Supplemental Figures and Tables for:

Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in Bacillus subtilis

Jasdeep S. Ghataora, Susanne Gebhard*, Bianca J. Reeksting*

Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

*Corresponding authors:

Bianca Reeksting (bjr39@bath.ac.uk)

Susanne Gebhard (sg844@bath.ac.uk)

Supplementary Table S1. Bacterial strains used within this study	2
Supplementary Table S2. Plasmids used in this study	4
Supplementary Table S3. Primers and oligonucleotides used in this study	7
Supplementary Table S4. Relevant DNA sequences for plasmid construction	11
Supplementary Figure S1 . Comparison of Gram +ve and Gram -ve MerR promoter activity in <i>B. subtilis</i>	15
Supplementary Figure S2. Comparison of ZntR sequences and structural analysis of the chimera MerRZntR	1 16
Supplementary Figure S3. Activity of double and triple MerRZntR mutants against the wild-type and single mutant MerRZntR ^{A29E}	؛ 17
Supplementary Figure S4. Comparison of inter-domain communication between CueR and the chimera MerRCueR	18
Supplementary Figure S5 . Dose response of P _{merR} regulated by MerRCueR ^{mut3} in response 19 Ag ⁺ induction	to
Supplementary Figure S6. Wild-type (P_{merR20}) and mutant (P_{merR19}) promoters	20
Supplementary Figure S7. The B. subtilis SANDBOX plasmids	21
Supplementary Figure S8. Bacillus subtilis natively regulated CzrA based circuit	22
References	23

	-	
Strain	Characteristics ^a	Construction ^b
DH5a	Escherichia coli DH5α	Laboratory stock
W168	Wild-type Bacillus subtilis W168	Laboratory stock
PAO1	Wild-type Pseudomonas aeruginosa PAO1	Laboratory stock
SGB1003	W168 sacA:: pJGlux01-P _{merR20} -luxABCDE-cm ^r	pJGlux01 -> W168
SGB1005	W168 sacA:: pJGlux01-P _{merR20} -luxABCDE-cm ^r ;	pJGXT01 -> SGB1003
	<i>thrC</i> ::pJGXT01- P _{xv/A} -MerR- <i>spc</i> ^r	
SGB1006	W168 sacA::pJGlux03-P _{veg} -luxABCDE-cm ^r	pJGlux03 -> W168
SGB1007	W168 sacA::pAH328	pAH328 -> W168
SGB1011	W168 sacA:: pJGlux01-P _{merR20} -luxABCDE-cm ^r ;	pJGXT02 -> SGB1003
	<i>thrC</i> ::pJGXT02- P _{xylA} -MerRZntR- <i>spc</i> ^r	
SGB1014	W168 sacA::pJGlux02- P _{merR19} -luxABCDE-cm ^r	pJGlux02 -> W168
SGB1015	W168 sacA:: pJGlux02- P _{merR19} -luxABCDE-cm ^r ;	pJGXT02 ->SGB1014
	<i>thrC</i> :: pJGXT01- P _{xy/A} -MerR- <i>spc</i> ^r	
SGB1027	W168 sacA:: pJGlux01-P _{merR20} -luxABCDE-cm ^r -	pJGXT03 -> SGB1003
	<i>cm</i> ^r ; <i>thrC</i> :: pJGXT03- P _{xyIA} -MerRCueR - <i>spc</i> ^r	
SGB1028	W168 sacA:: pJGlux01-P _{merR} -luxABCDE-cm ^r ;	pJGXT07 -> SGB1003
	<i>thrC</i> :: pJGXT07- <i>P_{xylA}</i> -MerRCueR ^{A29T} - <i>spc</i> ^r	
SGB1029	W168 sacA:: pJGlux01-P _{merR20} -luxABCDE-cm ^r ;	pJGXT08 -> SGB1003
	<i>thrC</i> :: pJGXT08- P _{xy/A} -MerRCueR ^{A29T/G30P} - <i>spC</i> ^r	
SGB1030	W168 sacA:: pJGlux01-P _{merR20} -luxABCDE-cm ^r ;	pJGXT11 -> SGB1003
	<i>thrC</i> :: pJGXT11-P _{xy/A} -MerRCueR ^{A29T/G30P/P32M} -	
	spc ^r	
SGB1034	W168 sacA::pJGlux04-P _{cadA} -luxABCDE-cm ^r	pJGlux04 -> W168
SGB1035	W168 <i>sacA</i> :: pJGlux01-P _{merR20} -luxABCDE-cm ^r ;	pJGXT15 -> SGB1003
	<i>thrC</i> :: pJGXT15-P _{xylA} -MerRZntR ^{A29E} - <i>spc</i> ^r	
SGB1036	W168 <i>sacA</i> :: pJGlux01-P _{merR20} -luxABCDE-cm ^r ;	pJGXT16 -> SGB1003
	<i>thrC</i> :: pJGXT16- P _{xy/A} -MerRZntR ^{A29E/G30H} - <i>spc</i> ^r	
SGB1047	W168 sacA:: pJGlux01-P _{merR20} -luxABCDE-cm ^r ;	pJGXT23 -> SGB1003
	<i>thrC</i> :: pJGXT23-P _{xy/A} -MerRZntR ^{A29E/G30H/P32V} - <i>spc</i> ^r	
SGB1050	W168 <i>sacA</i> :: pJGlux02-P _{merR19} -luxABCDE-cm ^r ;	pJGXT11 -> SGB1014
	thrC:: pJGXT11-P _{xy/A} -MerRCueR ^{A291/G30P/P32M} -	
	spc ^r	
SGB1060	W168 DoxdC-yvrJ-rsiO/sigO-rsoA	pBSANDdel -> W168
SGB1061	W168 <i>DoxdC-yvrJ-rsiO/sigO-rsoA</i> ;	pBSANDlux -> SGB1060
6604064	sacA::pBSANDIux-cm'	
SGB1064	W168 DOXAC-YVIJ-rSID/SIGU-rSOA;	$pBSAND2-P_{xylA} \rightarrow SGB1061$
	sacA::pBSANDIUX-cm'; lacA::pBSAND2-P _{xylA} -	
5CD106F	MILS'	
20B1002	W168 ZOXOC-YVIJ-ISIO/SIGO-ISOA;	$PBSAND1-P_{lial} \rightarrow SGB1064$
	MISC thrCoppSAND1 D coc	
SCP1067	MILS, INC., DESANDI-P _{lial} -Spc	
SGB1007	W168 SucApBSGGlux-P _{cadA} -clii	$PBSGGIUX - P_{cadA} - > W108$
2001000	$ac\Delta \cdots nRS\Delta ND u v - cm^{r} lac\Delta \cdots nRS\Delta ND 2 - D$	posanoz-r _{cada} -> 3001001
	MIS ^r	
SGB1072	$W168 \Lambda oxdC-vvrl-rsiO/sigO-rsoA$	pBSAND1-PMerR7ntR ^{A29E} -
5551072	sacA::pBSANDlux -cm ^r : lacA::pBSAND2-Parta-	Terminator-P _{mere} -> SGB1068

