Supporting Information

Leader- and terminal residue requirements for circularin A biosynthesis probed by systematic mutational analyses

Fangfang Liu, Auke J. van Heel and Oscar P. Kuipers*

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands

* **Correspondence:** Oscar P. Kuipers o.p.kuipers@rug.nl

S1. Amino acid sequence alignment of the characterized subgroup I circular bacteriocins.

The alignment was performed using Clustal Omega with default settings. The color coding was shown in Jalview by setting conservation with percentage identity above 30%.

							10)						2	20							30							40)						50							60						
Circularin_A/1-69	v	٩G	AL	G	v	QT	À	A	٩T	т	i١	vN	١v	I I	ĹΝ	А	G	гĹ	v	τv	L	Ġ	1	А	s	i A	s	G G	Å	GТ	LI	мт	1	GV	ΙA	T F	×κ	A	тv	Q	κL	. A	κ¢	2 S	M/	٩R	. A	A I	ΑY
Cerecyclin/1-70	٧V	νs	ΚL	G	w	ΤG	i I	Ν	I G	т	AI	ΝA	۱L	I (ЭA	L	M.	ΓG	s	DI	W	T /	AI	s	v	٩G	L,	ΑF	G	GG	Ð	GΤ	A	I S	Τ	10	ЭR	ĸ	ΑI	М	ΕN	۱v	E١	<٧	GI	<κ	κA	٩A	QW
Lactocyclicin_Q/1-61	L	I D	ΗL	G	А	ΡF	2W	A١	/ D	т	П	LG	۶A	L	ΑV	G	ΝL	_ A	S	wν	L	A	L١	/ P	GI	G	W.	ΑV	'K	ΑG	L.	ΑT	A	Α.	-			-		-	ΑI	V	Кŀ	١Q	GI	< A	AA	٩A	AW
Leucocyclicin_Q/1-61	L١	νN	QL	. G	Т	sk	s	LA	A N	т	П	LG	λ	L,	٩v	G	ΝI	_ A	S	WL	L	A	L١	/ P	GI	G	W.	ΑT	ĸ	ΑA	L.	ΑT	A	Е-	-			-		-	тι	V	Кŀ	ΗE	G	<a< td=""><td>AA</td><td>ΑI</td><td>AW</td></a<>	AA	ΑI	AW
Garvicin_ML/1-60	Ľ١	ΛA	т.	G	M	ΑA	G	v	٩ĸ	Т	Ľ	VN	A	V	SΑ	G	M	21	А	ΤA	L	sI	LF	s	G/	٩F	T.	A A	G	GΙ	M	A L	. 1	к-	-			-		-	KΥ	ΛA	Qŀ	κ	LV	Νĸ	QL	. 1	ΑA
Uberolysin/1-70	L	٩G	Υī	ΓG	L.	A S	G	тZ	٩ĸ	ĸ	٧V	VD	A	1 I	bк	G	A	ΑA	F	νı	Т	s	I	s	T١	<i>i</i> 1	S.	AG	A	LG	A	VS	βA	S A	D	FΙ	I I	L	тν	łΚ	ΝY	<u> (</u>]	SF	RΝ	LI	< A	Q A	٩V	I W
