Supplementary Information

Genome mining unveils a class of ribosomal peptides with two amino termini

Hengqian Ren^{1,3,8}, Shravan R. Dommaraju^{2,3,8}, Chunshuai Huang³, Haiyang Cui³, Yuwei Pan⁴, Marko Nesic², Lingyang Zhu⁵, David Sarlah², Douglas A. Mitchell^{2,3,6,*}, and Huimin Zhao^{1,2,3,7,*}

¹Department of Chemical and Biomolecular Engineering, ²Department of Chemistry, ³Carl R. Woese Institute for Genomic Biology, ⁴Department of Molecular and Cellular Biology, ⁵School of Chemical Sciences, NMR Laboratory, ⁶Department of Microbiology, ⁷Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁸These authors contributed equally to this work: Hengqian Ren, Shravan R. Dommaraju.

* To whom correspondence should be addressed: <u>douglasm@illinois.edu</u>, <u>zhao5@illinois.edu</u>

Table of Contents

Supplementary Table 1: Daptide protein co-occurrence table1
Supplementary Table 2: Comparison of the Dmp chemical shifts observed in 1 (daptide) and hominicin2
Supplementary Table 3: Comparison of the Ala-23 chemical shifts observed in 1 (daptide) and Ala-20 in hominicin
Supplementary Table 4: Indicator strains and corresponding culturing conditions used in the antimicrobial activity screening
Supplementary Table 5: Oligonucleotides used for cloning and site-directed mutagenesis
Supplementary Table 6: DNA sequences of the <i>E. coli</i> codon-optimized <i>mpa</i> genes
Supplementary Table 7: Naming scheme for daptide biosynthetic genes
Supplementary Note: Algorithm for pairing of RRE families with precursor peptide families
Supplementary Figure 1: Generalized workflow for bioinformatic analysis of the RRE-Finder exploratory mode dataset
Supplementary Figure 2: Daptide precursor peptide sequence logo
Supplementary Figure 3: HHpred results for MpaB
Supplementary Figure 4: Alternative identified daptide BGCs
Supplementary Figure 5: Daptide precursor peptide frequency within a BGC
Supplementary Figure 6: Taxonomic comparison of daptide protease lengths
Supplementary Figure 7: Phylogenetic tree of aminotransferases
Supplementary Figure 8: Annotation of the cloned region from <i>M. paraoxydans</i> DSM 15019
Supplementary Figure 9: Media and host screen for mpa BGC expression
Supplementary Figure 10: Purification of daptides 1-320
Supplementary Figure 11: HR-MS/MS analysis of 1
Supplementary Figure 12: HR-MS/MS analysis of 2
Supplementary Figure 13: HR-MS/MS analysis of 3
Supplementary Figure 14: NMR spectra of compound 1 in 1,1,3,3,3-hexafluoroisopropanol-d2 (HFIP-d2)41
Supplementary Figure 15: NMR spectra of authentic (<i>R</i>)-Dmp and (<i>S</i>)-Dmp standards
Supplementary Figure 16: Determination of MpaA1 amino acid stereochemistry using LC-MS
Supplementary Figure 17: Determination of MpaA1 Dmp stereochemistry
Supplementary Figure 18: The sca BGC identified from Streptomyces capuensis NRRL B-350150
Supplementary Figure 19: Heterologous expression and product characterization of sca
Supplementary Figure 20: Determination of ScaA1/A2 residue stereochemistry
Supplementary Figure 21: Secondary structure of daptides 1-354
Supplementary Figure 22: Comparison of melittin to daptide 1
Supplementary Figure 23: Hemolytic activity of daptides 1-3
Supplementary Figure 24: Heterologous expression and <i>mpa</i> gene omissions in <i>S. albus</i> J107457
Supplementary Figure 25: Expression of the refactored <i>mpaABCDE</i> under various cultivation conditions 58
Supplementary Figure 26: Expression of the refactored <i>mpaABCDE</i> with chaperone plasmids
Supplementary Figure 27: Expression of the refactored <i>mpaABCDE</i> with pGro7 chaperone plasmid under various arabinose concentrations

Supplementary Figure 28: Expression of the refactored <i>mpaABCDE</i> with pGro7 chaperone plasmid with extended expression time
Supplementary Figure 29: MALDI-TOF-MS analysis of MpaA1 leader region variants co-expressed with MpaB and MpaC
Supplementary Figure 30: MALDI-TOF-MS analysis of MpaA1 <i>C</i> -terminal Thr variants that were co- expressed with MpaB and MpaC
Supplementary Figure 31: MALDI-TOF-MS analysis of MpaA1 insertion and deletion variants at the C- terminus that were co-expressed with MpaB and MpaC
Supplementary Figure 32: MALDI-TOF-MS analysis of MpaA1 variants in the core peptide region that were co-expressed with MpaB and MpaC
Supplementary Figure 33: Assessment of the AlphaFold-Multimer prediction for the MpaB-MpaC-MpaA1 complex
Supplementary Figure 34: Electrostatic surface potential of MpaB and MpaC.
Supplementary Figure 35: Identification of a hominicin-like BGC from Staphylococcus pseudintermedius 68
Supplementary Figure 36: The plasmid map of directly cloned <i>mpa</i> for heterologous expression in <i>S. albus</i> J1074
Supplementary Figure 37: Plasmid maps of gene omission for heterologous expression in <i>S. albus</i> J1074: pSET-mpaABCDMPT
Supplementary Figure 38: Plasmid maps of gene omission for heterologous expression in <i>S. albus</i> J1074: pSET-mpaABCDMP
Supplementary Figure 39: Plasmid maps of gene omission for heterologous expression in <i>S. albus</i> J1074: pSET-mpaABCDM
Supplementary Figure 40: Plasmid maps of gene omission for heterologous expression in <i>S. albus</i> J1074: pSET-mpaA1BCD
Supplementary Figure 41: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaA1A2A3BCDM74
Supplementary Figure 42: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaABCDM
Supplementary Figure 43: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaABCD
Supplementary Figure 44: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaABCM
Supplementary Figure 45: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaABDM
Supplementary Figure 46: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaABC
Supplementary Figure 47: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaAB
Supplementary Figure 48: Plasmid maps of codon-optimized and refactored genes for heterologous expression in <i>E. coli</i> : MpaAC

Supplementary Table 1: Daptide protein co-occurrence table. RODEO¹ annotation used the Pfam², TIGRFAM³, and custom RiPP recognition element (RRE) profile hidden Markov models (pHMMs)⁴. The top three hits for each annotated CDS were compiled and counted for frequency. The top 32 highest occurring pHMM hits in daptide BGCs are listed with custom pHMM models for daptide detection shown in red.