Supplementary Table S1. Bacterial strains used in this study

<i>MLS^r</i> ; <i>thrC</i> ::pBSAND1-P _{xy/A} -MerRZntR ^{A29E} -	
Terminator-P _{merR20} -spc ^r	

^a Relevant characteristics are listed. Antibiotic resistance cassettes are denoted as follows: *cm*: chloramphenicol resistance; spc: spectinomycin resistance; MLS: erythromycin and lincomycin resistance.

^b The direction of strain construction is indicated by an arrow which involves transformation with plasmids as indicated. Plasmids referred to are given in Table S2.

Supplementary Table S2. Plasmids used in this study

Plasmid	Characteristics ^a	Source
рХТ	Plasmid for xylose-inducible	1
	gene expression; integrates	
	in <i>thrC</i> ; spc ^r , amp ^r , ori ColE1	
pAH328	Plasmid for transcriptional	2
	promoter fusions	
	to <i>luxABCDE</i> (luciferase);	
	integrates at <i>sacA</i> ; cm ^r , amp ^r	
pBS4S	Empty plasmid, integration	3
	at <i>thrC</i> , amp ^r , spec ^r ,, ori ColE1	
pBS2E	Empty plasmid, integration	3
	at <i>lacA</i> , amp ^r , <i>mls</i> ^r , ori ColE1	
pBS3Clux	Bacterial luciferase (luxABCDE)	3
	plasmid, integration at sacA,	
	amp ^r , cm ^r , ori ColE1	
pSB1A3-P _{xy/A}	<i>amp</i> ^r , ori pMB1, P _{xy/A} (xylose	3
	inducible promoter)	
pSB1C3-P _{veg}	<i>cm^r , ori pMB1,</i> P _{veg} (strong	3
	constitutive B. subtilis	
	promoter)	
pJOE8999	CRISPR-Cas9 deletion plasmid,	4
	<i>kan</i> ^r ; pUC-ori , temperature	
	sensitive ori for B.	
	subtilis(permissive at 30°C)	
pJGlux01	P _{merR20} – IuxABCDE	This study
	transcriptional fusion, derived	
	from pAH328	
pJGlux02	P _{merR19} – luxABCDE	This study
	transcriptional fusion, derived	
	from pAH328	
pJGlux03	P _{veg} -luxABCDE transcription	This study
	fusion, derived from pAH328	
pJGlux04	P _{cadA19} -luxABCDE	This study
	transcriptional fusion, derived	
	from pAH328	
pJGXT01	P _{xy/A} -MerR transcriptional	This study
	fusion, derived from pXT	
pJGUC01	pUC19 derived vector, <i>amp</i> ^r ,	This study (GenScript
	ori ColE1, source of MerRZntR	synthesised vector)
	chimera RBS and CDS	
pJGXT02	P _{xy/A} -MerRZntR transcriptional	This study
	tusion, derived from pXT	
pJGUC02	pUC19 derived vector, <i>amp</i> ^r ,	This study (GenScript
	ori ColE1, source of MerRCueR	synthesised vector)
	chimera RBS and CDS	
pJGXT03	P _{xy/A} -MerRCueR transcriptional	This study
	fusion, derived from pXT	

pJGXT07	P _{xv/a} -MerRCueR ^{A29T}	This study
	transcriptional fusion, derived	
	from pJGXT03	
pJGXT08	P _{vv/4} -MerRCueR ^{A29T/G30P}	This study
	transcriptional fusion, derived	,
	from pJGXT03	
pJGXT11	P _{xv/A} -MerRCueR ^{A29T/G30P/P32M}	This study
	transcriptional fusion, derived	
	from pJGXT03	
pJGXT15	P _{xv/A} -MerRZntR ^{A29E}	This study
	transcriptional fusion, derived	
	from pJGXT02	
pJGXT16	P _{xv/A} -MerRZntR ^{A29E/G30H}	This study
	transcriptional fusion, derived	
	from pJGXT02	
pJGXT23	P _{xv/A} -MerRZntR ^{A29E/G30H/P32V}	This study
	transcriptional fusion, derived	
	from pJGXT02	
pJGBS3Clux02	Bacterial luciferase (<i>luxABCDE</i>)	This study
	plasmid with Bsal deletion in	
	<i>amp</i> ^r , pBS3Clux derived	
pJGBS3Clux03	Bacterial luciferase (<i>luxABCDE</i>)	This study
	plasmid with Bsal deletion in	
	<i>amp</i> ^r and <i>luxC</i> , derived from	
	pJGBS3Clux02	
pBSGGlux	Bacterial luciferase (<i>luxABCDE</i>)	This study
	plasmid, integration at <i>sacA</i> ,	
	amp ^r , cm ^r , ori ColE1 – Golden	
	Gate vector, derived from	
	pJGBS3Clux03	
pJGBS2E03	Empty plasmid with Bsal	This study
	deletion in <i>amp^r</i> , derived from	
	pBS2E	
pJGBS2E04	Empty plasmid with Bsal	This study
	deletion in <i>amp</i> ^r , and NgoMIV	
	insertion in <i>amp</i> ^r derived from	
	pBS2E	
pBSAND2	Empty plasmid with Golden	This study
	Gate cloning site allowing for	
	SigO expression, derived from	
	pJGBS2E04	
pJGBS4S01	Empty plasmid with Bsal	This study
	deletion in <i>amp</i> ^r	
pBSAND1	Empty plasmid with Golden	This study
	Gate cloning site allowing for	
	RsoA expression, derived from	
	pJGBS4S01	
pBSANDdel	CRISPR-Cas9 deletion vector	This study
	allowing for guided cut	
	upstream of <i>rsiO</i> in <i>B. subtilis</i>	
	with repair homology flanking	

