicted modes of execution,
which could represent novel therapeutic targets. Toward
this end, we performed sensitivity analyses based on ‘‘repre-
sentative’’ parameter sets for each mode (automatically
generated by our dynamical systems analysis tool (54);
see materials and methods for details) over the 14 non-
zero initial protein concentrations (Fig. 5 A) and 40 rate con-
stants (Figs. 6 A and S5). Changes in necroptosis sensitivity,
quantified by changes in TTD (Fig. 2 D), were calculated
over ranges 520% around a reference set of initial
protein concentrations (Table 1) and values of the rate con-
stants from the representative parameter set for each mode.
We then validated the results of these analyses (i.e., to
confirm they are not specific to the representative parameter
set) by performing, for all parameter sets associated with
each mode, in silico knockdowns (KDs) by 70% and
10-fold overexpressions for the initial concentrations
(58,59) (Fig. 5 B) and by varying the rate constant
values 510-fold (Fig. 6 B).

Across the four modes of execution, we see three com-
mon protein modulators of necroptosis sensitivity: TNF,
TNFR, and MLKL (Fig. 5). These are expected, since these
proteins are well-known master regulators of TNF-induced
necroptosis (28,60). In addition, for the rate constants we
FIGURE 4 Summary depictions of the four modes of necroptosis execution. Ea

(orange text; see Fig. 5), rate constants (not depicted; see Fig. 6), and mechanism

II formation (and hence necroptosis) by CYLD or A20 is represented by arrow
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see three common modulators across the four modes
(Fig. 6), corresponding to the association of TNF to TNFR
(P1), ubiquitination of RIP1 by cIAP in complex I (P12),
and association of LUBAC (P13) to complex I (see Fig. 1,
pink). The former is expected since TNF is the death-
inducing stimulus driving necroptosis. The latter two are
interesting in that they are consistent with published reports
demonstrating that cIAP inhibition by SMAC mimetics (45)
and LUBAC inhibition by genetic deletion (61) alter necrop-
tosis sensitivity. For all four modes, we see that increasing
the values of these two rate constants (P12 and P13) leads
to a significant decrease in TTD (i.e., increased necroptosis
sensitivity), and vice versa. Note that the analyses based on
the representative parameter set (Fig. 6 A) show only that
TTD decreases when these two rate constant values are
increased. However, by repeating the analyses over all
parameter sets associated with each mode (Fig. 6 B), we
confirm that TTD also increases when the rate constant
values are decreased.
Sensitivities to initial protein levels and rate
constant values reveal execution mode-
dependent targets for modulating TTD

We have shown that the four modes of necroptosis execution
(Fig. 3 A) exhibit differences in variability in TTD (Fig. 3 B),
rate parameter values (Fig. 3 C), and responses to A20 and
CYLD KOs (Fig. 3 D). This suggests that, in addition to
the global modulators identified above (TNF, TNFR,
MLKL, P1, P12, and P13; Figs. 5 and 6), each mode must
also have a unique set of factors that drive response. For
mode 1, these include proteins (A20, cIAP, and CYLD;
Fig. 5, top row) and rate constants (P10, P11, and P15–
P19; Fig. 6, top row) associated with RIP1 ubiquitination
regulation in complex I (see Fig. 1, orange). The sensitivities
to A20 and CYLD are consistent with the results from
in silico KO experiments (Fig. 3 D). Intuitively, we can
understand these sensitivities as due to competitive binding
between A20 and CYLD to complex I, coupled with differ-
ences in the rate constants for RIP1 deubiquitination by A20
ch mode is distinguished by differences in sensitivity to initial protein levels

of RIP1 ubiquitination regulation by CYLD and A20. Promotion of complex

s (green or blue); inhibition is represented by a red line with a bar.



FIGURE 5 Sensitivity analyses and model-pre-

dicted protein targets for each mode of execution.

(A) Changes in TTD for ‘‘representative’’ parameter

sets of each mode (see materials and methods).

Black shaded regions signify decreases in initial

protein concentrations; white shaded regions signify

increases. (B) Knockdown (KD) (70%) and overex-

pression (OE) (10-fold) of potential targets identi-

fied in (A) for all parameter sets for each mode.

The number of parameter sets that do not result

in cell death (nN) are included to the right. Solid

black lines, medians; dashed black lines, means;

*p < 0.05, **p < 0.01, ***p < 0.001 (Mood’s me-

dian test).

A biochemical model of necroptosis
(P19) and CYLD (P20; see Fig. 3 C). In other words,
increasing the amount of A20 leads to increased amounts
of A20-bound complex I (and vice versa). Since the rate con-
stant for RIP1 deubiquitination in mode 1 by A20 is much
larger than for CYLD (Fig. 3 C), this results in a significant
decrease in TTD, i.e., A20 promotes necroptosis, as ex-
pected. Conversely, increasing the amount of CYLD leads
to more CYLD-bound complex I (and vice versa). Since
CYLD is less efficient at deubiquitinating RIP1, this results
in a much lower overall rate of RIP1 deubiquitination and a
significant increase in TTD, i.e., CYLD, counterintuitively,
inhibits necroptosis in this mode. Sensitivities to rate
Biophysical Journal 122, 817–834, March 7, 2023 825



FIGURE 6 Sensitivity analyses and model-pre-

dicted rate constant targets for each mode of execu-

tion. (A) Changes in TTD for ‘‘representative’’

parameter sets of each mode (see materials and

methods). Black shaded regions signify decreases in

rate constant values; white shaded regions signify in-

creases. (B) Decreases (Z; 10-fold) and increases (\;
10-fold) of potential targets identified in (A) for all

parameter sets for each mode. The number of param-

eter sets that do not result in cell death (nN) are

included to the right. Parameter indices (PN) match

reaction indices (RN) in Fig. 1 and Table 2. Solid

black lines, medians; dashed black lines, means;

*p< 0.05, **p< 0.01, ***p< 0.001 (Mood’s median

test).
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constants associated with these processes (P10, P11, and
P15–P19) can be understood similarly.

