
S1 Appendix. Literature data for wound biochemistry and mechanobiology.
To perform wide-range calibration of our custom FE model, we derive temporal

evolutions of the biochemical fields c, ρ, and ϕc from published data on full-thickness
excisional wounds in wild type mice (diameter: 3–8 mm). Unless numerical values are
explicitly reported, we extract them from published charts using the web-based tool
‘WebPlotDigitizer’ [1]. For studies featuring measurement replicates, we focus on their
average at each available time point. When multiple data from different studies are
available for the same time point, we quantify and display their average and standard
deviation (cf. Figs. 5-6 and Fig. A1.1).

To inform the temporal evolution of c, we consider TGF-β1 as a reliable indicator of
the second inflammatory wave progression, owing to its undisputed role as the growth
factor with the broadest spectrum of actions on cell activity within wound healing [2].
Focusing on experimental studies reporting the evolution of TGF-β1 throughout healing
and the corresponding baseline values in unwounded tissue [2–5], we obtain the temporal
evolutions in Fig. A1.1a.

For the cell content, ρ, we focus on previous studies reporting the number of fibroblasts
in wounded and unwounded tissue [3,6], and obtain the temporal evolutions in Fig. A1.1b.

For the collagen content, ϕc, we consider measurements of wound hydroxyproline
content [7–10] and obtain the corresponding collagen amount per mass of wet tissue
according to the relation:

ϕ∗
c =

4H

0.13πD2TP
, (A1.1)

where H is the hydroxyproline mass measured in a tissue biopsy of diameter D, thickness
T , and density P , while 0.13 is a conversion factor corresponding to the typical percentage
of hydroxyproline within collagen [11]; in line with previous measurements, we take
P = 1.1 mgmm−3 [12]. Using a similar approach, we also estimate the average collagen
content in unwounded murine skin to be ϕ∗,Skin

c = 4.9% [9,13–18], which is remarkably
close to recent experimental measurements (6.39% in wet mass) [19] and leads to the
normalized wound collagen contents shown in Fig. A1.1c and in Figs.5,6.

For the dependence of cell activity on tissue deformation, we consider previous in
vitro data on the proliferation of human patellar tendon fibroblasts under uniaxial

Figure A1.1. Temporal evolution of cytokines, c, cells, ρ, and collagen content, ϕc,
according to several published studies (colored translucent dots connected by dashed
lines showing trends). The data points for comparison with simulations are obtained by
averaging information at corresponding time points, as obtained from different studies
(black dots and error bars: mean ± standard deviation; dashed lines show trends).
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cyclic stretch of increasing magnitude [20]. For comparability with our study, where we
simulate tissue biaxial stretching from a physiological deformation state, we assume that
the data in Ref. [20] can be interpreted as representative of fibroblast overproduction
induced by a tissue overstretching θe/θph ∼ (λover/λref )2, where λover are the uniaxial
stretch values used in Ref. [20] and λref = 1 is the corresponding reference value (no
stretch). To determine the overexpression of ρ for an unwounded tissue under stretch,
we consider the ODE system comprising Eqs. (5–7) and predict the values of c, ρ, and
ϕc after 210 days of application of an areal deformation θe. Specifically, we set α = 0
and select all parameters except for Ωm = Ωm

ρ = Ωm
ϕc

according to S3 Table and S4Table.
Since we are interested in stretch-mediated mechanosensing, we adopt the definition of
Ĥ in Eq. (10). As shown in Fig. A1.2, increasing/decreasing the tissue stretch around
its physiological value results in increased/decreased fibroblast production, in a way that
depends on the value of Ωm. Since values of Ωm in the range of 0.005− 0.02 well capture
the experimental data in Ref. [20], we select Ωm = 0.01 as the reference value for this
study.

Figure A1.2. Dependence of fibroblast production on tissue stretch for alternative
values of the coupling parameter Ωm, in comparison with experimental data (black dots
connected by a dashed line showing trend).
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