Camocyclin_A/1-60	Ľ١	ΛN	Υ·	G	L.	ΑC	G	тZ	ΑE	K	٧V	VS	βL	Ш	N A	G	Ľ.	ΓV	G	s I	Т	s	ΙL	G	G١	νт	v	GL	s	GΝ	F	ΤA	١V	к.	-			-		-	AA	λT.	A١	<q< td=""><td>G</td><td>ιĸ</td><td>κA</td><td>A I</td><td>QL</td></q<>	G	ιĸ	κA	A I	QL
Bacicyclicin/1-60	Ľ	ΤG	1.	G	L.	GS	G	тZ	A A	т	Ľ	VN	W	11	ΛN	IG	MS	SΑ	A	тι	L	sI	LI	s	G١	ΛN	s	G G	A	ωı	L.	AG	λ	R-	-			-		-	ΕA	٩L	ΚÆ	٩G	GI	<ĸ	AA	A I	AW
Amylocyclicin/1-64	L	٩s	ΤL	. G	Т	S T	A	A	٩ĸ	ĸ	А	ID) I	1 I	DΑ	A	s	ΓI	А	s I	Т	sI	LI	G	١N	νт	G	AG	A	I S	Y	ΑI	V	Α.	-			-	ΤA	١K	ΤN	Λ1	Κŀ	٢Y	GI	ĸκ	ΥA	٩A	AW
Amylocyclicin_CMW1/1-64	L	٩S	ΤL	G	Т	S A	A	A	٩ĸ	ĸ	А	I D) (1 I	D A	A	s '	ГΙ	А	s I	Т	sI	LI	G	١N	νт	G	AG	A	I S	Y.	ΑI	V	Α.	-			- 1	ΤA	١K	ΤN	41	Κŀ	٢Y	GI	<κ	YA	٩A	AW
AS-48/1-70	M	٩ĸ	EF	G	Т	ΡA	A	v	٩G	т	٧I	LN	١V	V	ΕA	G	G٧	٧v	Т	тι	v	s	ΙL	. т	A١	/ G	s	G G	L	SL	. L .	A A	٨A	GF	۱E	s	ιĸ	A	ΥL	.к	ΚE	£ 1	Κŀ	κĸ	GI	< R	A١	/ 1	AW
BacA/1-70	M	٩ĸ	EF	G	Т	ΡA	A	v	٩G	т	V	LN	١V	V	ΕA	G	G٧	٧v	т	тι	v	s	ΙL	. т	A١	/ G	s	G G	L	SL	. L .	A A	٨A	GF	۱E	s	ιĸ	A	ΥL	.к	ΚE	÷ 1	κŀ	κĸ	GI	< R	A١	/ 1	AW
Aureocyclicin_4185/1-60	Ľ	ΤG	L-	G	L.	GΤ	G	M	A A	т	L	I N	A	L,	sν	G	L S	SΑ	A	ТΙ	L	s	LI	s	G١	ΛN	s	G G	A	W١	L.	A G	λ	к-	-			-		-	QA	۱L	ĸ	G	GI	<κ	AG	۶I	ΑF
Enterocin_NKR-5-3B/1-64	Ľ	ΤA	NL	. G	Т	S S	Υ	A	٩ĸ	ĸ	V	I D) (1 I	ΝT	G	s/	٩V	А	тι	Т	A	L١	/ Т	A١	٧V	G	G G	L	ΙT	A	GΙ	V	Α.	-			- 1	ΤA	١K	SL	. 1	Κŀ	٢Y	G /	٩ĸ	YA	٩A	AW
Pumilarin/1-70	L	٩ĸ	EF	G	Т	ΡG	s	v	٩A	v	VI	LN	١V	V	ΕA	G	G/	٩V	т	ТΙ	V	s	ΙL	. т	A١	/ G	s	G G	L	SL	. 1	A A	A	GΚ	Έ	ΤI	I R	Q	ΥL	. K	ΝE	÷ 1	Κŀ	κ	G	٩ĸ	A١	/ 1	AW