As in mode 1, potential targets in mode 2 include proteins
(A20, CYLD, and LUBAC; Fig. 5 A, second row) and rate
constants (P15–P20; Fig. 6, second row) associated with
RIP1 ubiquitination regulation. However, the sensitivities
to A20 and CYLD are reversed in their effects on TTD as
compared with mode 1, i.e., A20 counterintuitively inhibits
necroptosis, while CYLD promotes necroptosis, as ex-
pected. Again, these results are consistent with in silico
KO experiments (Fig. 3 D) and can be understood in terms
of competitive binding between A20 and CYLD to complex
I and differences in rate constants for RIP1 deubiquitination
by A20 and CYLD (Fig. 3 C). Also note that TTD in both
modes 1 and 2 are sensitive to the rate constant for TNF
degradation (P3; Fig. 6, top and second rows), which is as
expected since TNF is the stimulus driving necroptosis.

For mode 3, potential targets are associated with forma-
tion of the necrosome from complex IIb, which immediately
precedes necroptosis execution (see Fig. 1, blue). Specif-
ically, we see sensitivities to proteins C8, RIP1, and
TRADD (Fig. 5, third row), the latter two of which are
key components of complex II, and rate constants (P2–P6;
Fig. 6, third row) for reactions upstream of complex II
that include the association of RIP1 and TRADD to com-
plex I. Intuitively, the comparatively small value of the
rate constant in mode 3 for degradation of the C8a:FLIP-
bound complex IIb (P34; see Fig. 3 C) is what ultimately
drives these sensitivities. Modifying rates of reactions that
contribute to complex II formation and/or the rate of binding
of C8i to complex II alters the balance between the rates of
necrosome formation and the degradation of complex IIb
that prevents necroptosis, thus affecting TTD. Also note,
in contrast to modes 1 and 2, the lack of sensitivity in
mode 3 to variations in the initial concentrations of A20
and CYLD. This is because, in this mode, A20 and CYLD
are effectively indistinguishable enzymes, i.e., rate con-
stants for binding and unbinding from complex I (P15–
P18) and RIP1 deubiquitination (P19 and P20) are virtually
identical for both (Figs. 3 C and S4). Thus, varying the con-
centration of one is effectively equivalent to varying the
concentration of the other by the same amount.

In mode 4, we see the same sensitivities as in mode 3 to
varying concentrations of C8, RIP1, and TRADD (Fig. 5,
bottom row) and the rate constant for association of
TRADD to complex I (P4; Fig. 6, bottom row). These sen-
sitivities can be understood in the same way as in mode 3
in terms of the balance between necrosome formation and
complex IIb degradation. However, we see an additional
sensitivity in mode 4 to the initial concentration of
LUBAC (Fig. 5, bottom row). Interestingly, for the represen-
tative parameter set, this is evident for both increases and
decreases in LUBAC concentration (Fig. 5 A, bottom
row), but when all parameter sets are considered is only
statistically significant for the KD experiments (Fig. 6 A,
bottom row). Note also that the representative parameter
set shows a sensitivity to the dissociation rate of LUBAC
from complex I (P14; Fig. 6 A, bottom row) but the effect
is not statistically significant when all parameter sets are
considered (Fig. 6 B, bottom row). Furthermore, despite
the results of in silico KO experiments that show RIP1 deu-
biquitination in mode 4 is driven exclusively by CYLD
(Fig. 3 D), we do not see a sensitivity in TTD to variations
in CYLD concentration, even for a 70% KD (Fig. 5, bottom
row). We can explain both this result and the one-way sensi-
tivity to variations in LUBAC as due to a severely dysfunc-
tional A20 in this mode, evident in exceedingly small rate
constants for A20 binding to complex I (P15) and subse-
quent RIP1 deubiquitination (P19), coupled with a compar-
atively large rate constant for C8 activation (P27) and small
rate constant for C8 inactivation (P28; Fig. 3 C). Essentially,
A20 does not compete with CYLD for binding to complex I
(P15 � P16), and since CYLD is in great excess relative to
complex I (Fig. S6 A), varying CYLD concentration has lit-
tle to no effect on TTD except for very large reductions,
such as a KO (Figs. 3 D and S6 B). Moreover, the exceed-
ingly fast rate of C8 activation (P28 O P27 � 1) leads to
a rapid accumulation of active C8a:FLIP heterodimer,
which inhibits necroptosis by binding and degrading com-
plex IIb. This essentially sets a ‘‘speed limit’’ on the rate
of pMLKL production, i.e., any increase in complex I con-
centration due to an increase in the concentration of
LUBAC, which would be expected to decrease TTD
because of the large excess of CYLD, is counteracted
by the increased concentration of C8a:FLIP. However,
decreasing complex I concentration by knocking down
LUBAC would still be expected to increase TTD, as
confirmed by our results.
DISCUSSION

