Muscle prestimulation tunes velocity preflex in simulated perturbed hopping

Fabio Izzi^{1,2,*}, An Mo², Syn Schmitt³, Alexander Badri-Spröwitz^{2,4}, Daniel F. B. Haeufle^{1,3}

 $¹$ Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, University of Tübingen, Tübingen,</sup> Germany

²Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany

³Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany

⁴Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

⇤Corresponding author's address: izzi@is.mpg.de

Fig. S1: Time trajectories of the force component produced by the force-velocity relation (F_{CE}^V) . Data plotted from touchdown $(t = 0ms)$ to the end of the preflex duration $(t = 30ms)$. (a) Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference hopping case in red.

Fig. S2: (a,b) Time trajectories of the muscle fibre velocity (*vCE*). Data plotted from the start of the leg's vertical fall to the end of the preflex duration $(t = 30ms)$. All dataset are centered to the touch-down event $(t = 0ms)$. (c,d) Close up (touch-down to preflex end) of the time trajectories of the muscle fibre velocity (*vCE*). (a,c) Preflex-Const, with reference hopping case in green; (b,d) Preflex-Rising, with reference hopping case in red.

Fig. S3: Time trajectories of the muscle fibre power component produced by the force-velocity relation ($P_{CE}^V = F_{CE}^V \cdot v_{CE}$). Data plotted from touch-down $(t = 0ms)$ to the end of the preflex duration $(t = 30ms)$. (a) Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference hopping case in red.

Fig. S4: Work dissipated by the muscle fibres during the preflex phase. W_{CE} is the net dissipated work; W_{CE}^V is the work component dissipated by the force-velocity relation, W_{CE}^L by the force-length relation, and W_{CE}^A by the muscle activity. (a) Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference hopping case in red.

Fig. S5: Touch-down values of muscle-tendon unit velocity (v_{MTU}), muscle fibre velocity (v_{CE}) and tendon fibre velocity (*vSEE*). (a) Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference hopping case in red.

	Parameter	Unit	Value	Source	Description
MTU	$l_{MTU,ref}$	m	0.5	Geyer et al. (2003)	muscle-tendon unit's reference length, alias l_{ref} in Geyer et al. (2003)
CE	ΔW^{des}	[]	0.45	to Bayer et al. similar (2017); Kistemaker et al. (2006)	width of normalized bell curve in descend- ing branch, adapted to match observed force-length curves
	ΔW^{asc}	$\left[\ \right]$	0.45	similar to Bayer et al. (2017); Kistemaker et al. (2006)	width of normalized bell curve in ascend- ing branch, adapted to match observed force-length curves
	$\nu_{CE,des}$	[]	1.5	Mörl et al. (2012)	exponent for descending branch of force- length relation
	$\nu_{CE,asc}$	[]	3.0	Mörl et al. (2012)	exponent for ascending branch of force- length relation
	$A_{rel,0}$	[]	0.2	Bayer et al. (2017)	parameter for contraction dynamics: max- imum value of A_{rel}
	$B_{rel,0}$	1/s	2.0	Bayer et al. (2017)	parameter for contraction dynamics: max- imum value of B_{rel}
	\mathcal{S}_{ecc}	[]	2.0	Soest and Bobbert (1993)	ratio of the derivatives of the force- velocity relation at the transition point $(v_{CE} = 0 \,\text{m/s})$
	\mathcal{F}_{ecc}	[]	1.5	Soest and Bobbert (1993)	factor by which the force can exceed F_{isom} for large eccentric velocities
PEE	$\mathcal{L}_{PEE,0}$	[]	0.95	Bayer et al. (2017)	rest length of PEE normalized to optimal length of CE
	ν_{PEE}	$\left[\ \right]$	2.5	Mörl et al. (2012)	exponent of F_{PEE}
	\mathcal{F}_{PEE}	$\left[\ \right]$	2.0	Mörl et al. (2012)	force of PEE if l_{CE} is stretched to ΔW_{des}
SDE	D_{SDE}	$\left[\ \right]$	0.3	Mörl et al. (2012)	dimensionless factor to scale $d_{SDE,max}$
	R_{SDE}	[]	0.01	Mörl et al. (2012)	minimum value of d_{SDE} (at F_{MTU} = 0N), normalized to $d_{SDE,max}$
SEE	$\mathfrak{l}_{SEE,0}$	${\bf m}$	0.4	Geyer et al. (2003)	tendon's rest length, alias l_{rest} in Geyer et al. (2003)
	$\Delta U_{SEE,nll}$	$\left[\ \right]$	0.0425	Mörl et al. (2012)	relative stretch at non-linear linear transi- tion
	$\Delta U_{SEE,l}$	$\left[\ \right]$	0.017	Mörl et al. (2012)	relative additional stretch in the linear part providing a force increase of $\Delta F_{SEE,0}$
	$\Delta F_{SEE,0}$	$\mathbf N$	0.4 F_{max}	Bayer et al. (2017)	both force at the transition and force in- crease in the linear part
Hatze	$\,m$	1/s	11.3	Kistemaker et al. (2006)	inverse of time constant for the activation dynamics $(1/\tau, \tau$ defined in TABLE 1)
	\boldsymbol{c}	mol/l	1.37e-4	Kistemaker et al. (2006)	constant for the activation dynamics
	μ	1/mol	5.27e4	Kistemaker et al. (2006)	constant for the activation dynamics
	\boldsymbol{k}	$\left[\ \right]$	2.9	Kistemaker et al. (2006)	constant for the activation dynamics
	q_0	$\left[\ \right]$	0.005	Kistemaker et al. (2006)	resting active state for all activated muscle fibers
	ν	$\left[\ \right]$	3	Kistemaker et al. (2006)	constant for the activation dynamics

TABLE S1: Table of supplementary parameters used in the muscle model and activation dynamics (Hatze).

REFERENCES

- 1. Geyer H, Seyfarth A, and Blickhan R. Positive force feedback in bouncing gaits? Proceedings of the Royal Society of London. Series B: Biological Sciences 2003;270:2173– 83. DOI: 10.1098/rspb.2003.2454.
- 2. Bayer A, Schmitt S, Günther M, and Haeufle D. The influence of biophysical muscle properties on simulating fast human arm movements. Computer methods in biomechanics and biomedical engineering 2017;20:803–21. DOI: 10.1080/10255842.2017.1293663.
- 3. Kistemaker DA, Van Soest AJ, and Bobbert MF. Is equilibrium point control feasible for fast goal-directed single-joint movements? Journal of Neurophysiology 2006;95:2898–912. DOI: 10.1152/jn.00983.2005.
- 4. Mörl F, Siebert T, Schmitt S, Blickhan R, and Guenther M. Electro-mechanical delay in Hill-type muscle models. Journal of Mechanics in Medicine and Biology 2012;12:1250085. DOI: 10.1142/s0219519412500856.
- 5. Soest AJ van and Bobbert MF. The contribution of muscle properties in the control of explosive movements. Biological Cybernetics 1993;69:195–204. DOI: 10.1007/ BF00198959.