The American Journal of Human Genetics, Volume 110

Supplemental information

Deficiency of primate-specific SSX1 induced

asthenoteratozoospermia in infertile men

and cynomolgus monkey and tree shrew models

Chunyu Liu, Wei Si, Chaofeng Tu, Shixiong Tian, Xiaojin He, Shengnan Wang, Xiaoyu Yang, Chencheng Yao, Cong Li, Zine-Eddine Kherraf, Maosen Ye, Zixue Zhou, Yuhua Ma, Yang Gao, Yu Li, Qiwei Liu, Shuyan Tang, Jiaxiong Wang, Hexige Saiyin, Liangyu Zhao, Liqun Yang, Lanlan Meng, Bingbing Chen, Dongdong Tang, Yiling Zhou, Huan Wu, Mingrong Lv, Chen Tan, Ge Lin, Qingpeng Kong, Hong Shi, Zhixi Su, Zheng Li, Yong-Gang Yao, Li Jin, Ping Zheng, Pierre F. Ray, Yue-Qiu Tan, Yunxia Cao, and Feng Zhang

Figure S1. RT-qPCR analysis of knockdown efficacy for *Ssx1* by different shRNAs of cynomolgus monkey (A) and tree shrew (B). Data represent the means \pm standard error of measurement (SEM) of three independent experiments. Two-tailed Student's paired or unpaired *t* tests were used as appropriate (****P* < 0.001). NC, negative control.

Figure S2. RT-qPCR analysis indicated the significantly reduced expressions of Ssx1 in cynomolgus monkey (A) and tree shrew (B) models. Data represent the means \pm standard error of measurement (SEM) of three independent experiments. Two-tailed Student's paired or unpaired *t* tests were used as appropriate (*** P < 0.001).

Α WT

SSX1 splice-site mutation c.*4+1G>A

Donor site predictions for NG 012528.2:5031-17083 : Donor site predictions for NG_012528.2:5031-17083 :

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
9	23	0.94	aaaattggtgagaat	9	23	0.94	aaaattggtgagaat
77	91	1.00	aaacaaggtatgcct	77	91	1.00	aaacaaggtatgcct
121	135	0.51	aaaggaggtatcggt	121	135	0.51	aaaggaggtatcggt
139	153	0.98	tgttcccgtaagtga	139	153	0.98	tgttcccgtaagtga
151	165	0.71	tgaagaggttggtaa	151	165	0.71	tgaagaggttggtaa
493	507	0.97	taactccgtaagtga	718	732	0.97	accccaggtcagccc
718	732	0.97	accccagqtcagccc				

В

variant	gene	∆ type	∆ score (?)	pre-mRNA position (?)
X-48125827-G-A	SSX1 (ENSG00000126752.8_1 / ENST00000376919.4_1 / NM_005635.4, NM_001278691.2)	Acceptor Loss	0.00	
UCSC, gnomAD	canonical transcript OMIM, GTEx, gnomAD, ClinGen, Ensembl, Decipher, GeneCards	Donor Loss	1.00	-1 bp
		Acceptor Gain	0.00	
		Donor Gain	0.01	3 hn

С

Figure S3. The effect of the mutated site (c.*4+1G>A) on the splicing of SSX1 mRNA.

(A) A prediction for SSX1 c.*4+1G>A using the online tool of Splice Site Prediction by Neural Network (NNSPLICE 0.9) at http://www.fruitfly.org/seq tools/splice.html. The red box represents the missing donor site caused by the splicing variant c.*4+1G>A in SSX1.

(B) A prediction for SSX1 c.*4+1G>A using the SpliceAI tool (a 32-layer deep neural network to predict splicing from a pre-mRNA sequence; https://spliceailookup.broadinstitute.org/). The delta score higher than 0.8 indicated the prediction of a donor loss with high precision.

(C) Expression analysis of SSX1 in the spermatozoa from men harboring the hemizygous splicing variant c.*4+1G>A in SSX1. The primers used for RT-qPCR assay were designed between exons 4 and 6 of SSX1 (Transcript ID: ENST00000376919.3). Data represent the means \pm standard error of measurement (SEM) of three independent experiments. Two-tailed Student's paired or unpaired t test was used as appropriate (***P < 0.001).