A recent review of TNF-induced necroptosis (28) described
signaling along the RIP1-RIP3-MLKL axis in terms of at
least three major compartmentalization events: TNFR inter-
nalization in complex I, multiprotein assembly of com-
plexes IIa and IIb, and necrosome formation leading to
translocation of pMLKL to the plasma membrane. Impor-
tantly, the authors emphasized that cues and regulation
mechanisms underlying these compartmentalization events
are poorly understood and proposed that a network of mod-
ulators surrounds the necroptotic signaling core (62–64),
tuned in a context-, cell-type-, and species-dependent
manner. The results presented in this work are consistent
with this view: a detailed kinetic model comprising core
and complementary necroptotic signaling proteins and asso-
ciated rate constants (Fig. 1; Tables 1 and 2), calibrated to
experimental western blot data (Fig. 2, A–C), can produce
cell death dynamics via distinct execution modes (Fig. 3,
A and B), distinguished by variations in rate constants
(Fig. 3 C) and the roles of A20 and CYLD in RIP1
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ubiquitination regulation (Fig. 3 D). Moreover, model sensi-
tivity analyses based on changes in TTD (Fig. 2 D) revealed
global and mode-specific modulators of necroptosis sensi-
tivity for each mode (Figs. 5 and 6; summarized in
Fig. 4). Global modulators include known effectors, such
as TNF, TNFR, MLKL, and rate constants associated with
these proteins, as well as two additional modulators, the
rate constant for RIP1 ubiquitination by cIAP in complex
I (P12) and the binding rate constant for LUBAC to complex
I (P13). Mode-specific modulators include, for modes 1 and
2, proteins and rate constants involved in RIP1 ubiquitina-
tion regulation (A20, cIAP, CYLD, LUBAC, P10, P11,
and P15–P20) and, for modes 3 and 4, factors regulating
the balance between complex IIb degradation and ne-
crosome formation (C8, LUBAC, RIP1, TRADD, P2–P6,
P14, P27, and P28).

Importantly, although model parameters were inferred
from experimental data for only a single mouse fibrosar-
coma cell line (L929), because the proposed model is mech-
anistic, based on decades’ worth of experimental studies
involving numerous cell types and experimental conditions,
as long as the same proteins and interactions are assumed to
exist, it can be applied to other cell types and contexts as
well. Differences in behaviors can then be attributed to
intrinsic differences among the cell types and/or experi-
mental conditions, which can be mathematically accounted
for by varying the rate constant values and initial protein
concentrations. With this in mind, numerous published
experimental studies in mammalian cells (human and
mouse) have shown that RIP1 deubiquitination in complex
I is driven by A20, CYLD, or both, depending on cell
type. For example, Wertz et al. (13) showed that A20 can
deubiquitinate RIP1 in human embryonic kidney cells and
mouse embryonic fibroblasts (MEFs). In contrast, Feoktis-
tova et al. (65) reported that deletion of A20 in human T
lymphocyte cells has no effect on necroptosis sensitivity.
Moreover, Moquin et al. (11) reported that RIP1 deubiquiti-
nation in MEFs is mediated by CYLD, but proposed that it
occurs in the necrosome rather than complex I, since KD of
CYLD had no effect on RIP1 deubiquitination. Vanlange-
nakker et al. (25) showed in mouse fibrosarcoma cells that
RIP1 can be deubiquitinated by both A20 and CYLD but,
while inhibition of CYLD protects cells from necroptosis,
inhibiting A20, counterintuitively, increases sensitivity to
necroptosis. They also observed no effect on necroptosis af-
ter KD of TRADD. Hitomi et al. (9) showed that increased
CYLD expression reduces necroptosis in human T lympho-
cyte cells. Similarly, Liu et al. (66) showed in hippocampal
neurons that KD of CYLD blocks necroptosis and Wright
et al. (20) showed that CYLD deubiquitinates RIP1 in hu-
man cervical adenocarcinoma (HCAC) cells.

To reconcile these contrasting reports, we have associated
with each of the above experimental studies one or more
modes of necroptosis execution identified from our model
analysis (Table 3). Specifically, the report by Wertz et al.
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(13) that A20 deubiquitinates RIP1 in human embryonic
kidney cells and MEFs implies that knocking down A20
leads to an increase in TTD (i.e., a decrease in necroptosis
sensitivity), which is only consistent with mode 1 (Fig. 3
D). Conversely, the reports by Hitomi et al. (9), Liu et al.
(66), and Wright et al. (20) all suggest that knocking
down CYLD would increase TTD, which could be ex-
plained by either modes 2 or 4 (Fig. 3 D). The observation
by Feokstitova et al. (65) that deletion of A20 has no effect
on necroptosis sensitivity in HCAC cells is intriguing
because it is consistent with both modes 3 and 4 (Fig. 3
D) and they used the same cell line (HeLa) as Wright
et al. (20), whose observations are consistent with modes
2 and 4 (as mentioned above). This could indicate that
HCAC cells (or HeLa cells, specifically) operate via mode
4, since both studies are consistent with this mode, or that
the cells in these experiments are operating via different
modes of necroptosis execution because of differences in
context, i.e., genetic or epigenetic variations between sam-
ples or differences in experimental conditions between lab-
oratories. The report by Moquin et al. (11) is interesting
because their observation that CYLD binds to complex I
but RIP1 ubiquitination is not affected in CYLD-deficient
MEFs led them to conclude that RIP1 ubiquitination is regu-
lated by CYLD in the necrosome, rather than complex I.
However, our analysis shows these observations are consis-
tent with mode 4, in which TTD increases for CYLD KO
(Fig. 3 D) but there is no effect on TTD for CYLD
KD < 90% (Fig. 5 B, bottom row, and Fig. S6B), providing
an alternative possible explanation.