_

^a Relevant characteristics are listed. Antibiotic resistance cassettes as follows: *amp^r* ; ampicillin resistance; *kan^r* : kanamycin resistance; *cm^r* : chloramphenicol resistance; spc^r : spectinomycin resistance; *mls*: erythromycin and lincomycin resistance.

Supplementary Table S3. Primers and oligonucleotides used in this study

Primer	Description	Sequence ^a	Function
SG0245	pBS2E/pBSAND2 check	GGCAACCGAGCGTTCTG	Verification of inserts into
	fwd		pBS2E derived plasmids
SG0246	pBS2E/pBSAND2 check	CTGACAGCGTTTCGATCC	Verification of inserts into
	rev		pBS2E derived plasmids
SG0528	sacA insertion up fwd	CTGATTGGCATGGCGATTGC	Verification of <i>sacA</i>
			integration for pBS3Clux
			derived plasmids
SG0529	sacA insertion up rev	ACAGCTCCAGATCCTCTACG	Verification of sacA
			integration for pBS3Clux
			derived plasmids
SG0530	sacA insertion down	GTCGCTACCATTACCAGTTG	Verification of <i>sacA</i>
	fwd		integration for pBS3Clux
			derived plasmids
SG0531	sacA insertion down	TCCAAACATTCCGGTGTTATC	Verification of sacA
	fwd		integration for pBS3Clux
			derived plasmids
SG0148	pBS2E/pBSAND2 up	GCATACCGGTTGCCGTCATC	Verification of lacA integration
	fwd		for pBS2E derived plasmids
SG1305	pBS2E/pBSAND2 up rev	ATCTATTATTTAACGGGAGGAAATAATTC	Verification of lacA integration
			for pBS2E derived plasmids
SG1346	pBS2E/pBSAND2 down	CTGCAGAGATATCGATTTCAAGC	Verification of lacA integration
	fwd		for pBS2E derived plasmids
SG0149	pBS2E/pBSAND2 down	GAACTACATGCACTCCACAC	Verification of lacA integration
	fwd		for pBS2E derived plasmids
SG601	pBS4S/pBSAND1 check	CAGTCAACCCTTACCGCATTG	Verification of inserts into
	fwd		pBS4S derived plasmids
SG602	pBS4S/pBSAND1 check	CCTCCTCACTATTTTGATTAGTACC	Verification of inserts into
	fwd		pBS4S derived plasmids
SG0985	EcoRI + P _{merR} fwd	tttaa GAATTC AACGGAAGAATGTGGCTTC	Amplification of P _{merB20}
	ment	TTGG	, menzo
SG0986	Spel + P _{merR} rev	tttaa ACTAGT TGATTTTCATCCCCATATTGT	Amplification of PmerB20
		CACC	
SG0987	BamHI + Native RBS +	tttaa GGATCC gaggtGACAATATGGGGATG	Amplification of MerR with
	MerR fwd	AAAATC	native RBS
SG0988	EcoRI + MerR rev	tttaa GAATTC TTATTTATCAGGCCCTCCCAT	Amplification of MerR with
		TAACGTT	native RBS
SG0991	pAH328/pBS3Clux	GAGCGTAGCGAAAAATCC	Verification of inserts into
	check fwd		pAH328/pBS3Clux derived
			plasmids
SG0992	pAH328/pBS3Clux	GAAATGATGCTCCAGTAACC	Verification of inserts into
	check rev		pAH328/pBS3Clux derived
			plasmids
SG1124	P _{merR20} 1-bp deletion	GGTACAGGGTTATACTTTTTATTGAGGTG	Mutagenesis of P _{merR20} make
	fwd	ACAATATGGGG	P _{merR19}
SG1125	P _{merR20} 1-bp deletion	AAAAAGTATAACCCTGTACCATAGTACAC	Mutagenesis of P _{merR20} make
	fwd	GGTCAAGTCAT	P _{merR19}
			•

