Supplemental Figures and Tables for:

Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in Bacillus subtilis

Jasdeep S. Ghataora, Susanne Gebhard*, Bianca J. Reeksting*

Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

*Corresponding authors:

Bianca Reeksting (bjr39@bath.ac.uk)

Susanne Gebhard (sg844@bath.ac.uk)

Supplementary Table S1. Bacterial strains used in this study

a Relevant characteristics are listed. Antibiotic resistance cassettes are denoted as follows: *cm*: chloramphenicol resistance; spc: spectinomycin resistance; MLS: erythromycin and lincomycin resistance.

^b The direction of strain construction is indicated by an arrow which involves transformation with plasmids as indicated. Plasmids referred to are given in Table S2.

Supplementary Table S2. Plasmids used in this study

^a Relevant characteristics are listed. Antibiotic resistance cassettes as follows: amp^r; ampicillin resistance; kan^r: kanamycin resistance; cm^r : chloramphenicol resistance; spc^r : spectinomycin resistance; mls: erythromycin and lincomycin resistance.

Supplementary Table S3. Primers and oligonucleotides used in this study

a Restriction sites are in uppercase bold; QuickChange point mutation sites are underlined bold, RBS sequences in primers are in lowercase and underlined with a thin line; terminator sequence are underlined with a dotted line.

^a For sequences of this study, the -10 and -35 elements are in bold; positions where a regulator binds are underlined; RBS and spacer are in lowercase.

Supplementary Figure S1. Comparison of Gram +ve and Gram -ve MerR promoter activity in *B. subtilis***.** Cells harbouring either an empty luciferase reporter, P*merR20* (Gram +ve), P*merR19* (Gram +ve), P*veg* (Gram +ve) or P*cadA19* (Gram-ve) were grown in MM9 media with luciferase activity measured overtime. Values presented are the average of three time points (35-, 40 and 45-minutes) following initial inoculation into MM9 medium. The strong Gram +ve *B. subtilis* promoter P*veg*, was included as a control. Subscripts indicate the size of the spacer region between the -10 and -35 elements for MerR family promoters. Data are the ± standard deviation of triplicate measurements performed on three different days.

Supplementary Figure S2. Comparison of ZntR sequences and structural analysis of the chimera MerRZntR.A) Sequence alignment of ZntR homologues from various Gram-negative genetic backgrounds ("Ec" – *E. coli*, accession code: AAC76317.1; "Se"- *S. enterica*, accession code: EBW6030787.1; "Kp" – *K. pneumoniae*, accession code: CDK70471.1; "Sf" – *S. flexerni*, accession code: EAA3112577.1; "Pa" – *P. aeruginosa*, accession code: MBH4409345.1). Residues of interest involved in interdomain communication are highlighted in bold purple. Asterisk " * " indicates fully conserved residues, colon " : " indicates conserved residues with similar properties, and period " . " indicates residues of weakly similar properties. **B)** Structural analysis of the residues between α-helices 2-3 in MerRZntR. Here, the MerR (*S. aureus*) derived DNA-Binding Domain is coloured dark blue, whilst the ZntR (*E. coli*) derived Metal-Binding Domain is coloured purple. Residues of interest are coloured lavender blue and are numbered accordingly. Due to the presence of the non-polar residue Ala-29, no hydrogen bonding is present between Ala-29 (DNA-Binding Domain) and Ser-44 and Arg-48 (Metal Binding Domain).

Supplementary Figure S3. Activity of double and triple MerRZntR mutants against the wild-type and single mutant MerRZntRA29E . Residues in between alpha-helix 2-3 were mutated to those found natively in ZntR, generating MerRZntRA29E/G30H and MerRZntRA29E/G30H/P32V (mut3), with the activity compared relative to both wild-type (MerRZntR) and the single mutant (MerRZntR^{A29E}). Cells were grown to OD₆₀₀= ~ 0.03 and induced at the highest sub-lethal tested concentration of Zn²⁺ with luciferase activity (relative luminescence units (RLU) normalised by cell density (OD₆₀₀)) for three time points (35-, 40- and 45-mins) post induction. Fold-induction values of the induced (dark purple) are relative to the respective uninduced strain (light purple). Values are presented as mean and ± standard deviation of either two or three independent replicates.

Magnification of the CueR (*E. coli*, accession code: CAD6020341.1) inter-domain hydrogen bonding network between αhelices 2-3. **B)** Magnification of the MerRCueR chimera inter-domain hydrogen bonding network between α-helices 2-3. Here, the MerR (*S. aureus*) derived DNA-Binding Domain is indicated in dark blue, whilst the CueR (*E. coli*) derived Metal-Binding Domain is indicated in orange. For panels **A** and **B,** residues of interest are coloured in lavender blue and are numbered accordingly, with hydrogen bonds indicated in yellow. **C)** Sequence alignment of CueR from various Gramnegative genetic backgrounds ("Ec" – *E. coli*, accession code: CAD6020341.1; ; "Kp" – K. pneumoniae, accession code: OZQ58601.1; "Sf" – *S. flexerni*, accession code: EFX2973845.1; "Pa" – *P. aeruginosa*, accession code: MXH36715.1; "Se"- *S. enterica*, accession code: EAS1883030.1). Residues of interest involved in interdomain communication are highlighted in bold orange. Asterisk " * " indicates fully conserved residues, colon ": " indicates conserved residues with similar properties, and period " . " indicates residues of weakly similar properties.