Of particular interest is the report by Vanlangenakker
et al. (25) that, like Hitomi et al. (9), Liu et al. (66), and
Wright et al. (20), suggests that knocking down CYLD in-
creases TTD. However, their study also suggests that knock-
ing down A20, counterintuitively, decreases TTD and
knocking down TRADD has no effect. Of the four modes
of execution identified in this work (Fig. 4), only mode 2
(Figs. 3 D and 5, second and bottom rows), in which RIP1
deubiquitination is significantly faster by CYLD than by
A20 (Fig. 3 C), can explain all these observations. As ex-
plained above, binding of A20 to complex I in this mode
has the effect of slowing down RIP1 deubiquitination and,
hence, inhibiting necroptosis. Interestingly, this explanation
for the inhibitory effect of A20 reported by Vanlangenakker
et al. (25) differs from that offered in Oliver Metzig et al.
(26), where we proposed that TNF-induced necroptosis is
driven by an incoherent feedforward loop within a dynamic
NF-kB-A20-RIPK3 circuit. Specifically, the feedforward
loop acts on A20 through the NF-kB pathway, which is
not included in the model proposed here. An open question,
therefore, is whether these two mechanisms are possible
alternative explanations of the same phenomenon or if
both exist and operate simultaneously within cells. If the
former, it is of interest to determine which (if either) is the
‘‘true’’ mechanism driving this behavior. If the latter, an



TABLE 3 Multiple experimental studies of necroptosis can be associated with different model-predicted modes of execution

Refs. Cell type Quote(s) from article Interpretation Possible execution mode(s)

Feoktistova

et al. (65)

HCAC (HeLa) "[T]he deletion of A20 in HeLa or HaCaT cells had no

effect on the TNF-mediated cell death sensitivity"

A20 Z TTD 5 M3, M4

Hitomi et al. (9) HTL (Jurkat) "[I]nhibition of CYLD expression in Jurkat cells also

attenuated necroptosis"

CYLD Z TTD \ M2, M4

Liu et al. (66) HCN (HT-22) "RIP1 and its deubiquitinase CYLD are required

for TNF-induced necrosis of HT-22 cells"

CYLD Z TTD \ M2, M4

Moquin et al. (11) MEF "CYLD regulates RIP1 ubiquitination in the TNF-a-induced

necrosome, but not in the TNFR-1 signaling complex""

Although CYLD was recruited to TNFR-1 in a

ligand-dependent manner, RIP1 ubiquitination was

not affected in CYLD�/� MEFs"

CYLD Z TTD \ M4 (see text)

Vanlangenakker

et al. (25)

MFS (L929) "[W]e and others previously showed that CYLD repression

protects L929 cells from TNF-induced necroptosis""

[W]e were surprised to find that A20 depletion had an

opposite effect and greatly sensitized the cells to death""

[W]e found that TRADD depletion in L929 cells did

not affect TNF-induced necroptosis"

CYLD Z TTD \
A20 Z TTD Z

TRADD Z TTD 5

M2

Wertz et al. (13) HEK (HEK293T) "Co-transfection of wild-type A20 deubiquitinates RIP

in HEK293T cells"

A20 Z TTD \ M1

Wertz et al. (13) MEF "However, in the absence of A20, RIP1 will neither be

deubiquitinated nor targeted for proteasomal degradation.

Indeed, RIP recruited to activated TNFR1 remained

hyperubiquitinated and was stabilized in A20�/� MEFs"

A20 Z TTD \ M1

Wright et al. (20) HCAC (HeLa) "RIP1 ubiquitination [was] inhibited by wild-type (Wt)

CYLD but not a catalytically inactive CYLD mutant (Mut)"

CYLD Z TTD \ M2, M4

In the second column, the specific cell line used (if applicable) is included in parentheses. HCAC, human cervical adenocarcinoma; HCN, hippocampal

neuron; HEK, human embryonic kidney; HTL, human T lymphocyte; MEF, mouse embryonic fibroblast; MFS, mouse fibrosarcoma. Z, decrease; \, in-
crease; 5, no change.

A biochemical model of necroptosis
important question is whether the two mechanisms operate
independently or if there is cross talk. Future work will
aim to answer these questions by combining additional
experimental data with advanced model selection tech-
niques (67), such as nested sampling (68), to quantify likeli-
hoods of alternative model structures.

Evading apoptosis is a hallmark of cancer (5–7) and,
thus, inducing necroptosis is currently being explored as
a potential anticancer treatment (40,57,69). Moreover,
inhibiting necroptosis is crucial for treating a variety of in-
flammatory diseases, including cardiovascular, liver, and
neurodegenerative diseases (4,12). Multiple pivot points
are also known to exist, allowing cells to switch between
prosurvival signaling and various programmed cell death
pathways, including apoptosis and necroptosis (29,70,71).
Improving our understanding of the molecular pathways
that drive necroptosis and other cell death and survival
pathways is thus critical for developing improved therapies
against these deadly diseases. We have shown that a
consensus model of TNF-induced necroptosis can explain
a variety of incommensurate and counterintuitive experi-
mental observations reported in the literature and can pre-
dict novel molecular targets for modulating necroptosis
sensitivity. The proposed model thus establishes a solid
foundation on which future model iterations can be built
that include cross talk between signaling pathways that
drives survival/death decisions in individual cells. To
achieve this, the proposed necroptosis model will need
to be integrated with models of, e.g., downstream
events involved in MLKL-mediated permeabilization of
the plasma membrane (72,73) (Golgi-, microtubule-, and
actin-dependent mechanisms), prosurvival (1,26) (e.g.,
NF-kB) and other programmed cell death pathways (e.g.,
apoptosis, ferroptosis) (29,74), cell-cycle progression
(75), and the immune system (40) (e.g., antigen-induced
proliferation of T cells). The model can also be expanded
to include additional proteins and small molecules known
to play a role in necroptosis (76,77) (e.g., ADAM17,
CHIP, TAK1, and necrostatins), additional necroptosis-
associated receptors (8) (e.g., TNFR2, CD95, and Toll-
like receptors) and ligands (78–80) (e.g., LPS, FasL, and
TRAIL), both forms of cIAP (81) (i.e., cIAP1 and
cIAP2), assembly of the LUBAC trimer complex (82),
different RIP1 ubiquitin chains (28) (i.e., M1, K48, and
K63), and additional biochemical events involved in the
activation of caspase-8 (83) (e.g., binding of pro-caspase-
8 to FADD, followed by oligomerization and cleavage)
and formation of the necrosome (84) (e.g., RIP3 phosphor-
ylation by CK1 family kinases). Eventually, a comprehen-
sive, mechanistic model of cell fate decisions could aid in
efforts to develop new drugs for treating inflammatory dis-
eases and cancer by identifying novel molecular targets
that shift the balance of cell fates toward either evasion
or promotion of cell death.
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MATERIALS AND METHODS

