Parameter	Value	Eq.	Source
$D_{\alpha,\alpha}$: diffusion coefficient for 1 st inflammatory wave	$0.075 \text{ mm}^2/\text{h}$	3	Assumed $= D_{c,c}$
d_{α} : decay coefficient for 1 st inflammatory wave	0.01 1/h	4	Assumed $= d_c$
$D_{c,c}$: diffusion coefficient for 2 nd inflammatory wave	$0.075 \text{ mm}^2/\text{h}$	3	Ref. [1]
d_c : decay coefficient for 2 nd inflammatory wave	0.01 1/h	5	Ref. [1]
$p_{c,\alpha}$: effect of 1 st inflammation on 2 nd inflammation	0.23 1/h	5	Selected to match peak in c
$p_{c,\rho}$: effect of cell proliferation on 2 nd inflammation	1.5 1/h	5	Ref. [2]
c_{tgt} : attractor for 2 nd inflammation	1.01	5	From c homeostasis $(s_c = 0)$
$K_{c,c}$: self-saturation of 2 nd inflammatory wave	0.5	5	Assumed
$D_{\rho,\rho}$: diffusion coefficient for cell population	$0.035 \text{ mm}^2/\text{h}$	3	Ref. [1]
$D_{\rho,c}$: chemotactic diffusion coefficient for cells	$8 \times 10^{-5} \text{ mm}^2/\text{h}$	3	Ref. [1]
$p_{\rho,n}$: baseline cell mitotic rate for $c = 0$ and $\hat{H}_{\rho} = 0$	0.034 1/h	6	Ref. [1]
Ω^b_{ρ} : enhanced cell proliferation due to inflammation	5	6	Selected to match peak in ρ
Ω_{ρ}^{m} : enhanced cell proliferation due to mechanics	0.01 (Range: $0 - 0.8$)	6	Ref. [3], varied in Figs. 7-8
d_{ρ} : decay coefficient for cell population	$\begin{array}{c} 0.048 \ 1/h \\ (0.048 - 0.061 \ 1/h) \end{array}$	6	From ρ homeostasis $(s_{\rho} = 0)$
γ^e : slope of the function $\hat{H}(\theta^e, \vartheta^{ph}, \gamma^e)$	5	10	Ref. [1]
γ^{k_1} : slope of the function $\hat{H}(c, k_1^c, k_1^{ph}, \gamma^{k_1})$	0.016	19	Assumed
$K_{\rho,\rho}$: self-saturation of cell population	30	6	Selected to match peak in ρ
$K_{\rho,c}$: saturation of cell population due to inflammation	10	6	Selected to match peak in ρ
$f_{\rho,n}$: baseline active tension for $\rho = 1$ and $c = 0$	0.04 MPa/mm^3	11	Ref. [1]
$K_{f,c}$: saturation of active tension due to inflammation	10^{-5}	11	Ref. [1]
Ω_f^b : increase of active tension due to inflammation	1	11	Ref. [1]

S3 Table. Parameters for diffusible biochemical fields.

References

- 1. Buganza Tepole A. Computational systems mechanobiology of wound healing. Computer Methods in Applied Mechanics and Engineering. 2017;314:46–70.
- Li D, Lee S, Tseng S. Differential expression and regulation of TGF-beta1, TGF-beta2, TGF-beta3, TGF-betaRI, TGF-betaRII and TGF-betaRIII in cultured human corneal, limbal, and conjunctival fibroblasts. Current eye research. 1999;19(2):154–161.
- 3. Yang G, Crawford RC, Wang JH. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. Journal of biomechanics. 2004;37(10):1543–1550.