S2. MALDI-TOF spectra of circularin A leader variants with site-directed substitutions.

All these active leader variants produce the fully modified circularin A: the leader cleavage site of these leader variants is always in front of Val1, and the mass difference of a few Daltons is likely because the sample contains a mixture of WT bacteriocin and bacteriocin with 1x (or 2x) oxidation of the Met residue(s).

S3. Tricine-SDS-PAGE to determine the production levels of circularin A in various leader mutants.

The wild-type peptide showed a peptide band corresponding to a size close to 5K Dalton (Da). MFK seemed to have better yield relative to its activity level. However, the sample of MFK was also more prone to degradation (shorter peptides that run below the mature peptide were observed), which might explain the lower activity detected for MFK.

S4. MALDI-TOF spectrum of peptide purified from the 16-aa leader variant (MFLVA- His6-GGMFL).

The theoretical mass of the mature circularized circularin A (WT) is 6771.05 Da. The mass difference between peptides produced from this 16-aa leader variant and the 3-aa leader WT is less than 7 Dalton, suggesting the correctly circularized bacteriocin production for this leader variant.

S5. Antimicrobial activity of Val1 (or Tyr69) mutants with site-directed substitutions in circularin A. The indicator strain: *Lactobacillus sake* ATCC 15521.

S6. Detected masses from the LC-MS analysis of the wild-type circularin A.

Three forms of fully modified circularin A were identified: the circular mature bacteriocin (WT), WT with 1 oxidation and WT with 2 oxidations.

Mariant form	NA 111		M/Z	
variant form	IVI VV	$+3H^{+}$	$+4H^{+}$	$+5H^{+}$
Circular/ mature	WT 6771	2258	<mark>1693,75</mark>	<mark>1355,2</mark>
Circular/ 1 oxidation	WT+16 6787	2263,3	<mark>1697,75</mark>	<mark>1358,4</mark>
Circular/ 2 oxidations	WT+32 6803	2268,67	<mark>1701,75</mark>	<mark>1361,6</mark>
Linear No leader	WT+18 6789	2264	1698,25	1358,8
Linear With leader	7180.58	2394,52	1796,14	1437,11

1300 1325 1350 1375 1400 1425 1450 1475 1500 1525 1550 1575 1600 1625 1650 1675 1700 1725 1750 1775 1800 1825

S7. Tricine-SDS-PAGE to determine the production levels of mature circularin A derivatives in Ala2 mutants.

The wild type showed a single band of the target peptide (corresponding to a size close to 5K Dalton, the second lowest band of the protein ladder).

S8. Peptide degradation of various Ala2 mutants

These peptide fragments were eluted in 50% solvent fraction from C18 purification and they ran slightly below 5K Dalton (Da). The mature circularin A was often eluted in 80% solvent fraction and showed a peptide band corresponding to a size close to 5K Dalton (Da). Compared to Ala2 mutants, the wild type (WT) was less degraded.

S9. Proposed scheme of possible biosynthetic processing of circularin A derivatives.

In this theory, the maintaining of the intrinsic structure of the precursor in mutants is critical for biosynthetic processing of the derivatives with the cognate enzyme(s).

Circular bacteriocin				I	_eader se	equence ^a
	-6	-5	-4	-3	-2	-1
Circularin_A				М	F	L
Cerecyclin			М	L	F	Ν
Uberolysin	М	D	I	L	L	E
Lactocyclicin_Q					М	K
Leucocyclicin_Q					М	F
Garvicin_ML				М	F	D
Carnocyclin_A			М	L	Y	E
Bacicyclicin XIN-1			М	L	F	E
Aureocyclicin 4185			М	L	L	E

S10 (Table S1). Short-leader circular bacteriocins and their leader sequences

^a aromatic residues are highlighted in yellow and charged residues in green.