Count	% Co- occurrence	pHMM ID	pHMM description					
486	101%	PF00202	Aminotransferase class-III					
486	101%	TIGR00707	argD: transaminase, acetylornithine/succinylornithine family					
484	100%	TIGR00508	bioA: adenosylmethionine-8-amino-7-oxononanoate transaminase					
456	94%	PF13649	Methyltransferase domain					
452	94%	TIGR01188	drrA: daunorubicin resistance ABC transporter, ATP-binding protein					
381	79%	PF08241	Methyltransferase domain					
377	78%	TIGR03740	galliderm_ABC: lantibiotic protection ABC transporter, ATP-binding subunit					
375	78%	TIGR03522	GIdA_ABC_ATP: gliding motility-associated ABC transporter ATP-binding subunit GIdA					
319	66%	Actino_DapB _RRE	C-terminal RRE domain from Actinomycetota DapB proteins					
307	64%	PF00465	Iron-containing alcohol dehydrogenase					
302	63%	TIGR03405	Phn_Fe-ADH: phosphonate metabolism-associated iron-containing alcohol dehydrogenase					
289	60%	Actino_DapP_ RRE	N-terminal RRE domain from Actinomycetota DapP proteins					
192	40%	PF13561	Enoyl-(Acyl carrier protein) reductase					
185	38%	TIGR02638	lactal_redase: lactaldehyde reductase					
183	38%	PF12698	ABC-2 family transporter protein					
178	37%	PF13489	Methyltransferase domain					
176	36%	Bacill_DapB_ RRE	C-terminal RRE domain from Bacillota DapB proteins					
163	34%	TIGR01830	3oxo_ACP_reduc: 3-oxoacyl-[acyl-carrier-protein] reductase					
154	32%	PF00528	Binding-protein-dependent transport system inner membrane component					
145	30%	PF02163	Peptidase family M50					
142	29%	PF00583	Acetyltransferase (GNAT) family					
142	29%	Bacill_DapP_ RRE	N-terminal RRE domain from Bacillota DapP proteins					
139	29%	PF02624	YcaO cyclodehydratase, ATP-ad Mg2+-binding					
134	28%	TIGR03604	TOMM_cyclo_SagD: thiazole/oxazole-forming peptide maturase, SagD family component					
124	26%	PF00069	Protein kinase domain					
123	26%	PF00296	Luciferase-like monooxygenase					
120	25%	TIGR03564	F420_MSMEG_4879: F420-dependent oxidoreductase, MSMEG_4879 family					
120	25%	TIGR03841	F420_Rv3093c: probable F420-dependent oxidoreductase, Rv3093c family					
120	25%	PF08242	Methyltransferase domain					
105	22%	TIGR01575	rimI: ribosomal-protein-alanine acetyltransferase					
104	22%	PF12730	ABC-2 family transporter protein					
96	20%	PF05147	Lanthionine synthetase C-like protein					

Supplementary Table 2: Comparison of the Dmp chemical shifts observed in 1 (daptide) and hominicin⁵. Data was obtained in 1,1,1,3,3,3-hexafluoroisopropanol- d_2 (HFIP- d_2) for 1 and H₂O + D₂O for hominicin, respectively. [§]Data not available. *Signals assigned to *N*-methyl groups are not distinguished in the original paper. Dmp: (*S*)- N_2 , N_2 -dimethyl-1,2-propanediamine.

No	1	(daptide)	Hominicin				
INO.	$\delta_{\rm C}$ type	$\delta_{ m H}$ multi	$\delta_{ m C}$ type	$\delta_{ m H}$ multi			
1	39.1 CH ₂	3.91 overlapped	39.9 CH ₂	3.46 d (6.3)			
		3.38 d (15.2)		3.41 m			
2	61.7 CH	3.75 m	60.9 CH	3.48 m			
3	6.9 CH ₃	1.34 brs	10.9 CH ₃	1.23 d (6.7)			
4	34.1 CH ₃	2.80 s	38.2 CH ₃	2.75* s			
5	41.6 CH ₃	2.97 s	41.0 CH ₃	2.80* s			
NH		N/A§		8.24 t (5.9)			

Supplementary Table 3: Comparison of the Ala-23 chemical shifts observed in 1 (daptide) and Ala-20 in hominicin⁵. Data was obtained in 1,1,1,3,3,3-hexafluoroisopropanol- d_2 (HFIP- d_2) for 1 and H₂O + D₂O for hominicin, respectively. [§]Data not available. *Carbonyl carbon of Ala-22 in 1 and Ile-19 in hominicin.

No	1 ((daptide)	Hominicin				
INO.	$\delta_{ m C}$ type	$\delta_{ ext{H}}$ multi	$\delta_{ m C}$ type	$\delta_{ m H}$ multi			
1'	51.0 CH	4.22 overlapped	50.0 CH	4.18 m			
2'	13.7 CH ₃	1.57 d (6.9)	16.4 CH ₃	1.29 d (7.4)			
NH		N/A [§]		8.32 d (5.8)			
CO	175.8 C		175.5 C				
CO^*	176.4 C		173.3 C				

Supplementary Table 4: Indicator strains and corresponding culturing conditions used in the antimicrobial activity screening. Recipes for mediums used in the bioassay are as the following: lysogeny broth (LB): 10 g/L tryptone, 10 g/L NaCl, and 5 g/L yeast extract; brain heart infusion broth (BHI): 5 g/L beef heart (infusion from 250 g), 12.5 g/L calf brains (infusion from 200 g), 2.5 g/L Na₂HPO₄, 2 g/L glucose, 10 g/L peptone, and 5 g/L NaCl; international Streptomyces project-2 medium (ISP2): 10 g/L malt extract, 4 g/L yeast extract, and 4 g/L glucose; ATCC medium 172 (ATCC 172): 10 g/L glucose, 20 g/L soluble starch, 5 g/L yeast extract, 5 g/L N-Z Amine Type A (Sigma C0626), and 1 g/L CaCO₃; yeast extract–peptone–dextrose medium (YPD): 10 g/L yeast extract, 20 g/L peptone, and 20 g/L glucose.

Phylum	Strain	Medium	Temperature (°C)
	Bacillus cereus TZ417	LB	30
	Bacillus subtilis ATCC 6633	LB	30
Pacillata	Lactococcus lactis CNRZ 481	LB	30
Daciliola	Staphylococcus epidermidis 15X154	LB	37
	Staphylococcus aureus USA300	BHI	37
	Streptococcus mutans ATCC 25175	BHI	37
	Micrococcus luteus ATCC 4698	LB	30
	Streptomyces albus J1074	ISP2	30
	Streptomyces lividans TK24	ISP2	30
	Streptomyces coelicolor M145	ISP2	30
Actinomycetota	Microbacterium aurum B-24210	ATCC 172	30
	Microbacterium esteraromaticum B- 24213	ATCC 172	30
	Microbacterium hominis B-24220	ATCC 172	30
	Microbacterium ketosireducens B-24221	ATCC 172	30
	Microbacterium kitamiense B-24226	ATCC 172	30
	Escherichia coli DH5a	LB	37
Pseudomonadota	Enterobacter cloacae	LB	30
	Pseudomonas fluorescens Pf-5	LB	30
	Pseudomonas putida mt-2	LB	30
Ascomucota	Saccharomyces cerevisiae YSG50	YPD	30
Ascomycola	Aspergillus terreus	YPD	30

Supplementary Table 5: Oligonucleotides used for cloning and site-directed mutagenesis. The primers are named for the annealing region and whether the primer was for the forward (F) or reverse (R) direction.