Figure S4. Sanger sequencing confirmed hemizygous *SSX1* variants (V1–V6) in infertile men N027 II-1, H054 II-1, Y1642 II-1, Y7460 II-1, AY001 II-1 and S868 II-1.

The positions of the variants are indicated by red arrows or boxes. Abbreviations: V1, variant 1; V2, variant 2; V3, variant 3; V4, variant 4; V5, variant 5; V6, variant 6; WT, wild type.

Figure S5. Analysis of *SSX1* mRNA and protein levels in the spermatozoa from a male control and men harboring hemizygous *SSX1* variants.

(A) RT–qPCR analysis indicated that the abundance of *SSX1* mRNA was dramatically reduced in the spermatozoa from men harboring hemizygous *SSX1* variants when compared to that in the spermatozoa from a control male. The data are presented as the mean \pm standard error of three independent experiments. Two-tailed Student's paired or unpaired *t* tests were used as appropriate (****P* < 0.001).

(B) IF staining of SSX1 in the spermatozoa from a male control individual and men harboring hemizygous *SSX1* variants. SSX1 staining (red) is concentrated at the midpiece and principal piece of sperm flagella from the control individual but absent in the sperm flagella from men harboring hemizygous *SSX1* variants. Sperm flagella were stained with anti- α -tubulin (green) antibodies, and DNA was counterstained with DAPI as a nuclear marker. Scale bars: 5 µm. The data of subject N027 II-1 were used as an example.

Figure S6. Phylogenetic tree of SSX family members from mouse (*Mus musculus*), tree shrew (*Tupaia belangeri*), cynomolgus monkey (*Macaca fascicularis*) and human (*Homo sapiens*) with the Neighbor-Joining algorithm using *Bos taurus* SSX5 as an outgroup. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree.

Figure S7. Expression analysis of *Ssx1* mRNA in the testes of negative control (NC) and *Ssx1*-KD male cynomolgus monkeys.

RT-qPCR analysis indicated that the abundance of *Ssx1* mRNA was dramatically reduced in the testes of *Ssx1*-KD male cynomolgus monkeys when compared to that of NC group. Data represent the means \pm SEM of three independent experiments. Two-tailed Student's paired or unpaired *t* test was used as appropriate (****P* < 0.001).

Figure S8. Detection of the efficacy of *Ssx1* expression KD in the testes of adult male tree shrews. (A) RT–qPCR analysis revealed a significant reduction of *Ssx1* mRNA abundance in the testes of *Ssx1*-KD male tree shrews when compared to that in the testes of negative control (NC) male tree shrews. The data are presented as the mean \pm standard error of three independent experiments. Two-tailed Student's paired or unpaired *t* tests were used as appropriate (***P* < 0.01).

(B) Immunoblotting assays indicated that SSX1 was dramatically reduced in the testes from Ssx1-KD male tree shrews. β -actin was used as a loading control.

(C) IF staining of SSX1 in the testes from NC male tree shrews and *Ssx1*-KD male tree shrews. SSX1 immunostaining (red) was mainly concentrated in the spermatogonia or spermatocytes from NC male tree shrews but was dramatically decreased in testicular sections from *Ssx1*-KD male tree shrews. DNA was counterstained with DAPI as a nuclear marker. Scale bars: 50 µm.

(A) Testis sizes in tree shrew models.

(B) Reduced testis weights were observed in *Ssx1*-KD male tree shrews when compared to those in NC group. For each group, at least five tree shrews were counted and the data represent the means \pm SEM; **P* < 0.05.

Figure S10. H&E staining of testicular tissue sections obtained from *Ssx1***-KD male tree shrews.** All germ cells were regularly arranged in the seminiferous epithelia of negative control (NC) male tree shrews but displayed a loss or disordered arrangement in the testes from *Ssx1*-KD male tree shrews; spermatogonia (red arrowheads), spermatocytes (dark blue arrowheads), round spermatids (light blue arrowheads) and spermatozoa (orange arrowheads). Scale bars: 50 µm.

Figure S11. Western blotting assay revealed significantly reduced levels of multiple selected proteins in the testes from *Ssx1*-KD tree shrews. β -actin was used as a loading control. NC, negative control.