Variant	Primer	Sequence (5'→3')
Leader varia	nt	
	P01	ACTCACCAUGGTTGCAGGAGCACTAGG
M	P02	ATGGTGAGUGCCTCCTT
N 41	P03	ACTCACCAUGTTAGTTGCAGGAGCACTAGGC
ML	P04	ATGGTGAGUGCCTCCTT
	P05	ACTCACCAUGTTTGTTGCAGGAGCACTAGGC
	P04	ATGGTGAGUGCCTCCTT
M _{His6}	P06	ACCATCACCAUCATGTTGCAGGAGCACTAGG
	P07	ATGGTGATGGUGATGCATGGTGAGTGCCTCCTT
M _{His6} MFL	P08	ACCATCACCAUCATATGTTTTAGTTGCAGGAGCAC
	P09	ATGGTGATGGUGATGCATGGTGAGTGCCTCCTT
MFLVA-	P10	CATCATCACCACGGTGGTATGTTTTAGTTGCAGGAGCACTAG
His6-GGMFL	P11	GTGATGAGCAACAAGGAACATTTTGAGTGCCTCCTTATAATTTATTT
······	P12	AGGAGCACUAGGCGTGCAA
MDL	P13	AGTGCTCCUGCAACTAAATCCATAATTAATCACC
	P12	AGGAGCACUAGGCGTGCAA
MFD	P14	AGTGCTCCUGCAACATCAAACATAATTAATCACC
	P12	AGGAGCACUAGGCGTGCAA
IVIKL	P15	AGTGCTCCUGCAACTAATTTCATAATTAATCACC
	P12	AGGAGCACUAGGCGTGCAA
NIFK	P16	AGTGCTCCUGCAACTTTAAACATAATTAATCACC
	P12	AGGAGCACUAGGCGTGCAA
IVIAA	P17	AGTGCTCCUGCAACTGCAGCCATAATTAATCACC
	P45	GGAGCACTAGGCGTGCAA
	P50	TGCAACAGCAAACATGGTGAGTGCCTCCTT
	P45	GGAGCACTAGGCGTGCAA
	P51	TGCAACCCAAAACATGGTGAGTGCCTCCTT
Bacteriocin d	erivative	
V1I	P18	TAAAAACATGGTGAGTGCCTCC
	P19	ATTGCAGGAGCACTAGGCG
V1L	P18	TAAAAACATGGTGAGTGCCTCC
	P20	TTAGCAGGAGCACTAGGCG
V1M	P18	TAAAAACATGGTGAGTGCCTCC
	P21	ATGGCAGGAGCACTAGGCG
V1N	P18	TAAAAACATGGTGAGTGCCTCC
	P22	AATGCAGGAGCACTAGGCG
A2K	P23	GTTTTTAGTTAAAGGAGCACTAGGCGTGCAA
	P24	CACGCCTAGTGCTCCTTTAACTAAAAACATGG
A2V	P25	GTTTTTAGTTGTTGGAGCACTAGGCGTGCA
	P26	ACGCCTAGTGCTCCTAAAAACTAAAAACATGG
A68L	P27	TATGGCAAGAGCTATATTATACTAAGCTTTCTTTGAACCAA
	P28	GTTCAAAGAAAGCTTAGTATAATATAGCTCTTGCCATACTT

S11 (Table S2). Oligonucleotides used in this study

A 6 9 \ /	P29	TATGGCAAGAGCTATAGTTTACTAAGCTTTCTTTGAACCAA
A00 V	P30	GTTCAAAGAAAGCTTAGTAAACTATAGCTCTTGCCATACTT
ACOK	P31	AAGTATGGCAAGAGCTATAAAATACTAAGCTTTCTTTGAACC
AUON	P32	TTCAAAGAAAGCTTAGTATTTTATAGCTCTTGCCATACTTTGC
A 6 9\A/	P33	GTATGGCAAGAGCTATATGGTACTAAGCTTTCTTTGAACC
AOOVV	P34	GTACCATATAGCTCTTGCCATACTTTGCTTAG
	P35	TAAGCTTTCTTTGAACCAAAATTAGAAAAC
1090	P36	TTTGGTTCAAAGAAAGCTTAATGAGCTATAGCTCTTG
Veol	P35	TAAGCTTTCTTTGAACCAAAATTAGAAAAC
1091	P37	TTTGGTTCAAAGAAAGCTTATATAGCTATAGCTCTTGCC
VEOD	P35	TAAGCTTTCTTTGAACCAAAATTAGAAAAC
TOPK	P38	TTTGGTTCAAAGAAAGCTTATCTAGCTATAGCTCTTGCC
\/1 A	P39	AGGAGCACUAGGCGTGCAA
VIA	P40	AGTGCTCCUGCAGCTAAAAAC
	P41	AGCTATAGCUCTTGCCATAC
Y/ZF	P42	AGCTATAGCUTTCTAATCAAAATTTATG
	P41	AGCTATAGCUCTTGCCATAC
Y72VV	P43	AGCTATAGCUTGGTAATCAAAATTTATG
	P41	AGCTATAGCUCTTGCCATAC
Y72A	P44	AGCTATAGCUGCATAATCAAAATTTATG
	P45	GGAGCACTAGGCGTGCAA
A2D	P47	ATCAACTAAAAACATGGTGAGTGCC
A Q1	P45	GGAGCACTAGGCGTGCAA
A2I	P48	AATAACTAAAAACATGGTGAGTGCC
A 0) A /	P45	GGAGCACTAGGCGTGCAA
A2W	P49	CCAAACTAAAAACATGGTGAGTGCC
	P45	GGAGCACTAGGCGTGCAA
V1D	P52	TGCATCTAAAAACATGGTGAGTGCCTC
	P45	GGAGCACTAGGCGTGCAA
V1K	P53	TGCTTTTAAAAACATGGTGAGTGCCTCC
	P45	GGAGCACTAGGCGTGCAA
V1VV	P54	TGCCCATAAAAACATGGTGAGTGCCTCC
	P56	TAAGCTTTCTTTGAACCAAAATTAGAAAACCAAG
Y69D	P57	ATCAGCTATAGCTCTTGCCATACTTTG
	P56	TAAGCTTTCTTTGAACCAAAATTAGAAAACCAAG
Y69K	P58	TTTAGCTATAGCTCTTGCCATACTTTG
······	P56	TAAGCTTTCTTTGAACCAAAATTAGAAAACCAAG
Y69V	P59	AACAGCTATAGCTCTTGCCATACTTTG
	P56	TAAGCTTTCTTTGAACCAAAATTAGAAAACCAAG
A68D	P60	GTAATCTATAGCTCTTGCCATACTTTGCT
	P56	TAAGCTTTCTTTGAACCAAAATTAGAAAACCAAG
A68I	P61	GTAAATTATAGCTCTTGCCATACTTTGCT