Name	Nucleotide Sequence (5' to 3' direction)
pBE44 F	ttaccaatgcttaatcagtgaggcacc
pBE45 R	atctttatagtcctgtcgggtttcg
pBE44-DSM15019-ami R	accgtgttcgtcttcccggatctcaacaccggcaacaacaacttatatcgtatggggctg
pBE45-DSM15019-ami F	cactcccccgccttcccaccgttctccacacccttctctgacgctcagtggaacgaaaac
DSM15019-g1 F	aattaatacgactcactatagggaatttctactgttgtagatccggatctcaacaccggc
DSM15019-g1 R	gccggtgttgagatccggatctacaacagtagaaattccctatagtgagtcgtattaatt
DSM15019-g2 F	aattaatacgactcactatagggaatttctactgttgtagatccaccgttctccacaccc
DSM15019-g2 R	gggtgtggagaacggtggatctacaacagtagaaattccctatagtgagtcgtattaatt
pBE44-B3501-ami R	ggtcacctgcgcttcttcgaacatgtccgagccggtacaacaacttatatcgtatggggctgacttc
pBE45-B3501-ami F	cgcacagaagctttgaaggtcgaaagggatagggatatcgacgctcagtggaacgaaaac
B3501-g1 F	aattaatacgactcactatagggaatttctactgttgtagatttcgaacatgtccgagcc
B3501-g1 R	ggctcggacatgttcgaaatctacaacagtagaaattccctatagtgagtcgtattaatt
B3501-g2 F	aattaatacgactcactatagggaatttctactgttgtagataaggtcgaaagggatagg
B3501-g2 R	cctatccctttcgaccttatctacaacagtagaaattccctatagtgagtcgtattaatt
pSET (Xbal)-mpaB F	gacggccagtgccaagcttgggctgcaggtcgactctagacgccgcccgaaacgagagaa
mpaP R	gcgacgccgatcgggtcgag
mpaM F	teeteacgaceteeegegee
Yeast-mpaT3 R	ttatagcacgtgatgaaaaggacccaggtggcacttttcgccaggaatcctacgtcgcct
mpaT3-Yeast F	acgtgtcgtagcgcttcaggaggcgacgtaggattcctggcgaaaagtgccacctgggtc
pSET (EcoRI)-Yeast R	cacacaggaaacagctatgacatgattacgaattcgcatcacagtatcgtgatgacagtg
Yeast-mpaP R	tagcacgtgatgaaaaggacccaggtggcacttttcgtcatcctctctcctcctcgctcg
mpaP-Yeast F	cccgctggcagctctcacgagcgaggaggaggaggatgacgaaaagtgccacctgggtc
Yeast-mpaM R	ttatagcacgtgatgaaaaggacccaggtggcacttttcgtcatcgccggccccttccat
mpaM-Yeast F	cacgacctcccgcgccggggatggaaggggccggcgatgacgaaaagtgccacctgggtc
Yeast-mpaA1 R	tatagcacgtgatgaaaaggacccaggtggcacttttcggcgtccctccttcct
mpaA1-Yeast F	cgtccggcagcacccgatcggagaaaggaaggagggacgccgaaaagtgccacctgggtc
BbsI-mpaA1 F	acgtgaagacaaaatgatgaatgaatccacagaaatgtcgatccg
BbsI-mpaA1 R	acgtgaagacaaaccgtcaggtcgctgccgctgc
mpaA1 E13A R	ttccatcgggtccagcgcttgaaagcggatcga
mpaA1 E13A F	tcgatccgctttcaagcgctggacccgatggaa
mpaA1 L14A R	ggcttccatcgggtccgcctcttgaaagcggat
mpaA1 L14A F	atccgctttcaagaggcggacccgatggaagcc
mpaA1 D15A R	gggggcttccatcggcgccagctcttgaaagcg
mpaA1 D15A F	cgctttcaagagctggcgccgatggaagccccc
mpaA1 P16A R	actgggggcttccatcgcgtccagctcttgaaa
mpaA1 P16A F	tttcaagagctggacgcgatggaagcccccagt
mpaA1 M17A R	ccaactgggggcttccgccgggtccagctcttg
mpaA1 M17A F	caagagctggacccggcggaagcccccagttgg
mpaA1 E18A R	atcccaactgggggccgccatcgggtccagctc
mpaA1 E18A F	gagetggaeeegatggeggeeeeeagttgggat

mpaA1 P20A R	aaaggaatcccaactcgcggcttccatcgggtc
mpaA1 P20A F	gacccgatggaagccgcgagttgggattccttt
BbsI-mpaA1 Ser R	acgtgaagacaaaccgtcagctgccgctgcgccaatac
BbsI-mpaA1 Cys R	acgtgaagacaaaccgtcagcacgctgccgctgcgccaatac
Bbsl-mpaA1 Asp R	acgtgaagacaaaccgtcaatccgctgccgctgcgccaatac
Bbsl-mpaA1 Asn R	acgtgaagacaaaccgtcagttcgctgccgctgcgccaatac
Bbsl-mpaA1 Glu R	acgtgaagacaaaccgtcattccgctgccgctgcgccaatac
Bbsl-mpaA1 Gln R	acgtgaagacaaaccgtcactgcgctgccgctgcgccaatac
BbsI-mpaA1 Gly R	acgtgaagacaaaccgtcagcccgctgccgctgcgccaatac
Bbsl-mpaA1 Ala R	acgtgaagacaaaccgtcacgccgctgccgctgcgccaatac
Bbsl-mpaA1 Phe R	acgtgaagacaaaccgtcaaaacgctgccgctgcgccaatac
BbsI-mpaA1 Lys R	acgtgaagacaaaccgtcatttcgctgccgctgcgccaatac
Bbsl-mpaA1 Arg R	acgtgaagacaaaccgtcaacgcgctgccgctgcgccaatac
Bbsl-mpaA1 Val R	acgtgaagacaaaccgtcacaccgctgccgctgcgccaatac
Bbsl-mpaA1 +44A R	acgtgaagacaaaccgtcaggtcgccgctgccgctgcgccaatac
Bbsl-mpaA1 -43A R	acgtgaagacaaaccgtcaggttgccgctgcgccaataccga
Bbsl-mpaA1 +45A R	acgtgaagacaaaccgtcacgcggtcgctgccgctgcgccaa
Bbsl-mpaA1 G39P R	acgtgaagacaaaccgtcaggtcgctgccgctgccggaataccgatc
Bbsl-mpaA1 G37P R	acgtgaagacaaaccgtcaggtcgctgccgctgcgccaatcgggatcaggaca
Bbsl-mpaA1 V34P R	acgtgaagacaaaccgtcaggtcgctgccgctgcgccaataccgatcagcggaagcgctc
Bbsl-mpaA1 G31P R	acgtgaagacaaaccgtcaggtcgctgccgctgcgccaataccgatcaggacaagcgccgggat acct
BbsI-mpaA1 G28P R	acgtgaagacaaaccgtcaggtcgctgccgctgcgccaataccgatcaggacaagcgctccgatg

Gene	Nucleotide Sequence (5' to 3' direction)
mpaA1	atgaatgaatccacagaaatgtcgatccgctttcaagagctggacccgatggaagcccccagttgggattccttttatc aaggtgtcatcggagcgcttgtcctgatcggtattggcgcagcggcagcggccctga
mpaA2	atgatgaatgccgcgctgcctgccttagagtttacggagctggaagctatggatgcgccgggcgatgcagatgattata tccgtggcttcgctgtgggcgttatcatcgggattctcgccctgacctaa
mpaA3	atgcaatcaacatcccttgaatttctggaattagaacagatcgacactccattggaatggtgggaacatgcgagttaca ttattgcaattattggtggtgcagctgccattgcgacgtga
mpaB	<pre>atgggaacctcagctacgaccgcacgccaagacgacggctcaaccgggcgaagatccgttattaggccctcatgtccttc gcgcatgggtaacgggcggccacgcggccgtggtcgcgttttcctgcggtgaggcagaacgggggggaggcggaggcggaggcggtggg tatggcggacgctggccgatttgggtgatgaactctttctcggcgaacgcgggggggg</pre>
mpaC	<pre>atgactgtacccttcacagcccgcgttccgaccttatggcacggcagtcgcgcacgcgagcgcatggtaggtctgactg cgggccgtgataccctggtgctgacgcggcggcggtagcgcatcccttgcctactcctcatcgggccgcactatgac gtcgacgccgcgggtcgacgagttgggaattcttctgatcgcggaagaactggtccgtcgtcgccgcagtggtagtc gtggcggtcggtggcggccagtctggtcgtcgtcgtcgccgccggaggcgcttgctt</pre>
mpaD	<pre>atgagcgttccgcatgccctttggacctctatgcttccagcagacaccgcatttccgccgaccgcgtcgccatcgggg ccgcaggccaccgtttgttctacgcagacgggtctgatcgttatgcgctacaagtgggttgtggaacgtaccgttggg atttgggaatccagcggtcaccgaggctgtctcacgcgggactcgtgacggcgccgcacactttatccgtgctcc caccgttacgcagaggatgcggcggatgcgttaattgcgccgcgacacacaaggtgctggtagccgtc ttagtggcggcgccgcaaatgatgccgctatgaaactcgccggtcatattgggcacaacaaggtgctggtagcgt tcggtgtatggcgtcgaccgtcgtacggtacg</pre>
mpaM	atgacctcgttgattaccgagactgtcgccgccgtctggacgtgggggggg

Supplementary Table 6: DNA sequences of the *E. coli* codon-optimized *mpa* genes.