Supplementary Figure S5. Dose response of PmerR regulated by MerRCueRmut3 in response to Ag⁺ induction.

Transcriptional output from P_{merR} is shown in response to various concentrations of Ag⁺. Cells were induced at OD₆₀₀ = \sim 0.03 with luciferase activity (relative luminescence units [RLU]) normalised to optical density (OD₆₀₀) values (RLU/OD₆₀₀) from three time points (35-, 40- and 45-mins post induction). Values for the limit of detection (LOD) and Environmental Protection Agency (EPA) guideline values are indicated. Values are presented as mean and ± standard deviation of either two or three independent replicates.

Supplementary Figure S6. Wild-type (P_{merR20}) and mutant (P_{merR19}) promoters. The wild-type P_{merR20} promoter was used as a template for targeted mutagenesis to remove 1 bp adjacent to the -10 element (indicated by red arrow), as done previously by Parkhill *et al*⁷ to generate the mutant promoter P_{merR19}. The MerR dyad sequence is underlined with both the -35 and -10 element in bold.

Supplementary Figure S7. Maps of the *B. subtilis* **SANDBOX plasmids. A)** Vector architecture for plasmids pBSAND1 and pBSAND2 both of which contain one half of the two-subunit sigma factor system SigO-RsoA. Plasmids pBSAND1, pBSAND2 and pBSANDlux are all integrative vectors with resistance markers *spc* (spectinomycin), *erm* (MLS; *macrolide, lincosamide and streptogramin B antibiotics if induced by erythromycin)* and cat (chloramphenicol) and integrate at the loci *thrC, lacA* and *sacA*, respectively. Whilst pBSANDdel is an integrative vector, the flanking homology region (shown in pink) is the only integrative portion of the plasmid. The gRNA to cut within the *sigO-rsoA* regulon is indicated with an orange arrowhead. Plasmid pBSANDlux is a luciferase-based reporter vector (P_{oxdC}-luxABCDE) and pBSANDdel is a modified CRISPR-Cas9 vector designed to knockout the SigO-RsoA regulon. The integrative portion of all the logic gate plasmids are shown with a black line, terminators are indicated with the "T" symbol, and all comprise a *bla* (ampicillin) resistance marker to allow for selection in *E. coli* – the exception of which is pBSANDdel which has a *kan* (kanamycin) marker for selection in both *E. coli* and *B. subtilis*. Plasmids pBSAND1, pBSAND2, pBSANDlux and pBSANDdel are derived from pBS4S, pBS2E, pBS3Clux and pJOE8999^{3,4}. B) The Golden Gate cloning site based on Bsal. The RFP cassette is flanked by two Golden Gate restriction sites, highlighted in bold purple, with the overhang indicated in bold black.

Supplementary Figure S8. *Bacillus subtilis* **metal-sensory circuit controlled by the native CzrA regulator.** In the circuit shown, CzrA mediated repression of the cognate promoter P_{cadA} is relieved upon the addition of heavy metal ions. Transcriptional output from P_{cadA} , measured via luciferase activity (luxABCDE, light blue arrow) is shown in response to various concentrations of heavy metals. Inducers, Zn²⁺ and Cd²⁺ are indicated in teal and dark blue respectively. M^{+/2+} indicates the addition of either a monovalent or divalent metal ion. Cells were induced at OD₆₀₀ = ~ 0.03 with luciferase activity (relative luminescence units [RLU]) normalised to optical density (OD₆₀₀) values (RLU/OD₆₀₀) from three time points (35-, 40- and 45-mins post induction). Values are presented as mean and ± standard deviation of either two or three independent replicates.

References

- 1. Derre, I., Rapoport, G. & Msadek, T. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37°c. *Mol. Microbiol.* **38**, 335–347 (2000).
- 2. Schmalisch, M. *et al.* Small genes under sporulation control in the Bacillus subtilis genome. *J. Bacteriol.* **192**, 5402–5412 (2010).
- 3. Radeck, J. *et al.* The Bacillus BioBrick Box: Generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. *J. Biol. Eng.* **7**, (2013).
- 4. Altenbuchner, J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. *Appl. Environ. Microbiol.* **82**, 5421–5427 (2016).
- 5. Cui, W. *et al.* Data-Driven and in Silico-Assisted Design of Broad Host-Range Minimal Intrinsic Terminators Adapted for Bacteria. *ACS Synth. Biol.* **10**, 1438–1450 (2021).
- 6. Guiziou, S. *et al.* A part toolbox to tune genetic expression in Bacillus subtilis. *Nucleic Acids Res.* **44**, 7495–7508 (2016).
- 7. Parkhill, J. & Brown, N. L. Site-specific insertion and deletion mutants in the mer promoteroperator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. **18**, 5157–5162 (1990).