Bacteriocin	Amino acid sequence
Circularin_A	VAGALGVQTAAATTIVNVILNAGTLVTVLGIIASIASGGAGTLMTIGWATFKATVQKLAKQSMARAIAY
Cerecyclin	VVSKLGWTGINIGTANALIGALMTGSDIWTAISVAGLAFGGGIGTAISTIGRKAIMEMVEKVGKKKAAQW
Lactocyclicin_ Q	LIDHLGAPRWAVDTILGAIAVGNLASWVLALVPGPGWAVKAGLATAAAIVKHQGKAAAAAW
Leucocyclicin_ Q	LVNQLGISKSLANTILGAIAVGNLASWLLALVPGPGWATKAALATAETIVKHEGKAAAIAW
Garvicin_ML	LVATGMAAGVAKTIVNAVSAGMDIATALSLFSGAFTAAGGIMALIKKYAQKKLWKQLIAA
Uberolysin	LAGYTGIASGTAKKVVDAIDKGAAAFVIISIISTVISAGALGAVSASADFIILTVKNYISRNLKAQAVIW
Carnocyclin_A	LVAYGIAQGTAEKVVSLINAGLTVGSIISILGGVTVGLSGVFTAVKAAIAKQGIKKAIQL
Bacicyclicin XIN-1	LTGIGIGSGTAATIVNWIMWGMSAATILSLISGVASGGAWILAGAREALKAGGKKAAIAW
Amylocyclicin	LASTLGISTAAAKKAIDIIDAASTIASIISLIGIVTGAGAISYAIVATAKTMIKKYGKKYAAAW
Amylocyclicin_ CMW1	LASTLGISAAAAKKAIDIIDAASTIASIISLIGIVTGAGAISYAIVATAKTMIKKYGKKYAAAW
AS-48	MAKEFGIPAAVAGTVLNVVEAGGWVTTIVSILTAVGSGGLSLLAAAGRESIKAYLKKEIKKKGKRAVIAW
BacA	MAKEFGIPAAVAGTVLNVVEAGGWVTTIVSILTAVGSGGLSLLAAAGRESIKAYLKKEIKKKGKRAVIAW
Aureocyclicin_ 4185	LTGLGIGTGMAATIINAISVGLSAATILSLISGVASGGAWVLAGAKQALKEGGKKAGIAF
Enterocin_NKR -5-3B	LTANLGISSYAAKKVIDIINTGSAVATIIALVTAVVGGGLITAGIVATAKSLIKKYGAKYAAAW
Pumilarin	LAKEFGIPGSVAAVVLNVVEAGGAVTTIVSILTAVGSGGLSLIAAAGKETIRQYLKNEIKKKGRKAVIAW

The second of th
--