Supplementary Table 7: Naming scheme for daptide biosynthetic genes. Custom pHMM models for daptide detection are shown in red.

Gene Name	Function	pHMM annotations for identification						
DapA	Precursor peptide	N/A						
DapB	DUF-RRE fusion protein	Actino_DapB_RRE, Bacill_DapB_RRE						
DapC	Oxidative decarboxylase (alcohol dehydrogenase)	PF00465, PF13561						
DapD	Aminotransferase	PF00202						
DapM	Methyltransferase	PF13649, PF08241, PF13489, PF08242, etc.						
DapP	Intramembrane protease	PF02163, Actino_DapP_RRE, Bacill_DapP_RRE						
DapT	ABC transporter	TIGR01188, TIGR03740, PF00528, etc.						

Supplementary Note: Algorithm for pairing of RRE families with precursor peptide families.

```
import argparse
import sys
import os
import re
def __main__():
    input_file = open(RRE_ALL_BY_ALL_BLAST_FILE, 'r')
input_precursor_file = open(PRECURSOR_ALL_BY_ALL_BLAST_FILE, 'r')
enzyme_edge_data = input_file.read().split("\n")
    precursor_edge_data = input_precursor_file.read().split("\n")
     input file.close()
    input_precursor_file.close()
cutoff = 50
    print("Starting enzyme edge filtering...")
    enzyme_edges_withAS = []
    for line in enzyme_edge_data:
         values = line.split()
         try:
             enzyme edges withAS.append([values[0], values[1], float(values[11])])
         except:
             pass
    print("Starting ID mapping...")
    precursor_edges_withids = []
    for line in precursor_edge_data:
         try:
             node1, node2, BS = re.split("\t", line)
             if float(BS) > 10:
                  precursor_edges_withids.append([node1, node2])
         except:
            pass
    open("temp.tsv", 'w').close()
    enzyme cluster generate(output file name="temp.tsv", enzyme edges withAS=enzyme edges withAS,
cutoff=cutoff, precursor_edges_withids=precursor_edges_withids)
def enzyme_cluster_generate(output_file_name, enzyme edges withAS=[], cutoff=1000,
precursor_edges_withids=[]):
    print("Starting enzyme graph generation... cutoff = ", cutoff)
    enzvme edges = []
    for edge in enzyme_edges_withAS:
    if edge[2] > cutoff and edge[0] < edge[1]:</pre>
              enzyme_edges.append([edge[0], edge[1]])
    enzyme_clusters = sorted(connected_components(enzyme_edges), key=len, reverse=True)
    print("Starting precursor graph generation...")
    for se in enzyme_clusters:
         print("Cutoff: ", cutoff, "Enzyme cluster size: ", len(se))
         if len(se) < 30:</pre>
             print("Too small:", len(se))
             break
         precursor edges = []
         new precursor edges withids = []
         for edge in precursor_edges_withids = [i].split("_")[0] in se
if edge[0].split("_")[0] in se and edge[1].split("_")[0] in se:
        precursor_edges.append([edge[0], edge[1]])
        new_precursor_edges_withids.append(edge)
         edge_count = 0
         for enzyme_edge in enzyme_edges:
             if enzyme_edge[0] in se and enzyme_edge[1] in se:
                 edge_count += 1
         enzyme connectivity = (((2 * edge_count) / float(len(se))) / float((len(se)-1)))
         print("Enzyme connectivity: " + str(enzyme_connectivity))
         precursor_clusters = sorted(connected_components(precursor_edges), key=len, reverse=True)
         try:
             x = precursor_clusters[0]
         except:
             return
         if len(x) < 5:
              return
         print("Precursor cluster size: ", len(x))
         cluster_found=False
         if len(x) > 0.1 * len(se) and enzyme connectivity>0.2:
```

```
print("Precursor cluster size: " + str(len(x)) + " Enzyme cluster size: " + str(len(se)) + "
BS cutoff: " + str(cutoff))
              cluster_found=True
               precursor_edge_count = 0
               for z in precursor edges:
                   if z[0] in x and z[1] in x and z[0] != z[1]:
              precursor_edge_count+=1
precursor_connectivity = precursor_edge_count / len(x) / (len(x)-1)
print("Precursor connectivity: " + str(precursor_connectivity))
         new_enzyme_edges=[]
real_node_list = []
for edge in enzyme_edges_withAS:
               if edge[0] in se and edge[1] in se:
                   new_enzyme_edges.append(edge)
if edge[0] not in real_node_list:
                        real node list.append(edge[0])
                    if edge[1] not in real_node_list:
                        real_node_list.append(edge[1])
else:
processor_sequences = open(PRECURSOR_FASTA_FILE, 'r').read().split(">")
output_file = open(output_file_name, 'a')
output_file.write(str(cutoff) + "\t" + ",".join(se) + "\t" + str(len(se)) + "\t" +
str(enzyme_connectivity)+"\t")
              for precursor in precursor sequences:
                    header = precursor.split("\n")[0]
                   if (header) in x:
                        output_file.write(">" + header + " " + "".join(precursor.split("\n")[1:]) + ",")
                   continue
output_file.write("\t" + str(len(x)) +"\t"+str(precursor_connectivity) + "\t" +
",".join(real_node_list) + "\t" + str(len(real_node_list)) + "\n")
              output_file.close()
def connected_components(pairs):
     components = []
     for a, b in pairs:
         a num = -1
         b_num = -2
          \bar{for} i, component in enumerate(components):
              if a in component:
              a_num = i
if b in component:
                   b_num = i
               if a num != -1 and b num != -2:
                   break
         if a num == -1:
               \overline{if} b num == -2:
                   components.append([a,b])
                    #print(a,b)
               else:
                   components[b_num].append(a)
         #print(a,b,components[b_num])
elif b_num == -2:
               components[a num].append(b)
               #print(a,b,components[a_num])
          elif a num != b num:
               components[a_num].extend(components[b_num])
              components[b_num] = []
     return components
if __name__=="__main__":
    __main__()
```


Supplementary Figure 1: Generalized workflow for bioinformatic analysis of the RRE-Finder exploratory mode dataset. The comprehensive description for this workflow is in the Methods section, and code used for implementation is on Github (https://github.com/the-mitchell-lab/rodeo2) and in the **Supplementary Note**. Phylogenetic trees, sequence similarity networks, and biosynthetic gene clusters depicted in this figure are stylized. (a) Logical basis for finding new RRE-dependent RiPP pathways. Analysis of RRE domain clusters is performed iteratively with increasing bitscore thresholds. Examination of each cluster for high similarity nearby open-reading frames (ORFs) allows categorization of RRE families based on sequence similarity of the RRE domains and co-occurrence with high-likelihood precursor peptides. (b) Workflow of bioinformatics and algorithmic logic. RRE domains predicted by RRE-Finder were annotated by RODEO to identify hypothetical precursors in intergenic ORFs. The RRE domains were sorted into families using an all-by-all BLAST search and the predicted ORFs were also sorted into clusters. For each RRE family, putative precursor peptide clusters were filtered for ORFs in the same genomic neighborhood, and the sizes of the families were compared. Small RRE families were discarded from the algorithm. Cases where the size of the largest precursor peptide cluster matched the RRE family were output from the algorithm for further analysis. All other cases were re-entered into the algorithm with a higher bitscore threshold for RRE family generation.