Cell culture and reagents

L929 cells (natural cytotoxic T cell clone 929, derivative of strain L) were

purchased from the American Type Culture Collection and cultured in Dul-

becco’s modified Eagle medium (Corning, NY) supplemented with 10%

fetal bovine serum (Omega Scientific, CA), 1% L-glutamine, and 1% peni-

cillin/streptomycin (Thermo Fisher Scientific, MA) at 5% CO2 and 37�C.
Mouse recombinant TNF was purchased from R&D Systems (MN) (cat.

no. 410-MT-10).
Immunoblotting

L929 cells (2–3 � 106) were grown in 10-cm dishes for 24 h followed by

treatment with TNF (0.1, 1, 10, or 100 ng/mL) for 16 h. Dead cells were

removed by washing with ice-cold phosphate-buffered saline. Remaining

adherent cells were lysed using radioimmunoprecipitation assay buffer

with 1% Triton X-100, protease, and phosphatase inhibitors. Samples

were normalized for total protein concentration (Bradford assay; Bio-

Rad, CA) and to the number of alive (i.e., adherent) cells, denaturated in

3� sodium dodecyl sulfate sample buffer (5 min at 95�C), and subjected

to gel electrophoresis (4–15% Criterion TGX Precast Midi Protein Gel;

Bio-Rad) and immunoblotting (PVDF Transfer Membrane; Thermo Fisher

Scientific). Membranes were blocked in 5% bovine serum albumin/Tris-

buffered saline with Tween 20 (TBS-T) and incubated with the following

antibodies: pMLKL (1:1000; Abcam, UK, cat. no. ab196436), actin

(1:3000; Santa Cruz Biotechnology (TX), cat. no. sc-1615), anti-rabbit

(1:5000; Santa Cruz, cat. no. sc-2004), and anti-goat (1:3000; Santa

Cruz, cat. no. sc-2354). Signal was developed using chemiluminescent sub-

strate (SuperSignal West Pico Plus; Thermo Fisher Scientific) and visual-

ized with a ChemiDoc MP imaging system (Bio-Rad). At all time points,

pMLKL levels were normalized to actin loading control and then ratios

calculated with respect to the maximum measured pMLKL level (i.e., at

16 h for 100 ng/mL TNF; Fig. 2 A). Based on previous work (26), where

we showed L929 cell viability is <10% at �20 h in 10 ng/mL TNF, we

can assume this is the maximum pMLKL level that an individual cell can

tolerate.
Initial protein concentrations

Initial concentrations and associated molecule counts for all proteins in the

model are provided in Table 1. Expression levels for six proteins (caspase-8,

FADD, unmodified MLKL, RIP3, TRADD, and TRAF2) were measured

directly in untreated L929 cells using absolute protein quantitation mass

spectrometry. As a negative control, cells were collected in three replicate

six-well plates and cell lysates were gathered, prepped for protein precipi-

tation, pellet, and digestion in the Vanderbilt Mass Spectrometry Research

Center (MSRC) Proteomics Core Laboratory. For the other seven proteins

(A20, cIAP, CYLD, FLIP, LUBAC, RIP1, and TNFR), initial concentra-

tions were based on typical values reported in the literature (85–87). Mole-

cule counts from mass spectrometry measurements were converted to

concentrations, and concentrations from the literature converted to mole-

cule counts, assuming an L929 cell of diameter 5 mm (88). For TNF, mole-

cule counts (for doses of 0.1–100 ng/mL) were calculated assuming an

enclosing sphere around the cell of diameter 16 mm and a molecular weight

of 51.9 kg/mol for the TNF homotrimer (89).
Model simulations and calculating TTD

All model simulations were run in PySB (90) by numerically integrating the

governing ordinary differential equations (ODEs) (Tables S1 and S2) using

LSODA (91), as implemented in the Python package SciPy (92). Simula-

tions were run for 30 h of simulated time, with outputs every 0.03 h.
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Following previous work with a model of extrinsically induced apoptosis

(86,93), we estimated TTD as the time point at which the amount of

pMLKL exceeded a set threshold of 2772 molecules (Fig. 2 D), which is

half the amount measured by mass spectrometry (Fig. 2 B). In previous

work (26), we showed there is a direct correlation between percent survival

and pMLKL level in L929 cells. We used a hard threshold rather than, e.g.,

the half-maximal amount of pMLKL, so that the conditions for cell death

would not change when we varied the initial MLKL amount in the sensi-

tivity analysis (Fig. 5). Furthermore, note that, although we are assuming

in the model that the maximum pMLKL level is 100% the initial MLKL

level (5544 molecules; Table 1), this choice has little effect on the TTD cal-

culations because of the steep (i.e., ‘‘snap-action’’ (86)) pMLKL response

curve (Fig. 2, C and D).
Bayesian parameter calibration

We estimated parameter values using PyDREAM (52), a Python implemen-

tation of the differential evolution adaptive metropolis (DREAM) algorithm

(94). We utilized pMLKL western blot data at the two highest TNF doses

(100 and 10 ng/mL) and defined the multiobjective cost function

CostðQÞ ¼
X

t

X

d

1

2s2ðt; dÞ½xmðt; dÞ � xeðt; dÞ�2 (1)

where Q is the parameter set, xm(t,d) and xe(t,d) are model-predicted and

experimentally measured pMLKL concentrations, respectively, at time t
and TNF dose d, and s(t,d) ¼ xe(t,d)/10 (following previous studies