SG1142	MerRCueR ^{A29T} fwd	AGGATTGATA <u>ACA</u> GGGCCTCCCAGAAACG	MerRCueR -> MerCueR ^{A29T}
		AATCAGGGTATCGC	mutagenesis
SG1143	MerRCueR ^{A29T} rev	TGGGAGGCCC <u>TGT</u> TATCAATCCTTTCCGCT	MerRCueR -> MerCueR ^{A29T}
		CGTAATACCGAAC	mutagenesis
SG1154	MerRCueR ^{A29T/G30P} fwd	ATTGATA <u>ACACCG</u> CCTCCCAGAAACGAAT	MerRCueR ->
		CAGGGTATCGCACC	MerRCueR ^{A29T/G30P}
			mutagenesis
SG1155	MerRCueR ^{A29T/G30P} rev	TTCTGGGAGGCGGTGTTATCAATCCTTTCC	MerRCueR ->
		GCTCGTAATACCG	MerRCueR ^{A29T/G30P}
			mutagenesis
SG1164	PcadA19 fwd	TTTAA GAATTC TTCGCGCTCGTAGTAGCG	Amplification of the P _{cade19}
		GATGGTC	promoter from P. aeruainosa
SG1171	P	TTTAAACTAGT	Amplification of the Parata
0011/1		ACCCTGT	promoter from <i>P</i> aeruginosa
SG1167	MerRCueR ^{A29T/G30P/P32M}	ΑΑΓΑΓΓΩ	MerRCueR ^{A29T/G30P} ->
	fwd	ATCGCACCTACACG	MerRCueR ^{A29T/G30P/P32M}
			mutagenesis
SG1168	MerBCueB ^{A29T/G30P/P32M}	ΔΤΤΟΩΤΤΤΟΤΟΑΤΑΘΟΟΘΑΤΩΤΤΑΤΟΑΔΤΟ	MerRCueR ^{A29T/G30P} ->
501100	rev		MerRCueR ^{A29T/G30P/P32M}
			mutagenesis
\$61172	MorB7ntB ^{A29E} fwd	ΔΟΓΑΤΤΩΛΤΑΩΛΑΘΟΟΓΤΟΓΟΛΩΑΛΑΟ	MerR7ntR -> MerR7ntR ^{A29E}
501172		GAATCAGGGTATCGA	mutagenesis
\$61172	MorP7n+PA29E roy		MorP7ntP > MorP7ntPA29E
301173		CGTATACCGAAC	mutagonosis
SC1174	Marp7n+pA29E/G30H fund		MarP7ntP > MarP7ntPA29E/G30H
301174			mutagonosis
SC117E	Marp7n+pA29E/G30H rov		MarDZatD > MarDZatDA29E/G30H
301173			mutagonosis
\$61200	Marp7n+pA29E/G30H/P32V		MorD7n+D >
301200	fund		NACTOR
	Iwa		Mer RZITLR ^{ADD,} 650.97021
661201			MarDZrtb
301201	Merkznik		
	rev	<u>IC</u> TATCAATCCTTTCCGCTCGTAATACC	Merkzhtk ^{222,0301,132}
664220			mutagenesis
SG1239	Bsal deletion in <i>luxC</i>	GACGGAAIGAG <u>G</u> CCGIIGCAACGAIIAGI	Bsal deletion in <i>luxc</i> of
604040		GACATATAT	pBS3Clux
SG1240	Bsal deletion in <i>luxC</i> rev	GIIGCAACGG <u>C</u> CICAIICCGICAIGAGAIC	Bsal deletion in <i>luxC</i> of
		CACCAACIC	pBS3Clux
SG1242	Bsal deletion in <i>amp^r</i>	TGAGCGTGG <u>C</u> TCTCGCGGTATCATTGCAG	Bsal deletion in <i>amp^r</i>
	fwd	CACTGG	
SG1243	Bsal deletion in <i>amp</i> ^r	ACCGCGAGAGAGCCACGCTCACCGGCTCCAG	Bsal deletion in <i>amp</i> ^r
	rev	ATTTATCAG	
SG1245	NgoMIV insertion in	TTGACGCCGG <u>C</u> CAAGAGCAACTCGGTCGC	Insertion of NgoMIV site in
	amp ^r fwd	CGCATAC	amp ^r
SG1246	NgoMIV insertion in	GTTGCTCTTG <u>G</u> CCGGCGTCAACACGGGAT	Insertion of NgoMIV site in
	amp ^r rev	AATACC	amp ^r
SG1274	Sfil + RBS + SigO fwd	TTAAA GGCC ACCCA GGCC gctcttaaggagga	Amplification of SigO to
		ttttagaATGAAGCATCCCATCGTGAAGCAT	include RBS R1

SG1248	PstI + SigO + 3' - Terminator rev	AAA CTGCAG AAAAAACGCGAGCGTCAGG CGCTCGCGTTTTTCTAATCGATTACTTTTCC CCCTTTTTTTGCGC	Amplification of SigO to include 3'-Terminator
SG1275	Sfil + RBS + RsoA fwd	TTAAA GGCC ACCCA GGCC <u>gctcttaaggagga</u> <u>ttttaga</u> GTGGACGGCCAGTTTGAACAAAA	Amplification of RsoA to include RBS R1
SG1250	PstI + RsoA + 3'- Terminator rev	TTAAA CTGCAG AAAAAACGCGAGCGTCAG GCGCTCGCGTTTTTCTAATCGATTATGAGT TCTCATCTACCATGTAC	Amplification of RsoA to include 3' - Terminator
SG1272	EcoRI + RFP + 5'- Terminator + 5'-Bsal fwd	TTAAA GAATTC AAAAACGCGAGCGCCTGA CGCTCGCGTTTTTTCC C TACTC GAGACC TC ATTCTCGCAATACGCAAACCGCCTCTC	Amplification of RFP to include 5'-Terminator and 5' Bsal site (new Bsal Golden Gate site) – For plasmids pBSAND1/2 and pBSANDlux
SG1273	Sfil + RFP + 5'-Bsal site rev	TTAAA GGCC TGGGT GGCC TACTGATAATT CT GAGACC ATAAACGCAGAAAGGCCCACC C	Amplification of RFP to include 3'-Bsal site (new Bsal Golden Gate site) – For plasmids pBSAND1/2
SG1324	PstI + RFP + 3'- Bsal site rev	TTAAA CTGCAG GGTACTGATAATTCT GAG ACCATAAACGCAGAAAGGCCCACCC	Amplification of RFP to include 3'-Bsal site (new Golden Gate site) – for plasmid pBSANDlux
SG1297	Bsal + $P_{xy A}$ fwd	TTTAAA GGTCTC ATACTAAGGCCAAAAAA CTGCTGCCTTCG	Amplification of $P_{xy A}$
SG1298	Bsal + P _{xy/A} rev	TTTAAA GGTCTC TATTCTTCGATAAGCTTG GGATCCCAG	Amplification of $P_{xy A}$
SG1299	Bsal + P _{oxdC} fwd	TTTAAA GGTCTC ATACTGATTCGAAAAGA AGTTTGATCA	Amplification of P _{oxdC}
SG1300	Bsal + P _{oxdC} rev	TTTAAA GGTCTC TATTCTTCGTTTTCCCTTC TGTTTTGT	Amplification of P _{oxdC}
SG1303	pBSGGlux new GoldenGate site check fwd	AAAAACGCGAGCGCCTGAC	Check for insertion of RFP with new Golden Gate site in pBSGGlux
SG1325	pBSGGlux new GoldenGate site check rev	GCAGGGTACTGATAATTCTGAGACCAT	Check for insertion of RFP with new Golden Gate site in pBSGGlux
SG1326	<i>oxdC-yvrJ-rsiO/sigO- rsoA</i> left hand homology + Sfil fwd	Ttaaa GGCC AACGA GGCC TCAATGAAGCTG TCAGAGATGAAC	Amplification of <i>oxdC-yvrJ-</i> <i>rsiO/sigO-rsoA</i> left hand homology region for pBSANDdel deletion vector
SG1327	oxdC-yvrJ-rsiO/sigO- rsoA left hand homology + Sfil rev	TTAAA GGCC TAAAT GGCC AAGAACGCATT CCAATTGGATGC	Amplification of <i>oxdC-yvrJ-</i> <i>rsiO/sigO-rsoA</i> left hand homology region for pBSANDdel deletion vector
SG1328	<i>oxdC-yvrJ-rsiO/sigO- rsoA</i> right hand homology + Sfil fwd	TTAAA GGCC ATTTA GGCC TTTCATATGAAA AAACATCAAAAGGGAG	Amplification of <i>oxdC-yvrJ-</i> <i>rsiO/sigO-rsoA</i> right hand homology region for pBSANDdel deletion vector