11

Supplementary Figure 2: Daptide precursor peptide sequence logo. The daptide precursor peptide pHMM (n = 184) was generated from precursor peptides identified by the workflow in Supplementary Figure 1. The pHMM was converted to a sequence logo using Skylign⁶ with the information content above background setting, and the direct output is provided. The invariant Thr residue at the C-terminus is evident (cyan color), along with highly conserved features in the N-terminal leader region.

b

Hitlist

Show 2	25 ♦	Entries						
Nr	Hit 🍦	Name	Probability 🎈	E-value	Score	ss 🔶	Aligned cols	Target Length
1	5V1V_B	TbiB1; Lasso Peptide, RiPP, Peptide Binding, PROTEIN BINDING; 1.35A {Thermobaculum terrenum (strain ATCC BAA-798 / YNP1)	98.85	1e-7	72.32	12.4	81	91
2	6JX3_B	TfuB1; lasso peptide, RRE, PEPTIDE BINDING PROTEIN; 1.7A {Thermobifida fusca}	98.64	8e-7	67.55	11.7	80	99
3	5SXY_A	Bifunctional coenzyme PQQ synthesis protein C/D; RiPP RRE peptide scaffolding, CHAPERONE; NMR {Methylobacterium extorque	98.35	0.0000077	61.76	10.3	69	94
4	3G2B_A	Coenzyme PQQ synthesis protein D; helix- turn-helix, PQQ biosynthesis, BIOSYNTHETIC PROTEIN; 1.66A {Xanthomonas campestri	98.34	0.0000082	62.04	10.3	78	95
5	5VRD_D	Bifunctional coenzyme PQQ synthesis protein C/D; PQQ, oxidase, alpha-helical bundle, OXIDOREDUCTASE; 2.85A {Methylobacte	98.33	0.0000043	82.98	11.1	78	392

Supplementary Figure 3: HHpred results for MpaB. (a) Depicted annotation of MpaB (RefSeq ID: WP_060922562.1) analyzed using HHpred⁷ with the PDB_mmCIF70_12_Oct database. The *N*-terminal domain of the protein is not annotated by HHpred, while the C-terminal domain is annotated with RREs. (b) Hitlist table of HHpred analysis.

Supplementary Figure 4: Alternative identified daptide BGCs. Depicted BGCs are from two bacterial phyla (Bacillota and Actinomycetota) with differing genomic architectures, tailoring genes, and precursor peptide count.

b

Precursor Peptide Count within BGC

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Actinomycetota	7	12	113	142	18	7	1	2								302
Bacillota	14	15	67	32	14	3	13		1	2	3	2	8	5	1	180
Pseudomonadota				1												1
Total	21	27	180	175	32	10	14	2	1	2	3	2	8	5	1	483

Supplementary Figure 5: Daptide precursor peptide frequency within a BGC. (a) Histogram of daptide precursor peptides per BGC. (b) Numerical values used to generate the histogram are given in table format. Each BGC that lacked an identified precursor peptide originated from a short contig, and the BGC was presumed to be incomplete.

Supplementary Figure 6: Taxonomic comparison of daptide protease lengths. All full-length hits for the Actino_DapP_RRE and Bacill_DapP_RRE found using RODEO and within daptide BGCs were compiled. Protein lengths in amino acids (a.a.) were sorted into two series based on which pHMM best retrieved each protein (circle and triangle) prior to sorting by length. The color coding is based on GenBank taxonomic classification.

Supplementary Figure 7: Phylogenetic tree of aminotransferases. Maximum-likelihood phylogenetic tree of all 483 identified daptide aminotransferases and three outgroup aminotransferases (from aminotransferase class-III⁸). The tree is rooted using gamma-aminobutyrate transaminase 3 (UniProt/GenBank CDS identifiers: Q84P52/BAG16484.1 - Streptophyta). Two additional outgroups are included (P9WQ81/CCP44332.1 - Actinomycetota and P53555/AAB17458.1 - Bacillota) that perform related reactions in biotin biosynthesis.

Gene	NCBI Accession	Description (per NCBI listing)
orf1	WP_060923289.1	Phosphate acetyltransferase
orf2	WP_157547021.1	Hypothetical protein
orf3	WP_060922551.1	Rhomboid family intramembrane serine protease
orf4	WP_157547022.1	Hypothetical protein
orf5	WP_060922553.1	MoxR family ATPase
orf6	WP_060922554.1	DUF58 domain-containing protein
orf7	WP_060922555.1	DUF3488 and transglutaminase-like domain-containing protein
orf8	WP_060922556.1	Rhodanese-related sulfurtransferase
mpaT3	WP_083370907.1	Hypothetical protein
mpaT2	WP_060922557.1	Hypothetical protein
mpaT1	WP_157547023.1	ATP-binding cassette domain-containing protein
mpaP	WP_060922558.1	Hypothetical protein
траМ	WP_060922559.1	Class I SAM-dependent methyltransferase
mpaA3	N/A ^a	Precursor peptide
mpaA2	N/A ^a	Precursor peptide
mpaA1	N/A ^a	Precursor peptide
mpaC	WP_060922560.1	Iron-containing alcohol dehydrogenase
mpaD	WP_060922561.1	Aminotransferase class III-fold pyridoxal phosphate-dependent enzyme
mpaB	WP_060922562.1	Hypothetical protein
orf9	WP_174521438.1	GNAT family N-acetyltransferase
orf10	WP_060922563.1	Phosphatase PAP2 family protein
orf11	WP_060922564.1	Cystathionine gamma-synthase
orf12	WP_025104232.1	Cystathionine beta-synthase
orf13	WP_025104231.1	Carbohydrate ABC transporter permease
orf14	WP_025104230.1	Sugar ABC transporter permease
orf15	WP_060923551.1	Bacterial extracellular solute-binding protein
orf16	WP_083371072.1	Lacl family transcriptional regulator
orf17	WP_025104227.1	Ribosomal protein
orf18	WP_025104226.1	Ribosomal protein
orf19	WP_157547024.1	Hypothetical protein

Supplementary Figure 8: Annotation of the cloned region from *M. paraoxydans* **DSM 15019**. (a) Gene arrangement of the cloned region. (b) Accession numbers and annotation of corresponding genes in NCBI. ^aNot annotated as gene.

Supplementary Figure 9: Media and host screen for *mpa* BGC expression. MALDI-TOF mass spectra of methanolic extracts of *S. lividans* TK24 and *S. albus* J1074 colonies that were transformed with *mpa* or the pBE45 empty vector and cultivated on MS and ISP4 agar media. Possible overlapped peaks of $[1+H]^+$ and $[3+Na]^+$ are indicated with an asterisk.

Supplementary Figure 10: Purification of daptides 1-3. (a) Reverse phase (C18) HPLC chromatograms with UV absorbance (220 nm) monitoring of solid phase extraction eluents using 60% acetonitrile. (b) MALDI-TOF-MS analysis of the collected fractions.

Supplementary Figure 11: HR-MS/MS analysis of 1. (a) Broad band high-resolution mass spectrum of compound 1. (b) Summary of collision-induced dissociation (CID) daughter ions for 1. Observed band y-ions are annotated. Ions are in the +1 charge state except where indicated. Dmp: N_2,N_2 -dimethyl-1,2-propanediamine. (c) CID spectrum of 1. (d) Table of daughter ion assignments for 1.

Supplementary Figure 12: HR-MS/MS analysis of 2. (a) Broad band high-resolution mass spectrum of compound 2. The $[M+3H]^{3+}$ ion was selected for fragmentation. (b) Summary of collision-induced dissociation (CID) daughter ions for 2. Observed b- and y-ions are annotated. Ions are in the +1 charge state except where indicated. Dmp: N_2, N_2 -dimethyl-1,2-propanediamine. (c) CID spectrum of 2. (d) Table of daughter ion assignments for 2.

Supplementary Figure 13: HR-MS/MS analysis of 3. (a) Broad band high-resolution mass spectrum of compound 3. (b) Summary of collision-induced dissociation (CID) daughter ions for 3. Observed band y-ions are annotated. Ions are in the +1 charge state except where indicated. Dmp: N_2,N_2 -dimethyl-1,2-propanediamine. (c) CID spectrum of 3. (d) Table of daughter ion assignments for 3.

а

¹H NMR, 1,1,1,3,3,3-Hexafluoroisopropanol- d_2 (HFIP- d_2), 750 MHz. The solvent peak appears at 4.41 ppm.

b

 13 C NMR, 1,1,1,3,3,3-Hexafluoroisopropanol- d_2 (HFIP- d_2), 750 MHz. The solvent peaks appear at 68.1 and 120.7 ppm.

¹H-¹H COSY NMR, 1,1,1,3,3,3-Hexafluoroisopropanol-*d*₂ (HFIP-*d*₂), 750 MHz.