(53,93,95)). Parameter sampling was performed using 5 Monte Carlo

chains, each run for 50,000 iterations. The first 25,000 samples were

considered burn-in and discarded, leaving 125,000 parameter sets for

further analysis. Out of these, we extracted an ensemble of 10,628 unique

parameter sets. Convergence was achieved for all chains (Fig. S1), assessed

using the Gelman-Rubin test (96,97). Starting positions for all PyDREAM

chains were determined using particle swarm optimization (PSO) (98), i.e.,

we performed 100 PSO runs of 500 iterations each, saved the parameter sets

from the last iteration of each run, and selected the 5 with the lowest cost

function values (Eq. 1). Furthermore, for all parameters, we set previous

distributions as log-normal distributions, LNðm ¼ log10ð
P5

i¼ 1pi =5Þ;
s2 ¼ 4Þ, where pi is the value of the parameter from the i-th PSO run. Start-

ing rate constant values for the PSO runs were set to physically plausible

values (99,100): association ¼ 10�6 min�1, dissociation ¼ 10�3 min�1,

ubiquitination/phosphorylation ¼ 1 min�1, and degradation ¼ 1 min�1

(see Table 2).
Identifying modes of signal execution in a
parameter set ensemble

Modes of signal execution were identified using PyDyNo, a Python-based

software package for dynamical systems analysis of biochemical models

with uncertain parameters (54). PyDyNo takes as input a model object

(PySB (90) or SBML (101,102) formats), an input file with parameter

sets, and a target species (pMLKL, in our case). ODE simulations are run

(91,92) for all parameter sets and ‘‘digitized’’ into a sequence of integers,

termed a ‘‘dynamical signature,’’ based on ‘‘dominant’’ subnetworks of re-

actions identified at each time point. Basically, the algorithm identifies, at

every time point, the subnetwork of reactions that contribute most to either

the production or consumption (depending on user preference; production,

in our case) of the target species and assigns to each identified subnetwork

an integer index. Each time point is thus associated with an integer index

and the entire simulated time course with a sequence of integers, i.e., the

dynamical signature. We refer the reader to the original work (54) for

further details on how PyDyNo identifies dominant subnetworks from

ODE simulations of biochemical models. We repeated this procedure for

all 10,628 unique parameter sets obtained from PyDREAM, with all
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simulations run at the highest TNF dose (100 ng/mL) for 16 h simulated

time, in line with experimental data (Fig. 2 A). Dynamical signatures

were then clustered using a spectral clustering algorithm (103) with the

longest common subsequence (55) as the distance metric. The optimal num-

ber of clusters, i.e., modes of execution, was determined using a silhouette

score (104) for cluster sizes between 2 and 20 (Fig. S4). For each mode, a

‘‘representative’’ dynamical signature was defined as the one with the min-

imal sum of distances to all other signatures (105) (i.e., the medoid).
Sensitivity analyses for initial protein
concentrations and rate constants

We used a sensitivity analysis tool (106) available in PySB to quantify

changes in TTD due to changes in both initial protein concentrations and

rate constants. In brief, the sensitivity analysis tool varies pairs of protein

concentrations or rate constants over a range of values relative to a refer-

ence set (in this case [�20%, ., �2%, 0%, 2%, ., 20%]) and calculates

the resulting changes in TTD. For each protein or rate constant, a ‘‘single-

parameter sensitivity multiset’’ (106) is then obtained, which summarizes

the range of changes in TTD due to changes in protein or rate constant

values and can be visualized as a boxplot (Figs. 5 A and 6 A). Reference

rate constants are those associated with the representative dynamical signa-

tures obtained for each mode from PyDyNo (see previous subsection). For

protein concentration sensitivities, reference concentrations are those ob-

tained from mass spectrometry (Fig. 2 B) or the literature (85–87) (Table 1)

and all simulations were run using the reference rate constant values. Re-

sults of the sensitivity analyses using reference rate constant values were

validated by performing, over the full set of rate constant values for each

mode, in silico KD (70%) and overexpression (10-fold) experiments for

protein concentrations and 510-fold variations for rate constants (Figs. 5

B and 6 B). This was critical for identifying and discarding from our ana-

lyses results that were specific only to the reference parameter set.
DATA AND MATERIALS AVAILABILITY

All western blot data, mass spectrometry data, and Python
code used in this study, including the PySB encoding of
the Necroptosis Execution Reaction Model (NERMv1.0),
are available at github.com/LoLab-MSM/NERM.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2023.01.035.
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Figure S1. Log-likelihood vs. iteration for all five Markov chains used in the Bayesian 
parameter calibration. For each chain, the first 25,000 iterations were discarded (considered 
burn-in), leaving a total of 125,000 parameter sets, of which 10,628 are unique.  
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Figure S2. Distributions of parameter values from Bayesian model calibration. Both prior 
(red) and posterior (blue) distributions are shown.  
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Figure S3. Silhouette clustering scores for determining the number of modes of necroptosis 
execution. The maximum value is for four clusters. Values were also calculated for 11-20 clusters 
and were all <0.3 (data not shown).  
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Figure S4. Rate constant distributions for all four modes of execution. Parameters with 
asterisks (*) are included in Figure 3C of the main text. Parameter indices (PN) match reaction 
indices (RN) in Figure 1 and Table 2 of the main text.  
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Figure S5. Rate constant sensitivity analyses show no sensitivity to rate constants P21-P40 in 
any mode. Values were varied in a range ±20% around the reference parameter set for each mode. 
Parameter indices (PN) match reaction indices (RN) in Figure 1 and Table 2 of the main text. 
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Figure S6. Dynamics in necroptosis execution mode 4. (A) Time courses for ubiquitinated 
complex I (CI-Ub) for all parameter sets in mode 4 show that CYLD (8,868 molecules; Table 1 of 
the main text) is always in great excess. (B) TTD distributions over all parameter sets in mode 4 
for CYLD knockdowns (KDs; 70%-95%) and knock out (KO), compared to wild-type (WT). Solid 
black lines = medians, dashed black lines = means; * p < 0.05, ** p < 0.01, *** p < 0.001 (Mood’s 
median test). 
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Table S1. List of molecular species in the necroptosis model. C8i, C8a: inactive and active 
caspase-8; MLKL-u, MLKL-p: unphosphorylated and phosphorylated MLKL; RIP1-u, RIP1-
Ub, RIP1-p, RIP1-trunc: unmodified, ubiquitinated, phosphorylated, and truncated 
(degraded) RIP1; RIP3-u, RIP3-p: unphosphorylated and phosphorylated RIP3. Percent sign 
(%) signifies that proteins are within the same complex (not necessarily bound to each other). 

