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Fig. S1: Time trajectories of the force component produced by the force-velocity relation (FV
CE). Data plotted from touch-

down (t = 0ms) to the end of the preflex duration (t = 30ms). (a) Preflex-Const, with reference hopping case in green; (b)
Preflex-Rising, with reference hopping case in red.
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Fig. S2: (a,b) Time trajectories of the muscle fibre velocity (vCE). Data plotted from the start of the leg’s vertical fall to the end
of the preflex duration (t = 30ms). All dataset are centered to the touch-down event (t = 0ms). (c,d) Close up (touch-down
to preflex end) of the time trajectories of the muscle fibre velocity (vCE). (a,c) Preflex-Const, with reference hopping case in
green; (b,d) Preflex-Rising, with reference hopping case in red.
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Fig. S3: Time trajectories of the muscle fibre power component produced by the force-velocity relation (PV
CE = FV

CE · vCE).
Data plotted from touch-down (t = 0ms) to the end of the preflex duration (t = 30ms). (a) Preflex-Const, with reference
hopping case in green; (b) Preflex-Rising, with reference hopping case in red.
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Fig. S4: Work dissipated by the muscle fibres during the preflex phase. WCE is the net dissipated work; WV
CE is the work

component dissipated by the force-velocity relation, WL
CE by the force-length relation, and WA

CE by the muscle activity. (a)
Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference hopping case in red.
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Fig. S5: Touch-down values of muscle-tendon unit velocity (vMTU ), muscle fibre velocity (vCE) and tendon fibre velocity
(vSEE). (a) Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference hopping case in red.



TABLE S1: Table of supplementary parameters used in the muscle model and activation dynamics (Hatze).

Parameter Unit Value Source Description

MTU lMTU,ref m 0.5 Geyer et al. (2003) muscle-tendon unit’s reference length,
alias lref in Geyer et al. (2003)

CE �W des [ ] 0.45 similar to Bayer et al.
(2017); Kistemaker et al.
(2006)

width of normalized bell curve in descend-
ing branch, adapted to match observed
force-length curves

�W asc [ ] 0.45 similar to Bayer et al.
(2017); Kistemaker et al.
(2006)

width of normalized bell curve in ascend-
ing branch, adapted to match observed
force-length curves

⌫CE,des [ ] 1.5 Mörl et al. (2012) exponent for descending branch of force-
length relation

⌫CE,asc [ ] 3.0 Mörl et al. (2012) exponent for ascending branch of force-
length relation

Arel,0 [ ] 0.2 Bayer et al. (2017) parameter for contraction dynamics: max-
imum value of Arel

Brel,0 1/s 2.0 Bayer et al. (2017) parameter for contraction dynamics: max-
imum value of Brel

Secc [ ] 2.0 Soest and Bobbert (1993) ratio of the derivatives of the force-
velocity relation at the transition point
(vCE = 0m/s)

Fecc [ ] 1.5 Soest and Bobbert (1993) factor by which the force can exceed
Fisom for large eccentric velocities

PEE LPEE,0 [ ] 0.95 Bayer et al. (2017) rest length of PEE normalized to optimal
length of CE

⌫PEE [ ] 2.5 Mörl et al. (2012) exponent of FPEE

FPEE [ ] 2.0 Mörl et al. (2012) force of PEE if lCE is stretched to �Wdes

SDE DSDE [ ] 0.3 Mörl et al. (2012) dimensionless factor to scale dSDE,max

RSDE [ ] 0.01 Mörl et al. (2012) minimum value of dSDE (at FMTU =
0N), normalized to dSDE,max

SEE lSEE,0 m 0.4 Geyer et al. (2003) tendon’s rest length, alias lrest in Geyer
et al. (2003)

�USEE,nll [ ] 0.0425 Mörl et al. (2012) relative stretch at non-linear linear transi-
tion

�USEE,l [ ] 0.017 Mörl et al. (2012) relative additional stretch in the linear part
providing a force increase of �FSEE,0

�FSEE,0 N 0.4 Fmax Bayer et al. (2017) both force at the transition and force in-
crease in the linear part

Hatze m 1/s 11.3 Kistemaker et al. (2006) inverse of time constant for the activation
dynamics (1/⌧ , ⌧ defined in TABLE 1)

c mol/l 1.37e-4 Kistemaker et al. (2006) constant for the activation dynamics

µ l/mol 5.27e4 Kistemaker et al. (2006) constant for the activation dynamics

k [ ] 2.9 Kistemaker et al. (2006) constant for the activation dynamics

q0 [ ] 0.005 Kistemaker et al. (2006) resting active state for all activated muscle
fibers

⌫ [ ] 3 Kistemaker et al. (2006) constant for the activation dynamics
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