С

d

¹H-¹³C HMBC NMR, 1,1,1,3,3,3-Hexafluoroisopropanol-*d*₂ (HFIP-*d*₂), 750 MHz.

е

g

HSQC focusing on the Dmp region. Multiplicity-edited HSQC was performed. Signals of CH_2 and CH/CH_3 are shown in blue and red, respectively. Dmp: N_2,N_2 -dimethyl-1,2-propanediamine.

h HMBC focusing on the Dmp region. Dmp: *N*₂,*N*₂-dimethyl-1,2-propanediamine.

i

HSQC focusing on the Ala-23 region. Multiplicity-edited HSQC was performed. Signals of CH_2 and CH/CH_3 are shown in blue and red, respectively.

j HMBC focusing on the Ala-23 region.

k

Summary of HMBC correlations in the Dmp and Ala-23 region. Dmp: N_2, N_2 -dimethyl-1,2-propanediamine.

l COSY focusing on the Trp-2 region

34

m

HSQC focusing on the Trp-2 region. Multiplicity-edited HSQC was performed. Signals of CH2 and CH/CH3 are shown in blue and red, respectively.

n HMBC focusing on the Trp-2 region.

Summary of COSY and HMBC correlations in the Trp-2 region.

No	1 (daptide)		
140.	$\delta_{ m C}$ type	$\delta_{ m H}$ multi	
1	122.8 CH	7.24 s	
2	128.2 C		
3	125.6 C		
4	116.4 CH	7.61 d (7.1)	
5	119.1 CH	7.19 overlapped	
6	121.9 CH	7.32 overlapped	
7	111.1 CH	7.49 d (7.9)	
8	135.6 C		

р

COSY focusing on the Tyr-6 region

q

HSQC focusing on the Tyr-6 region. Multiplicity-edited HSQC was performed. Signals of CH2 and CH/CH3 are shown in blue and red, respectively.

r HMBC focusing on the Tyr-6 region.

S

Summary of COSY and HMBC correlations in the Tyr-6 region.

Supplementary Figure 14: NMR spectra of compound 1 in 1,1,3,3,3-hexafluoroisopropanol-d2 (HFIP-d2). (a) ¹H NMR. The solvent peak appears at 4.41 ppm. (b) ¹³C NMR. The solvent peaks appear at 68.1 and 120.7 ppm. (c) ¹H-¹H COSY NMR. (d) ¹H-¹³C HSQC NMR. Multiplicity-edited HSQC was performed. Signals of CH₂ and CH/CH₃ are shown in blue and red, respectively. (e) ¹H-¹³C HMBC NMR. (f) COSY focusing on the Dmp region. Dmp: N_2, N_2 -dimethyl-1,2-propanediamine. (g) HSQC focusing on the Dmp region. Multiplicity-edited HSQC was performed. Signals of CH₂ and CH/CH₃ are shown in blue and red, respectively. (h) HMBC focusing on the Dmp region. (i) HSQC focusing on the Ala-20 region. Multiplicity-edited HSQC was performed. Signals of CH₂ and CH/CH₃ are shown in blue and red, respectively. (i) HMBC focusing on the Ala-20 region. (k) Summary of HMBC correlations in the Dmp and Ala-20 region. Dmp: N_2, N_2 -dimethyl-1,2-propanediamine. (I) COSY focusing on the Trp-2 region. (m) HSOC focusing on the Trp-2 region. Multiplicity-edited HSOC was performed. Signals of CH2 and CH/CH3 are shown in blue and red, respectively. (n) HMBC focusing on the Trp-2 region. (o) Summary of COSY and HMBC correlations in the Trp-2 region. (p) COSY focusing on the Tyr-6 region (q) HSQC focusing on the Tyr-6 region. Multiplicity-edited HSQC was performed. Signals of CH2 and CH/CH3 are shown in blue and red, respectively. (r) HMBC focusing on the Tyr-6 region. (s) Summary of COSY and HMBC correlations in the Tyr-6 region.

а

(*R*)-Dmp 1 H NMR, DMSO- d_{6} , 500 MHz.

b

(*R*)-Dmp 13 C NMR, DMSO- d_6 , 126 MHz.

(*R*)-Dmp 1 H- 1 H COSY NMR, DMSO- d_{6} , 500 MHz.

С

d (*S*)-Dmp ¹H NMR, DMSO-*d*₆, 500 MHz.

е

(S)-Dmp 13 C NMR, DMSO- d_6 , 126 MHz.

f (*S*)-Dmp ¹H-¹H COSY NMR, DMSO-*d*₆, 500 MHz.

Supplementary Figure 15: NMR spectra of authentic (*R*)-Dmp and (*S*)-Dmp standards. Dmp: N_2,N_2 -dimethyl-1,2-propanediamine. (**a**) (*R*)-Dmp ¹H NMR, DMSO-*d*₆, 500 MHz. (**b**) (*R*)-Dmp ¹³C NMR, DMSO-*d*₆, 126 MHz. (**c**) (*R*)-Dmp ¹H-¹H COSY NMR, DMSO-*d*₆, 500 MHz. (**d**) (*S*)-Dmp ¹H NMR, DMSO-*d*₆, 500 MHz. (**e**) (*S*)-Dmp ¹³C NMR, DMSO-*d*₆, 126 MHz. (**f**) (*S*)-Dmp ¹H-¹H COSY NMR, DMSO-*d*₆, 500 MHz.

Supplementary Figure 16: Determination of MpaA1 amino acid stereochemistry using LC-MS. (a) Ion count-normalized LC-MS chromatograms are shown for derivatized amino acid standards and for 1-fluoro-2-4-dinitrophenyl-5-alanine amide (FDAA)-derivatized hydrolysate of **1**. L- and D-amino acid standards were run individually. FDAA-Trp adducts were not observed⁹. FDAA-Glu was monitored instead of FDAA-Gln due to the hydrolysis of MpaA1. Assignment of Asp and Ser was initially ambiguous owing to retention time drift. (b) LC-MS chromatograms for co-injections of derivatized amino acid standards with derivatized MpaA1 hydrolysate.

Supplementary Figure 17: Determination of MpaA1 Dmp stereochemistry. Absorbancenormalized chromatograms are shown for single injections of FDAA-derivatized (R)-Dmp and (S)-Dmp, along with co-injections of derivatized hydrolysate of **1**. Absorbance was monitored at 340 nm. Dmp: N_2 , N_2 -dimethyl-1,2-propanediamine.

Streptomyces capuensis NRRL B-3501

-20 -15 -10 -5 1 5 10 15 20 25 30 ScaA1 MQEIEKIQPVLELGMQELEAMDAPGWWTAAGVSAGVVVSASAAYGSAALSAAAIT ScaA2 MQETEKIQPVLELGMQELEAMEAPGFWTGFSYGVAVSGTAAASAAVSVAASIAT

С

b

Gene	NCBI Accession	Description (per NCBI listing)
scaJ	WP_003980804.1	Luciferase-like monooxygenase (LLM) class flavin-dependent oxidoreductase
scaB	WP_003980803.1	Hypothetical protein
scaM	WP_003980802.1	Class I SAM-dependent methyltransferase
scaD	WP_003980801.1	Aminotransferase class III-fold pyridoxal phosphate-dependent enzyme
scaC	WP_003980800.1	Iron-containing alcohol dehydrogenase
scaA1	WP_165417107.1	Hypothetical protein
scaA2	WP_003980799.1	Hypothetical protein
scaT1	WP_003980797.1	ATP-binding cassette domain-containing protein
scaT2	WP_003980796.1	ABC transporter permease
scaP	WP_231512674.1	Hypothetical protein
scaKC	WP_003980794.1	Class III lanthionine synthetase LanKC

Supplementary Figure 18: The *sca* BGC identified from *Streptomyces capuensis* NRRL B-3501. (a) Organization of the *sca* BGC. (b) Precursor peptide sequences. (c) Functional annotation and accession numbers of genes in the *sca* BGC

Supplementary Figure 19: Heterologous expression and product characterization of *sca*. (a) MALDI-TOF mass spectra of the methanol extracts of *S. albus* J1074 containing *sca* and the pBE45 empty vector. Sodium and potassium ions are denoted as '+Na' and '+K'. (b) MALDI LIFT-TOF/TOF mass spectrum of the modified ScaA2 core peptide acquired by the potassium adduct. Observed b- and y-ions are annotated. Ions are in the +1 charge state. Suspected sites of conversion to *D*-Ala are colored in red. Dmp: N_2,N_2 -dimethyl-1,2-propanediamine. (c) MALDI LIFT-TOF/TOF mass spectrum of the modified ScaA2 core peptide acquired using the [M+H]⁺ ion. Observed b- and y-ions are annotated. Ions are in the +1 charge state of conversion to *D*-Ala are colored in red. Dmp: N_2,N_2 -dimethyl-1,2-propanediamine.