SG1329	oxdC-yvrJ-rsiO/sigO-	TTAAA GGCC TTATT GGCC GCCTACGATCA	Amplification of oxdC-yvrJ-
	rsoA right hand	ACTCGGCATT	<i>rsiO/sigO-rsoA</i> right hand
	homology + Sfil rev		homology region for
			pBSANDdel deletion vector
SG1344	∆oxdC-yvrJ-rsiO/sigO-	GAACATATTCGAATCTCCTTTCAA	Check for <i>∆oxdC-yvrJ-</i>
	<i>rsoA</i> deletion check fwd		<i>rsiO/sigO-rsoA</i> deletion using
			pBSANDdel
SG1345	∆oxdC-yvrJ-rsiO/sigO-	TGCCTTCAGGATTTGGGATAAA	Check for <i>ΔoxdC-yvrJ-</i>
	rsoA deletion check rev		<i>rsiO/sigO-rsoA</i> deletion using
			pBSANDdel
SG1347	pBSANDdel homology	GATTTGTTCAGAACGCTCGGT	Check for insertion of <i>oxdC</i> -
	insertion check fwd		yvrJ-rsiO/sigO-rsoA flanking
			homology regions into
			pBSANDdel
SG1348	pBSANDdel homology	ACGCATTGATTTGAGTCAGCT	Check for insertion of oxdC-
	insertion check rev		yvrJ-rsiO/sigO-rsoA flanking
			homology regions into
			pBSANDdel
SG1349	sgRNA for <i>∆oxdC-yvrJ-</i>	TACGGTTCTCTGCAAGCCTTCATA	sgRNA to guide Cas9 in
	rsiO/sigO-rsoA deletion		pBSANDdel for <i>ΔoxdC-yvrJ-</i>
	fwd		rsiO/sigO-rsoA deletion
SG1350	sgRNA for <i>∆oxdC-yvrJ-</i>	AAACTATGAAGGCTTGCAGAGAAC	sgRNA to guide Cas9 in
	<i>rsiO/sigO-rsoA</i> deletion		pBSANDdel for <i>ΔoxdC-yvrJ-</i>
	fwd		<i>rsiO/sigO-rsoA</i> deletion
SG1382	MerRZntR ^{A29E} + Bsal	TTTAAA GGTCTC GTTTT <u>gaggt</u> GACAATATG	Amplification of MerRZntR ^{A29E}
	fwd	GGGATGAAAA	for Golden Gate assembly
SG1383	MerRZntR ^{A29E} + Bsal rev	TTTAAA GGTCTC AGGGGTCAACAACCACT	Amplification of MerRZntR ^{A29E}
		CTTAACGCCACT	for Golden Gate assembly
SG1384	P _{merR} with 5'-Terminator	TTTAAA GGTCTC ACCCC <u>AAAAACGCGAGC</u>	Amplification of P _{merR} to
	+ Bsal fwd	GCCTGACGCTCGCGTTTTTTAACGGAAGA	include 5'-Terminator
		ATGTGGCTTCTTGG	
SG1385	P _{merR} with 5'-Terminator	IIIAAA GGTCTC IAIICIGAIIIICAICCCC	Amplification of P _{merR} to
664997	+ Bsal rev		Include 5'-Terminator
SG1387	P _{cadA} + Bsal Rev	TTAAAGGICICATACIGCGCIIGCIGIII	Amplification of P _{cadA}
SG1403	P _{cadA} + Bsal Fwd	TITAAAGGTCTCATACTATICAGCTCCGT	Amplification of P _{cadA}
664399			
SG1388	P _{lial} + Bsal fwd		Amplification of P _{lial}
664262		GAAAGGIC	
SG1389	P _{lial} + Bsal rev	IIIAAAGGTCTCAIACTATTGGCCAAAGCA	Amplification of P _{lial}
			A 110
SG1410	$P_{xy/A}$ + Bsal rev		Amplification of $P_{xy A}$
		GGATCCCAG	

^a Restriction sites are in uppercase bold; QuickChange point mutation sites are underlined bold, RBS sequences in primers are in lowercase and underlined with a thin line; terminator sequence are underlined with a dotted line.

