S2 Appendix. Sensitivity of s_{ρ} to Ω^m for sub-physiological elastic stretch. In Fig. 7, we have shown that assuming a stretch-mediated mechanobiological coupling yields a marked decrease in ρ and other variables in the wound when increasing the strength of the coupling (Ω^m) , a behavior that we have explained in terms of the sub-physiological elastic deformation in the wound that results from imposing an initially stress-free fibrin clot. Here, we further analyze the link between ρ and Ω^m by analytically computing the derivative of the source term in Eq. (6), s_{ρ} , with respect to the parameter defining the coupling strength, Ω^m :

$$\frac{\partial s_{\rho}}{\partial \Omega^m} = \rho \, p_{\rho,n} \left(1 - \frac{\rho}{K_{\rho,\rho}} \right) \hat{H}(\theta^e, \vartheta^{ph}, \gamma^e) - \rho \, \frac{\partial d_{\rho}}{\partial \Omega^m},\tag{A2.1}$$

where d_{ρ} depends on Ω^m through the homeostasis constraint imposed considering an unwounded and physiologically-loaded tissue

$$d_{\rho} = p_{\rho,n} \left(1 + \frac{\Omega^b}{K_{c,c} + 1} + \frac{\Omega^m}{2} \right) \left(1 - \frac{1}{K_{\rho,\rho}} \right), \tag{A2.2}$$

such that

$$\frac{\partial s_{\rho}}{\partial \Omega^m} = \frac{\rho \, p_{\rho,n}}{2} \left[2\hat{H}(\theta^e, \vartheta^{ph}, \gamma^e) \left(1 - \frac{\rho}{K_{\rho,\rho}} \right) - \left(1 - \frac{1}{K_{\rho,\rho}} \right) \right]. \tag{A2.3}$$

Since we are considering sub-physiological values of the elastic deformation, we can use the inequality $\hat{H}(\theta^e, \vartheta^{ph}, \gamma^e) < 1/2$ to write

$$\frac{\partial s_{\rho}}{\partial \Omega^m} < \frac{p_{\rho,n}}{2K_{\rho,\rho}} \rho \left(1 - \rho\right),\tag{A2.4}$$

whose right-hand side term provides an upper bound for $\partial s_{\rho}/\partial \Omega^m$ and has sign depending on ρ , indicating that s_{ρ} will decrease for increasing Ω^m for values of $\rho \geq 1$ when $\theta^e < \vartheta^{ph}$.