Variable Species 
x0 TNF 

x1 TNFR 

x2 TRADD 

x3 RIP1-u 

x4 TRAF 

x5 cIAP 

x6 MLKL-u 

x7 A20 

x8 CYLD 

x9 FADD 

x10 RIP3-u 

x11 FLIP 

x12 LUBAC 

x13 C8i 

x14 TNF % TNFR 

x15 TNF % TNFR % TRADD 

x16 RIP1-u % TNF % TNFR % TRADD 

x17 RIP1-u % TNF % TNFR % TRADD % TRAF 

x18 RIP1-u % TNF % TNFR % TRADD % TRAF % cIAP 

x19 RIP1-Ub % TNF % TNFR % TRADD % TRAF % cIAP 

x20 LUBAC % RIP1-Ub % TNF % TNFR % TRADD % TRAF % cIAP 

x21 A20 % LUBAC % RIP1-Ub % TNF % TNFR % TRADD % TRAF % cIAP 

x22 CYLD % LUBAC % RIP1-Ub % TNF % TNFR % TRADD % TRAF % cIAP 

x23 RIP1-u % TRADD 

x24 FADD % RIP1-u % TRADD 

x25 C8i % FADD % RIP1-u % TRADD 

x26 FADD % RIP1-u % RIP3-u % TRADD 

x27 C8i % FADD % FLIP % RIP1-u % TRADD 

x28 RIP1-u % RIP3-u 

x29 C8a % FADD % FLIP % RIP1-u % TRADD 

x30 RIP1-u % RIP3-p 

x31 RIP1-trunc 

x32 C8a % FLIP 

x33 RIP1-p % RIP3-p 

x34 C8a % FADD % FLIP % RIP1-u % RIP3-u % TRADD 

x35 MLKL-u % RIP1-p % RIP3-p 

x36 MLKL-p 
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Table S2. Set of coupled differential equations for the necroptosis model. Species 
corresponding to each variable, xi, are given in Table S1. Square brackets indicate concentration. 
Median values of the rate constants (pi) for each mode are given in Table 2 of the main text. 
𝒅[𝒙𝟎]/𝒅𝒕	 = 𝒑𝟏𝟗[𝒙𝟐𝟏] + 𝒑𝟐[𝒙𝟏𝟒] + 𝒑𝟐𝟎[𝒙𝟐𝟐] − 𝒑𝟑[𝒙𝟎] − 𝒑𝟏[𝒙𝟎][𝒙𝟏] 
𝒅[𝒙𝟏]/𝒅𝒕	 = 𝑝'([𝑥)'] + 𝑝)[𝑥'*] + 𝑝)+[𝑥))] − 𝑝'[𝑥+][𝑥'] 
𝒅[𝒙𝟐]/𝒅𝒕	 = 𝑝)([𝑥)(] + 𝑝,*[𝑥,*] + 𝑝,-[𝑥).] + 𝑝-[𝑥'-] − 𝑝*[𝑥'*𝑥)] 
𝒅[𝒙𝟑]/𝒅𝒕	 = 𝑝/[𝑥'.] − 𝑝.[𝑥'-][𝑥,] 
𝒅[𝒙𝟒]/𝒅𝒕	 = 𝑝'([𝑥)'] + 𝑝)+[𝑥))] + 𝑝([𝑥'/] − 𝑝0[𝑥'.][𝑥*] 
𝒅[𝒙𝟓]/𝒅𝒕	 = 𝑝''[𝑥'0] + 𝑝'([𝑥)'] + 𝑝)+[𝑥))] − 𝑝'+[𝑥'/][𝑥-] 
𝒅[𝒙𝟔]/𝒅𝒕	 = 𝑝,([𝑥,-] − 𝑝,0[𝑥,,][𝑥.] 