Part	Part type & Function	Sequence ^a
P _{merR20}	MerR Family promoter	AACGGAAGAATGTGGCTTCTTGGCGTGAAGAGCAGA
	recognised by MerR and	TATCTTTATTCTTAAACTTCTAAAAAAGCTTATGTGAA
	the chimeras derived	CACTTGATAAATAAGGTTTTTTATCTGACCTATTTTAT
	from this study. Contains	AAGATTATTCTATAAAAGAAAAAATAATGTATGAC TT
	a 20-bp spacer between	GACCGTGTACTATGGTACAGGGTTTATACTTTTATT
	the -10 and -35 elements	GAGGTGACAATATGGGGATGAAAATCAGTGAATTGG
		CTAAAGCGTGTGATGTGAATAAAGA
P are	MerB Family promoter	
• merk19	recognised by MerB and	TATCTTTATTCTTAAACTTCTAAAAAAGCTTATGTGAA
	the chimeras derived	
	from this study. Contains	ΑΑGΑΤΤΑΤΤΟΤΑΤΑΑΑΑGΑΑΑΑΑΑΤΑΑΤGTATGACTT
	a 19-bn spacer between	
	the -10 and -35 elements	
P _{veg}	Strong constitutive	GGAGTTCTGAGAATTGGTATGCCTTATAAGTCCAATT
	promoter native to B.	AACAGTTGAAAACCTGCATAGGAGAGCTATGCGGGT
	subtilis	TTTTTATTTTACATAATGATACATAATTTACCGAAACTT
		GCGGAACATAATTGAGGAATCATAGAATTTTGTCAAA
		ATAATTTTATTGACAACGTCTTATTAACGTTGATATAA
		TTTAAATTTTAT TTGACA AAAATGGGCTCGTGTTG TA
		CAATAAATGTAGT
MerR	Coding sequence for	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT
	MerR including the	AAAGCGTGTGATGTGAATAAAGAAACCGTTCGGTAT
	native RBS and spacer	TACGAGCGGAAAGGATTGATAGCCGGGCCTCCCAGA
	region of MerR. Hg ² -	AACGAATCAGGGTATCGAATATATTCAGAGGAAACA
	sensor	GCAGATCGGGTACGGTTTATTAAACGAATGAAGGAA
		TTGGATTTCTCGCTAAAGGAAATCCACCTGTTGTTTG
		GTGTGGTTGATCAAGATGGGGGAGAGATGTAAAGATA
		TGTACGCCTTTACCGTTCAAAAAACCAAAGAAATCGA
		GCGGAAAGTGCAGGGTTTGTTACGAATCCAACGGTT
		ATTAGAGGAATTAAAAGAAAAGTGTCCAGATGAAAA
		GGCGAIGIAIACCIGICCIAIIAIIGAAACGIIAAIG
Max DZ = + D		
MerkZntk	Coding sequence for	
	including the notive DDC	
	including the native RBS	

Supplementary Table S4. Relevant DNA sequences for plasmid construction

MerRZntR ^{A29E}	Coding sequence for	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT
	MerRZntR chimera	AAAGCGTGTGATGTGAATAAAGAAACCGTTCGGTAT
	including the native RBS	TACGAGCGGAAAGGATTGATA <u>GAA</u> GGGCCTCCCAGA
	and spacer region of	AACGAATCAGGGTATCGACTATATACCGAAAGCGAT
	MerR. Contains a A29E	CTCCAGCGATTGAAATTTATCCGCCATGCCAGACAAC
	substitution in the α -helix	TAGGTTTCAGTCTGGAGTCGATCCGCGAGTTGCTGTC
	2-3 loop region.	GATCCGCATCGATCCTGAACACCATACCTGTCAGGAG
	Optimised Zn ²⁺ - sensor	TCAAAAGGCATTGTGCAGGAAAGATTGCAGGAAGTC
		GAAGCACGGATAGCCGAGTTGCAGAGTATGCAGCGT
		TCCTTGCAACGCCTTAACGATGCCTGTTGTGGGACTG
		CTCATAGCAGTGTTTATTGTTCGATTCTTGAAGCTCTT
		GAACAAGGGGCGAGTGGCGTTAAGAGTGGTTGTTGA
MerB7ntB ^{A29E/G30H}	Coding sequence for	
WEINZIEN	MerR7ntR chimera	
	including the native RBS	
	and spacer region of	
	Morp Contains a	
	A205/C2011 substitution	
	A29E/G30H Substitution	
	In the α-nellx 2-3 loop	
	region	
		GAACAAGGGGCGAGIGGCGIIAAGAGIGGIIGIIGA
	Coding convonce for	
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for	
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera	
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region Coding sequence for MerRCueR chimera including the native RBS and spacer region of	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRZntR ^{A29E/G30H/P32V}	Coding sequence for MerRZntR chimera including the native RBS and spacer region of MerR. Contains a A29E/G30H/P32V substitution in the α-helix 2-3 loop region Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA

MerRCueR ^{A29T}	Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR. Contains a A29T substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRCueR ^{A29T/G30P}	Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR. Contains a A29T/G30P substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
MerRCueR ^{A29T/G30P/P32M}	Coding sequence for MerRCueR chimera including the native RBS and spacer region of MerR. Contains a A29T/G30P/P32M substitution in the α-helix 2-3 loop region	gaggtgacaatATGGGGATGAAAATCAGTGAATTGGCT AAAGCGTGTGATGTGA
RsoA	Coding sequence for RsoA, co-σ-factor of SigO	GTGGACGGCCAGTTTGAACAAAAAAAGAAACAAAAA GACGAGACTTATGACATTGAGCACCTGATTGCATGCT TTTCACCGATGATCAGA AAAAAACTCAGCAATACGTCCTATCAAGAAAGAGAA GATTTAGAGCAAGAGCTGAAGATCAAAATGTTTGAA AAGGCTGATATGCTTTTATGTCAGGATGTACCGGGGT TTTGGGAGTTTATTTTGTACATGGTAGATGAGAACTC ATAA
SigO	Coding sequence for SigO, co-σ-factor of RsoA	ATGAAGCATCCCATCGTGAAGCATTTTTTGAGCAATC CTCAGCATTACCGTTTGTTCAAAAACGTAATGGAAAG CCCTAACGAAAAAGATGCAAGATCATTGGACGAGCT ATTTAAGCAATTTTATAAAGAAATCCGCATCGTCAAG