Figure S12. Analysis of the evolutionary divergence of human and mouse testis-enriched genes.

The number "1492" represents the number of testis-enriched genes that are evolutionarily conserved between human and mouse. The number "1477" represents the number of human-specific testisenriched genes, which do not have one-to-one orthologs in mouse or the mouse orthologs of which are not testis-enriched. The number "1534" represents the number of mouse-specific testis-enriched genes, which do not have one-to-one orthologs in human or the human orthologs of which are not testis-enriched.

Primer name	Primer sequence (5'-3')	Tm
V1-F	CAATCCTTCTGCCCAGCCG	56°C
V1-R	AGGTAGCTGAGCTGAAAAGCAAT	
V2-F	AGGCCTTTGATGATATTGCCAC	56°C
V2-R	CCACAGAGACAGCTGGGCTG	
V3-F	TTCTGAGGAGGGGGGGGGAG	52°C
V3-R	AAAGGAAAATGTGGGGTA	
V4-F	TGTTTTGTCCCCTCCTA	52°C
V4-R	AGAATCGCTTGAGCACCT	
V5-F	GTCCCCTCCCTATGTTTT	50°C
V5-R	GATTTAATTTAATGCCTCC	
V6-F	AGGTTGGTAATCTAAACGTC	50°C
V6-R	CCACTGCCCAATAACTCA	50 C

Table 51, I fillers used for amplification and vermeation of 55/11 variant	Table S	1. Pri	imers us	ed for	amplific	ation ar	nd verifi	cation	of SSX1	variants
--	----------------	--------	----------	--------	----------	----------	-----------	--------	---------	----------

Species and locus	Sequence (5'-3')
	Top strand:
	gatccgTTCTCCGAACGTGTCACGTAAttcaagagaTTACGTGAC
Cynomolgus monkey-shNC	ACGTTCGGAGAAttttttc
	Bottom strand:
	aattgaaaaaaTTCTCCGAACGTGTCACGTAAtctcttgaaTTACGTG
	ACACGTTCGGAGAAcg
	Top strand:
	aattcGCCACAGGAATCAGGTTGAACGTCCTttcaagagaAGGA
Cynomolgus monkey-shSsx1	CGTTCAACCTGATTCCTGTGGttttttg
	Bottom strand:
	gatccaaaaaaCCACAGGAATCAGGTTGAACGTCCTtctcttgaaAG
	GACGTTCAACCTGATTCCTGTGGCg
	Top strand:
	gatccgTTCTCCGAACGTGTCACGTAAttcaagagaTTACGTGAC
Tree shrew-shNC	ACGTTCGGAGAAttttttc
	Bottom strand:
	aattgaaaaaaTTCTCCGAACGTGTCACGTAAtctcttgaaTTACGTG
	ACACGTTCGGAGAAcg
	Top strand:
	aattcGCCTTCAACGATATTTCCAAATACTttcaagagaAGTATT
Tree shrew-sh <i>Ssx1</i>	TGGAAATATCGTTGAAGGCttttttg
	Bottom strand:
	gatccaaaaaaGCCTTCAACGATATTTCCAAATACTtctcttgaaAG
	TATTTGGAAATATCGTTGAAGGCg

Table S2. Sequences of the shRNAs used for knocking down *Ssx1* in male cynomolgus monkeys and tree shrews

Uppercase and lowercase letters indicate the siRNA sequence and shRNA skeleton, respectively, for each shRNA.

Primer name	Primer sequence (5'-3')	Tm	
Human-SSX1-F	TCACCCTCCCACCTTTCA	(0)0	
Human-SSX1-R	TCGTCCTCTGCTGGCTTC	00 C	
Human-GAPDH-F	GGAGCGAGATCCCTCCAAAAT	60°C	
Human-GAPDH-R	GGCTGTTGTCATACTTCTCATGG	00 C	
Monkey-Ssx1-F	ACCGTAACCACAGGAATC	60°C	
Monkey-Ssx1-R	ATCTTCTCAGAGGTATTTGC	00 C	
Monkey-actin-F	ACGTGGACATCCGTAAAG	60°C	
Monkey-actin-R	GGGCCAGACTCGTCATAC	00 C	
Tree shrew-Ssx1-F	CCGCAGAAAAGACACTCG	60°C	
Tree shrew-Ssx1-R	CGGCACGGTAGTTTGGAG	00 C	
Tree shrew-actin-F	ATTTTGAATGATCAGCCACC		
Tree shrew-actin-R	AGGTAAGCCCTGGCTGCCTC	Jo C	