Supplementary Figure 20: Determination of ScaA1/A2 residue stereochemistry. (a) Ion countnormalized LC-MS chromatograms are shown for derivatized amino acid standards and for 1-fluoro-2-4-dinitrophenyl-5-alanine amide (FDAA)-derivatized hydrolysate of ScaA1/A2. L- and D-amino acid standards were run individually. FDAA-Trp adducts were not observed⁹. (b) Absorbance-normalized chromatograms are shown for single injections of FDAA-derivatized (*R*)-Dmp and (*S*)-Dmp, along with co-injections of derivatized hydrolysate of ScaA1/A2. Absorbance was monitored at 340 nm. Asterisk indicates possible FDAA adduct to unidentified hydrolysis product. Dmp: N_2,N_2 -dimethyl-1,2propanediamine.

Supplementary Figure 21: Secondary structure of daptides 1-3. (a) α -helices of MpaA1-3 predicted by PSI-PRED4.0¹⁰ (http://bioinf.cs.ucl.ac.uk/psipred/). (b) Helical net diagrams showing predicted intra-helix interactions for MpaA1-3 core peptides. Diagrams were generated using NetWheels (http://lbqp.unb.br/NetWheels/). (c, following page) Circular dichroism spectra of 1-3.

Supplementary Figure 22: Comparison of melittin to daptide 1. (a) Sequence logo for the melittin family is shown. The logo was generated using SkyLign⁶ on the melittin pHMM (Pfam identifier: PF01372)². (b) A crystal structure of melittin and predicted structure of 1 are shown. AlphaFold¹¹ was used to predict the MpaA1 complete sequence, and only the core region is shown. Melittin structure was re-created based on a review article¹². Dmp: N_2 , N_2 -dimethyl-1,2-propanediamine.

Supplementary Figure 23: Hemolytic activity of daptides 1-3. Hemolysis of bovine erythrocytes was normalized to the positive control [5% (ν/ν) Triton X-100]. All individual and combination daptide treatments were assessed. The percentage of hemolysis at total concentrations of 50 μ M and 10 μ M are shown as grey and white bars, respectively. In the combination treatments, the total daptide concentration is listed (i.e., each daptide contributes 1/2 or 1/3 of the total concentration). All data represent the mean of n = 3 biologically independent samples and error bars show standard deviation.

Supplementary Figure 24: Heterologous expression and *mpa* **gene omissions in** *S. albus* **J1074**. (a) Gene organization of the minimal *mpa* BGC (no flanking genes included) with examined gene omissions depicted. (b) MALDI-TOF mass spectra of the corresponding methanol extracts.

Condition	Medium	Induction Density OD ₆₀₀	Expression Time (h)	Expression Temperature (°C)
1	TB	1.0	20	18
2	TB	1.0	3	18
3	TB	1.5	3	37
4	LB	0.6	20	18
5	M9	0.7	36	18

Supplementary Figure 25: Expression of the refactored *mpaABCDE* under various cultivation conditions. (a) List of variables for expression conditions 1-5, which used IPTG (0.5 mM final) for induction . (b) MALDI-TOF mass spectra of IMAC-purified products from expression conditions 1-5. The ketone/amine intermediates are denoted by "-Int" while the fully modified products are denoted by "-Dmp". Dmp: N_2,N_2 -dimethyl-1,2-propanediamine

а

Plasmid	Chaperone Genes	Promoter	Inducer
pTf16	tig	araB	L-Arabinose: 0.5 mg/ml
pG- KJE8	dnaK-dnaJ-grpE gro ES-groEL	araB Pzt-1	L-Arabinose: 0.5 mg/ml Tetracycline: 1 ng/ml
pKJE7	dnaK-dnaJ-grpE	araB	L-Arabinose: 0.5 mg/ml
pGro7	groES-groEL	araB	L-Arabinose: 0.5 mg/ml
pG-Tf2	groES-groEL-tig	Pzt-1	Tetracycline: 1 ng/ml

Supplementary Figure 26: Expression of the refactored *mpaABCDE* with chaperone plasmids. (a) Information for the genes involved in each plasmid. All chaperone plasmids were obtained from TaKaRa Bio Inc. Additional expression parameters were: medium, TB; induction OD_{600} , 0.8; [IPTG] 0.1 mM; expression temperature, 18 °C; expression time, 18 h. (b) MALDI-TOF mass spectra of IMAC purified products. The ketone/amine intermediates are denoted by "-Int" while the fully modified products are denoted by "-Dmp". Dmp: N_2, N_2 -dimethyl-1,2-propanediamine.

Supplementary Figure 27: Expression of the refactored *mpaABCDE* with pGro7 chaperone plasmid under various arabinose concentrations (a = 0.5 mg/mL, b = 2.0 mg/mL, c = 4.0 mg/mL). Additional expression parameters were: medium, TB; induction OD₆₀₀, 0.8; [IPTG], 0.1 mM; expression temperature, 18 °C; expression time, 18 h. The ketone/amine intermediates are denoted by "-Int" while the fully modified products are denoted by "-Dmp". Dmp: N_2,N_2 -dimethyl-1,2-propanediamine.

Supplementary Figure 28: Expression of the refactored *mpaABCDE* with pGro7 chaperone plasmid with extended expression time (a = 36 h; b = 72 h; c = 96 h). Additional expression parameters were: medium, M9; [arabinose], 0.5 mg/ml; induction OD₆₀₀, 0.7; [IPTG], 0.5 mM; expression temperature, 18 °C. The ketone/amine intermediates are denoted by "-Int" while the fully modified products are denoted by "-Dmp". Dmp: N_2,N_2 -dimethyl-1,2-propanediamine.

Supplementary Figure 29: MALDI-TOF-MS analysis of MpaA1 leader region variants coexpressed with MpaB and MpaC. (a) Sequence of MpaA1 with varied residues shown in bold. (b) MALDI-TOF mass spectra of IMAC-purified products after co-expression under the following condition: medium, TB; chaperone plasmid, pGro7; [arabinose], 0.5 mg/mL; induction OD₆₀₀, 0.8; [IPTG], 0.1 mM; expression temperature, 18 °C; expression time, 18 h. Ions for unmodified and modified peptides are highlighted in red and blue, respectively.

а

Supplementary Figure 30: MALDI-TOF-MS analysis of MpaA1 *C*-terminal Thr variants that were co-expressed with MpaB and MpaC. (a) Sequence of MpaA1 with the replaced C-terminal Thr shown in bold. (b) MALDI-TOF mass spectra of IMAC-purified products after co-expression under the following condition: medium, M9; chaperone plasmid, pGro7; [arabinose], 0.5 mg/mL; induction OD₆₀₀, 0.7; [IPTG], 0.5 mM; expression temperature, 18 °C; expression time, 72 h. Ions for unmodified peptides are highlighted in red. Minor peaks appearing at +16 are presumed to be from Met oxidation.