𝒅[𝒙𝟕]/𝒅𝒕	 = 𝑝'.[𝑥)'] + 𝑝'([𝑥)'] − 𝑝'-[𝑥)+[𝑥/] 
𝒅[𝒙𝟖]/𝒅𝒕	 = 𝑝'0[𝑥))] + 𝑝)+[𝑥))] − 𝑝'/[𝑥)+][𝑥0] 
𝒅[𝒙𝟗]/𝒅𝒕	 = 𝑝))[𝑥)*] + 𝑝)([𝑥)(] + 𝑝,*[𝑥,*] + 𝑝,-[𝑥).] − 𝑝)'[𝑥),][𝑥(] 
𝒅[𝒙𝟏𝟎]/𝒅𝒕	 = 𝑝,'[𝑥).] + 𝑝,*[𝑥,*] − 𝑝,+[𝑥'+][𝑥)*] 
𝒅[𝒙𝟏𝟏]/𝒅𝒕	 = 𝑝).[𝑥)/] − 𝑝)-[𝑥''][𝑥)-] 
𝒅[𝒙𝟏𝟐]/𝒅𝒕	 = 𝑝'*[𝑥)+] + 𝑝'([𝑥)'] + 𝑝)+[𝑥))] − 𝑝',[𝑥')][𝑥'(] 
𝒅[𝒙𝟏𝟑]/𝒅𝒕	 = 𝑝)*[𝑥)-] − 𝑝),[𝑥',][𝑥)*] 
𝒅[𝒙𝟏𝟒]/𝒅𝒕	 = −𝑝)[𝑥'*] + 𝑝-[𝑥'-] + 𝑝'[𝑥+][𝑥'] − 𝑝*[𝑥'*][𝑥)] 
𝒅[𝒙𝟏𝟓]/𝒅𝒕	 = −𝑝-[𝑥'-] + 𝑝/[𝑥'.] + 𝑝*[𝑥'*][𝑥)] − 𝑝.[𝑥'-][𝑥,] 
𝒅[𝒙𝟏𝟔]/𝒅𝒕	 = −𝑝/[𝑥'.] + 𝑝([𝑥'/] + 𝑝.[𝑥'-][𝑥,] − 𝑝0[𝑥'.][𝑥*] 
𝒅[𝒙𝟏𝟕]/𝒅𝒕	 = 𝑝''[𝑥'0] − 𝑝([𝑥'/] − 𝑝'+[𝑥'/][𝑥-] + 𝑝0[𝑥'.][𝑥*] 
𝒅[𝒙𝟏𝟖]/𝒅𝒕	 = −𝑝''[𝑥'0] − 𝑝')[𝑥'0] + 𝑝'+[𝑥'/][𝑥-] 
𝒅[𝒙𝟏𝟗]/𝒅𝒕	 = 𝑝')[𝑥'0] + 𝑝'*[𝑥)+] − 𝑝',[𝑥')][𝑥'(] 
𝒅[𝒙𝟐𝟎]/𝒅𝒕	 = −𝑝'*[𝑥)+] + 𝑝'.[𝑥)'] + 𝑝'0[𝑥))] + 𝑝',[𝑥')][𝑥'(] − 𝑝'-[𝑥)+][𝑥/] − 𝑝'/[𝑥)+][𝑥0] 
𝒅[𝒙𝟐𝟏]/𝒅𝒕	 = −𝑝'.[𝑥)'] − 𝑝'([𝑥)'] + 𝑝'-[𝑥)+][𝑥/] 
𝒅[𝒙𝟐𝟐]/𝒅𝒕	 = −𝑝'0[𝑥))] − 𝑝)+[𝑥))] + 𝑝'/[𝑥)+][𝑥0] 
𝒅[𝒙𝟐𝟑]/𝒅𝒕	 = 𝑝'([𝑥)'] + 𝑝)+[𝑥))] + 𝑝))[𝑥)*] − 𝑝)'[𝑥),][𝑥(] 
𝒅[𝒙𝟐𝟒]/𝒅𝒕	 = −𝑝))[𝑥)*] + 𝑝)*[𝑥)-] + 𝑝,'[𝑥).] + 𝑝)'[𝑥),][𝑥(] − 𝑝),[𝑥',][𝑥)*] − 𝑝,+[𝑥'+][𝑥)*] 
𝒅[𝒙𝟐𝟓]/𝒅𝒕	 = −𝑝)*[𝑥)-] + 𝑝).[𝑥)/] + 𝑝),[𝑥',][𝑥)*] − 𝑝)-[𝑥''][𝑥)-] 
𝒅[𝒙𝟐𝟔]/𝒅𝒕	 = −𝑝,'[𝑥).] + 𝑝,,[𝑥,*] − 𝑝,-[𝑥).] + 𝑝,+[𝑥'+][𝑥)*] − 𝑝,)[𝑥).][𝑥,)] 
𝒅[𝒙𝟐𝟕]/𝒅𝒕	 = −𝑝).[𝑥)/] − 𝑝)/[𝑥)/] + 𝑝)0[𝑥)(] + 𝑝)-[𝑥''][𝑥)-] 
𝒅[𝒙𝟐𝟖]/𝒅𝒕	 = 𝑝,-[𝑥).] + 𝑝,.[𝑥)0] 
𝒅[𝒙𝟐𝟗]/𝒅𝒕	 = 𝑝)/[𝑥)/] − 𝑝)0[𝑥)(] − 𝑝)([𝑥)(] 
𝒅[𝒙𝟑𝟎]/𝒅𝒕	 = 𝑝,.[𝑥)0] − 𝑝,/[𝑥,+] 
𝒅[𝒙𝟑𝟏]/𝒅𝒕	 = 𝑝)([𝑥)(] + 𝑝,*[𝑥,*] 
𝒅[𝒙𝟑𝟐]/𝒅𝒕	 = 𝑝)([𝑥)(] + 𝑝,,[𝑥,*] + 𝑝,*[𝑥,*] − 𝑝,)[𝑥).][𝑥,)] 
𝒅[𝒙𝟑𝟑]/𝒅𝒕	 = 𝑝,/[𝑥,+] + 𝑝,([𝑥,-] + 𝑝*+[𝑥,-] − 𝑝,0[𝑥,,][𝑥.] 
𝒅[𝒙𝟑𝟒]/𝒅𝒕	 = −𝑝,,[𝑥,*] − 𝑝,*[𝑥,*] + 𝑝,)[𝑥).][𝑥,)] 
𝒅[𝒙𝟑𝟓]/𝒅𝒕	 = −𝑝,([𝑥,-] − 𝑝*+[𝑥,-] + 𝑝,0[𝑥,,][𝑥.] 
𝒅[𝒙𝟑𝟔]/𝒅𝒕	 = 𝑝*+[𝑥,-] 
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