Table S3. Primers used for RT-qPCR assays

Primer name	Primer sequence (5'-3')	Tm
TS-Alms1 F	AAAGGCAGTGACTAAGGTT	10%C
TS-Alms1 R	GACAGAATGAGTAGTATTTTCG	49°C
TS- <i>Cep44</i> F	AGAATGACTTGCGCTTTA	
TS- <i>Cep44</i> R	ACTACTGAGTTCCTTGTGCT	
TS-Cep170 F	AAGTGCCAAAAGCATAGA	50°C
TS- <i>Cep170</i> R	CATCCACCTCATCATCCC	50 C
TS- <i>C2cd3</i> F	TCAAAACGGATGGAAAAG	51°C
TS- <i>C2cd3</i> R	TCCTTGGTAGGTGGGTTA	51 C
TS-Ccdc39 F	CATTGGAAGCCTGGTTAG	50%C
TS- <i>Ccdc39</i> R	TACGAAAATCCTGTGCTG	<u> </u>
TS-Cep164 F	TGACGAACACTATCGGAACT	5200
TS- <i>Cep164</i> R	CGCTTCTAGCCTGCATCT	53°C
TS- <i>Cfap58</i> F	ATCAAAAGGCAGAAGTGG	5000
TS-Cfap58 R	TATCTGTTTCTGGGTCGC	58°C
TS-Cmtr2 F	CAAAGGGTACTTCAATAGTTG	1000
TS-Cmtr2 R	ATGGAGACAGAAAACGGA	49°C
TS-Dpy19l2 F	AGCCTCTGAGCCAAGTGC	
TS-Dpy19l2 R	CGAGGAATGGGTAGGAGA	53°C
TS-Fndc3a F	ACCTGGTTTTATTCCTGTC	
TS-Fndc3a R	GTGATGATGGTGGACTGC	———— 49°C
TS-Icall F	GCACGCACGGAATACAGA	
TS-Icall R	TCCCAGAATCCGAGCAGT	55°C
TS-Igce F	TTTCCACAAACCTCCACC	
TS-Iqce R	ACGCCTGAGATTTGACCT	53°C
TS-Kifap3 F	ACAAGCCTAAAGACCCAC	1000
TS-Kifap3 R	TCAACACTCTGTTTCCAGTC	49°C
TS-Lrrcc1 F	AGAAGACCGAAATCATTAA	1000
TS-Lrrcc1 R	TTTTAGCCTGTCTGTGGTA	
TS-Nr4a2 F	CGCACATGATCGAGCAGA	5700
TS-Nr4a2 R	GTTGGGCACAGCGAAGGT	<u> </u>
TS-Smurf2 F	TCCTCCAGACCTACCAGA	10%C
TS-Smurf2 R	ATTACGAATCTCCCATCC	49°C
TS-Taf5 F	GATGGTGGGAAGTTTGGC	54°C
TS-Taf5 R	GCGTACTCGTTTGGTGGT	54.6
TS- <i>Ttll10</i> F	GCCCATTCTTCTACATCG	52°C
TS- <i>Ttll10</i> R	CACTTGACCTCGCACCAT	52 0
TS-Upf2 F	TTTCCTCCAAGTGAAATAA	47°C
TS-Upf2 R	ATCCAAAAGGTCTGCTAA	
TS-Usp1 F	AATAAGCAACCCAGCATT	52°C
TS-Usp1 R	ACATTCCAAGCAGCGAGT	
$\frac{15 - Usp4 / F}{TS - Usc 47 P}$		49°C
15-USP4/K		
1 S-Wapep F		50°C
15- <i>тарср</i> К	CAGAAGIGGICIIGIGGG	

Table S4. Primers used for the verification of RNA-seq assays