Supplementary Figure 31: MALDI-TOF-MS analysis of MpaA1 insertion and deletion variants at the C-terminus that were co-expressed with MpaB and MpaC. Products were purified by IMAC after co-expression under the following condition: medium, M9; chaperone plasmid, pGro7; [arabinose], 0.5 mg/mL; induction OD₆₀₀, 0.7; [IPTG], 0.5 mM; expression temperature, 18 °C; expression time, 72 h. Sequences of the MpaA1 variants are shown above their corresponding mass spectra, with the inserted/deleted residues denoted in bold and dash respectively. Ions for unmodified and modified peptides are highlighted in red and blue, respectively.

Supplementary Figure 32: MALDI-TOF-MS analysis of MpaA1 variants in the core peptide region that were co-expressed with MpaB and MpaC. (a) Sequence of MpaA1 with the mutated residues shown in bold. (b) MALDI-TOF mass spectra of IMAC-purified products after co-expression under the following condition: medium, M9; chaperone plasmid, pGro7; [arabinose], 0.5 mg/mL; induction OD₆₀₀, 0.7; [IPTG], 0.5 mM; expression temperature, 18 °C; expression time, 72 h. Ions for unmodified and modified peptides are highlighted in red and blue, respectively.

Supplementary Figure 33: Assessment of the AlphaFold-Multimer prediction for the MpaB-MpaC-MpaA1 complex. (a) The multiple sequence alignment (MSA) depth during MpaB-MpaC-MpaA1 complex prediction using AlphaFold- Multimer. (b) The predicted Local Distance Difference Test (pLDDT) for five predicted models. pLDDT is a per-residue measure of local confidence on a scale from 0-100. (c) Predicted Aligned Error (PAE) for five predicted models. The inter PAE between chains is low, indicating a confident prediction.

Supplementary Figure 34: Electrostatic surface potential of MpaB and MpaC. MpaB (pI = 4.8) and MpaC (pI = 11.2) are shown as a predicted protein complex on the left with positively and negatively charged surface shown in blue and red, respectively. Views of the interaction surfaces are shown on the right by a 90-degree rotation for each protein. The interaction surface is overall negatively charged for MpaB and positive for MpaC. The electrostatic surface potential is calculated by APBS in PyMOL^{13, 14}.

Supplementary Figure 35: Identification of a hominicin-like BGC from *Staphylococcus pseudintermedius*. (a) The BGC from *S. pseudintermedius* (DapC protein: WP_214539449.1) is shown. Additionally encoded are a LanM which is proposed to convert the four internal Thr residues to dehydrobutyrine (Dhb), a second methyltransferase (putatively dimethylating the *N*-terminus), a peptidase, and two genes of unknown function. (b) Comparison of the core peptide region from the *S. pseudintermedius* BGC and the structure of hominicin⁵. Sites modified in hominicin are cyan and the predicted modifying enzymes are listed. Amino acid variations from the *S. pseudintermedius* core are purple.

35,487 bp

Supplementary Figure 36: The plasmid map of directly cloned *mpa* **for heterologous expression in** *S. albus* **J1074.** ApmR: apramycin resistance marker; traJ: conjugal transfer transcriptional regulator traJ; oriT: origin of transfer; loxP: Cre-Lox recombination site; p15A ori: p15A plasmid origin of replication. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in Source Data.

Supplementary Figure 37: Plasmid maps of gene omission for heterologous expression in *S. albus* **J1074: pSET-mpaABCDMPT.** ApmR: apramycin resistance marker; traJ: conjugal transfer transcriptional regulator traJ; oriT: origin of transfer; loxP: Cre-Lox recombination site; ori: p15A plasmid origin of replication; URA2: uracil auxotrophic marker; ARS H4: yeast artificial chromosome; CEN6: centromere in chromosome VI of *Saccharomyces cerevisiae*. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 38: Plasmid maps of gene omission for heterologous expression in *S. albus* **J1074: pSET-mpaABCDMP.** ApmR: apramycin resistance marker; traJ: conjugal transfer transcriptional regulator traJ; oriT: origin of transfer; loxP: Cre-Lox recombination site; ori: p15A plasmid origin of replication; URA2: uracil auxotrophic marker; ARS H4: yeast artificial chromosome; CEN6: centromere in chromosome VI of *Saccharomyces cerevisiae*. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 39: Plasmid maps of gene omission for heterologous expression in *S. albus* **J1074: pSET-mpaABCDM.** ApmR: apramycin resistance marker; traJ: conjugal transfer transcriptional regulator traJ; oriT: origin of transfer; loxP: Cre-Lox recombination site; ori: p15A plasmid origin of replication; URA2: uracil auxotrophic marker; ARS H4: yeast artificial chromosome; CEN6: centromere in chromosome VI of *Saccharomyces cerevisiae*. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 40: Plasmid maps of gene omission for heterologous expression in *S. albus* J1074: pSET-mpaA1BCD. ApmR: apramycin resistance marker; traJ: conjugal transfer transcriptional regulator traJ; oriT: origin of transfer; loxP: Cre-Lox recombination site; ori: p15A plasmid origin of replication; URA2: uracil auxotrophic marker; ARS H4: yeast artificial chromosome; CEN6: centromere in chromosome VI of *Saccharomyces cerevisiae*. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 41: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli*: MpaA1A2A3BCDM. KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 42: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli***: MpaABCDM.** KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 43: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli***: MpaABCD.** KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 44: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli*: MpaABCM. KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 45: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli*: MpaABDM. KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 46: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli*: MpaABC. KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 47: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli*: MpaAB. KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

Supplementary Figure 48: Plasmid maps of codon-optimized and refactored genes for heterologous expression in *E. coli*: MpaAC. KanR: kanamycin resistance marker; ori: pBR322 plasmid origin of replication; lacI: lactose operon repressor lacI. The plasmid map was drawn with SnapGene (GSL Biotech LLC). The plasmid sequence is available in **Source Data**.

References

- 1. Tietz, J.I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. *Nat Chem Biol* **13**, 470-478 (2017).
- 2. Mistry, J. et al. Pfam: The protein families database in 2021. *Nucleic Acids Res* **49**, D412-D419 (2021).
- 3. Haft, D.H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. *Nucleic Acids Res* **29**, 41-43 (2001).
- 4. Kloosterman, A.M., Shelton, K.E., van Wezel, G.P., Medema, M.H. & Mitchell, D.A. RRE-Finder: a genome-mining tool for class-independent RiPP discovery. *mSystems* **5** (2020).
- 5. Kim, P.I. et al. Characterization and structure identification of an antimicrobial peptide, hominicin, produced by Staphylococcus hominis MBBL 2-9. *Biochem Bioph Res Co* **399**, 133-138 (2010).
- 6. Wheeler, T.J., Clements, J. & Finn, R.D. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. *BMC Bioinformatics* **15**, 7 (2014).
- 7. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. *J Mol Biol* **430**, 2237-2243 (2018).
- 8. Price, M.N., Dehal, P.S. & Arkin, A.P. FastTree 2--approximately maximum-likelihood trees for large alignments. *PLoS One* **5**, e9490 (2010).
- 9. Fountoulakis, M. & Lahm, H.W. Hydrolysis and amino acid composition analysis of proteins. *J Chromatogr A* **826**, 109-134 (1998).
- 10. Buchan, D.W.A. & Jones, D.T. The PSIPRED protein analysis workbench: 20 years on. *Nucleic Acids Res* 47, W402-W407 (2019).
- 11. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-589 (2021).
- 12. Hong, J.J. et al. How melittin inserts into cell membrane: Conformational changes, inter-peptide cooperation, and disturbance on the membrane. *Molecules* **24**, 1775 (2019).
- 13. Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. *Protein Sci* 27, 112-128 (2018).
- 14. Pymol: The PyMOL molecular graphics system, version 1.2r3pre, Schrödinger, LLC.