		TATATGAATTCAATGATTCGCATCTTTTCTATTGATTTT GATAAGCGGGTTCGCAAAAACCAAAAACGGTATCCA CTGACGGTTGATCATCCGGAGGCGGGGAGATCGGCTT TCTTCCGAAACAGGTAGCGATGCATTTGAAGAATTTT TAGACAGGCAGGATGATTTGAGCCAGCATGTACAGG ATTACCAGCTCTACCAAGCGATCCAGAAGCTGACTGA CAAACAAAAAAGTGTGCTGACGAAAGTCTATCTTCAC GGTGCCACGATGCAGGAGATTGCAGATTCATTAGGG GAGTCCCGACAAAACATCTCCAACATTCATAAAAAGG GGCTGGAGAATATCAGAAAGCAGTTAGCGGCGCAAA AAAAGGGGGAAAAGTAA
P _{oxdC}	P _{oxdC} promoter recognised by SigO and RsoA	GATTCGAAAAGAAGTTTGATCAACTAATAGAACTAAT GACAGAACTGAAAGATCATGCAAAAAAATAATTTTTC AATCGAAG TTGACT TTTCACTGGTTTTTT TCACTTA AC AAAACAGAAGGGAAAACGAA
P _{xylA}	Xylose-inducible promoter lacking CRE- element. Sequence is derived from Radeck <i>et al</i> ³	AAGGCCAAAAAACTGCTGCCTTCGGATCAGCGATATC CACTTCATCCACTCCATTTGTTTAATCTTTAAATTAAGT ATCAACATAGTACATAGCGAATCTTCCCTTTATTATAT CTAATGTGTTCATAAAAAACTAAAAAAAA TATTGA AA ATACTGACGAGGTTA TATAAG ATGAAAATAAGTTA <u>G</u> <u>TTTGTTTAAACAACAAACT</u> AATAGGTGATGTACTTACT ATATGAAATAAAATGCATCTGGGATCCCAAGCTTATC GAA
P _{lial}	Bacitracin-inducible promoter. Sequence is derived from Radeck <i>et al</i> ³	ATTGGCCAAAGCAGAAAGGTCCGACCTAATTAAAGA AAGGGAAGCAAGTGTTCATCTGTAAAGGGTTTTAAA ACGCCATGCCTCGTGCATGGCGTTTTTTTGTGCCAAT GGGTCCGGTGCGAGA <u>TACGACTCCGGTCTTATATAA</u> A AATCAATCTCTGAT TCG TTTTGCATATCTTCCAACTTG TATAAG ATGAAGACAAGGAAAACGA
Terminator 1 "Term 1"	Strong minimal terminator to prevent transcriptional read- through. Sequence is derived from Cui <i>et al</i> ⁵	AAAAACGCGAGCGCCTGACGCTCGCGTTTTTT
RBS R1	RBS used for SigO and RsoA translation. Sequence is derived from Guiziou <i>et al</i> ⁶	GCTCTTAAAGGGGGTTTTAGA
P _{cadA}	Metal inducible promoter regulated natively by CzrA	ATTCAGCTCCGTTTCCGTTGTTCTGAATGCTCTT CGTCTGCAAAAAGTAAAATGAAAAACCGGCTATA TGCCGGTTTTTGTTTTTCA TTGACA CTTTCTTGG AAAACAACA TATAAT AGGTGTAA <u>CTTATATATGA</u> <u>GTATATGCTCATATATATAA</u> AATAAATACAATAC TCATTGATACGCTTTGAAGAGGGAA

^a For sequences of this study, the -10 and -35 elements are in bold; positions where a regulator binds are underlined; RBS and spacer are in lowercase.

Supplementary Figure S1. Comparison of Gram +ve and Gram -ve MerR promoter activity in *B. subtilis*. Cells harbouring either an empty luciferase reporter, P_{merR20} (Gram +ve), P_{merR19} (Gram +ve), P_{veg} (Gram +ve) or P_{cadA19} (Gram-ve) were grown in MM9 media with luciferase activity measured overtime. Values presented are the average of three time points (35-, 40- and 45-minutes) following initial inoculation into MM9 medium. The strong Gram +ve *B. subtilis* promoter P_{veg} , was included as a control. Subscripts indicate the size of the spacer region between the -10 and -35 elements for MerR family promoters. Data are the \pm standard deviation of triplicate measurements performed on three different days.

Supplementary Figure S2. Comparison of ZntR sequences and structural analysis of the chimera MerRZntR.A) Sequence alignment of ZntR homologues from various Gram-negative genetic backgrounds ("Ec" – *E. coli*, accession code: AAC76317.1; "Se"- *S. enterica*, accession code: EBW6030787.1; "Kp" – *K. pneumoniae*, accession code: CDK70471.1; "Sf" – *S. flexerni*, accession code: EAA3112577.1; "Pa" – *P. aeruginosa*, accession code: MBH4409345.1). Residues of interest involved in interdomain communication are highlighted in bold purple. Asterisk " * " indicates fully conserved residues, colon " : " indicates conserved residues with similar properties, and period " . " indicates residues of weakly similar properties. **B)** Structural analysis of the residues between α-helices 2-3 in MerRZntR. Here, the MerR (*S. aureus*) derived DNA-Binding Domain is coloured dark blue, whilst the ZntR (*E. coli*) derived Metal-Binding Domain is coloured purple. Residues of interest are coloured lavender blue and are numbered accordingly. Due to the presence of the non-polar residue Ala-29, no hydrogen bonding is present between Ala-29 (DNA-Binding Domain) and Ser-44 and Arg-48 (Metal Binding Domain).

Supplementary Figure S3. Activity of double and triple MerRZntR mutants against the wild-type and single mutant MerRZntR^{A29E}. Residues in between alpha-helix 2-3 were mutated to those found natively in ZntR, generating MerRZntR^{A29E/G30H} and MerRZntR^{A29E/G30H/P32V} (mut3), with the activity compared relative to both wild-type (MerRZntR) and the single mutant (MerRZntR^{A29E}). Cells were grown to $OD_{600} = \sim 0.03$ and induced at the highest sub-lethal tested concentration of Zn²⁺ with luciferase activity (relative luminescence units (RLU) normalised by cell density (OD_{600})) for three time points (35-, 40- and 45-mins) post induction. Fold-induction values of the induced (dark purple) are relative to the respective uninduced strain (light purple). Values are presented as mean and ± standard deviation of either two or three independent replicates.

Magnification of the CueR (*E. coli*, accession code: CAD6020341.1) inter-domain hydrogen bonding network between α -helices 2-3. **B**) Magnification of the MerRCueR chimera inter-domain hydrogen bonding network between α -helices 2-3. **H**ere, the MerR (*S. aureus*) derived DNA-Binding Domain is indicated in dark blue, whilst the CueR (*E. coli*) derived Metal-Binding Domain is indicated in orange. For panels **A** and **B**, residues of interest are coloured in lavender blue and are numbered accordingly, with hydrogen bonds indicated in yellow. **C**) Sequence alignment of CueR from various Gramnegative genetic backgrounds ("Ec" – *E. coli*, accession code: CAD6020341.1; "Kp" – K. pneumoniae, accession code: OZQ58601.1; "Sf" – *S. flexerni*, accession code: EFX2973845.1; "Pa" – *P. aeruginosa*, accession code: MXH36715.1; "Se"- *S. enterica*, accession code: EAS1883030.1). Residues of interest involved in interdomain communication are highlighted in bold orange. Asterisk " * " indicates fully conserved residues, colon " : " indicates conserved residues with similar properties, and period " . " indicates residues of weakly similar properties.

Supplementary Figure S5. Dose response of P_{merR} regulated by MerRCueR^{mut3} in response to Ag^+ induction.

Transcriptional output from P_{merR} is shown in response to various concentrations of Ag⁺. Cells were induced at $OD_{600} = \sim 0.03$ with luciferase activity (relative luminescence units [RLU]) normalised to optical density (OD_{600}) values (RLU/ OD_{600}) from three time points (35-, 40- and 45-mins post induction). Values for the limit of detection (LOD) and Environmental Protection Agency (EPA) guideline values are indicated. Values are presented as mean and ± standard deviation of either two or three independent replicates.

	-35	-10
P_{merR20}	ATGTATGAC TTG<u>ACC</u>G<u>TGTAC</u>TATG	G <u>GTACA</u> G <u>GGT</u> T TATACT TTTTATT
		Ļ
P _{merR19}	ATGTATGAC TTG<u>ACC</u>G<u>TGTAC</u>TATG	G <u>GTACA</u> G <u>GGT</u> TATACTTTTTATT

Supplementary Figure S6. Wild-type (P_{merR20}) and mutant (P_{merR19}) promoters. The wild-type P_{merR20} promoter was used as a template for targeted mutagenesis to remove 1 bp adjacent to the -10 element (indicated by red arrow), as done previously by Parkhill *et al* ⁷ to generate the mutant promoter P_{merR19}. The MerR dyad sequence is underlined with both the -35 and -10 element in bold.

Supplementary Figure S7. Maps of the B. subtilis SANDBOX plasmids. A) Vector architecture for plasmids pBSAND1 and pBSAND2 both of which contain one half of the two-subunit sigma factor system SigO-RsoA. Plasmids pBSAND1, pBSAND2 and pBSANDlux are all integrative vectors with resistance markers spc (spectinomycin), erm (MLS; macrolide, lincosamide and streptogramin B antibiotics if induced by erythromycin) and cat (chloramphenicol) and integrate at the loci thrC, lacA and sacA, respectively. Whilst pBSANDdel is an integrative vector, the flanking homology region (shown in pink) is the only integrative portion of the plasmid. The gRNA to cut within the sigO-rsoA regulon is indicated with an orange arrowhead. Plasmid pBSANDlux is a luciferase-based reporter vector (Poxdc-luxABCDE) and pBSANDdel is a modified CRISPR-Cas9 vector designed to knockout the SigO-RsoA regulon. The integrative portion of all the logic gate plasmids are shown with a black line, terminators are indicated with the "T" symbol, and all comprise a bla (ampicillin) resistance marker to allow for selection in E. coli - the exception of which is pBSANDdel which has a kan (kanamycin) marker for selection in both E. coli and B. subtilis. Plasmids pBSAND1, pBSAND2, pBSANDlux and pBSANDdel are derived from pBS4S, pBS2E, pBS3Clux and pJOE8999^{3,4}. B) The Golden Gate cloning site based on Bsal. The RFP cassette is flanked by two Golden Gate restriction sites, highlighted in bold purple, with the overhang indicated in bold black.

Supplementary Figure S8. Bacillus subtilis metal-sensory circuit controlled by the native CzrA regulator. In the circuit shown, CzrA mediated repression of the cognate promoter P_{cadA} is relieved upon the addition of heavy metal ions. Transcriptional output from P_{cadA} , measured via luciferase activity (luxABCDE, light blue arrow) is shown in response to various concentrations of heavy metals. Inducers, Zn^{2+} and Cd^{2+} are indicated in teal and dark blue respectively. $M^{+/2+}$ indicates the addition of either a monovalent or divalent metal ion. Cells were induced at $OD_{600} = \sim 0.03$ with luciferase activity (relative luminescence units [RLU]) normalised to optical density (OD_{600}) values (RLU/OD_{600}) from three time points (35-, 40- and 45-mins post induction). Values are presented as mean and ± standard deviation of either two or three independent replicates.

References

- 1. Derre, I., Rapoport, G. & Msadek, T. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37°c. *Mol. Microbiol.* **38**, 335–347 (2000).
- 2. Schmalisch, M. *et al.* Small genes under sporulation control in the Bacillus subtilis genome. *J. Bacteriol.* **192**, 5402–5412 (2010).
- 3. Radeck, J. *et al.* The Bacillus BioBrick Box: Generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. *J. Biol. Eng.* **7**, (2013).
- 4. Altenbuchner, J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. *Appl. Environ. Microbiol.* **82**, 5421–5427 (2016).
- 5. Cui, W. *et al.* Data-Driven and in Silico-Assisted Design of Broad Host-Range Minimal Intrinsic Terminators Adapted for Bacteria. *ACS Synth. Biol.* **10**, 1438–1450 (2021).
- 6. Guiziou, S. *et al.* A part toolbox to tune genetic expression in Bacillus subtilis. *Nucleic Acids Res.* **44**, 7495–7508 (2016).
- 7. Parkhill, J. & Brown, N. L. Site-specific insertion and deletion mutants in the mer promoteroperator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. **18**, 5157–5162 (1990).