S4 Table. Parameters for microstructural fields.

Parameter	Value	Eq.	Source
$p_{\phi_c,n}$: rate of collagen deposition for $c=0$ and \hat{H}_{ϕ_c}	0.002 1/h	7	Ref. [1]
$\Omega_{\phi_c}^b$: enhanced ϕ_c deposition due to cell proliferation	2.5	7	Selected to match peak in ϕ_c
$\Omega_{\phi_c}^m$: enhanced ϕ_c deposition due to mechanics	$=\Omega_{\rho}^{m}$	7	Assumed
$K_{\phi_c,c}$: saturation of collagen due to inflammation	10^{-4}	7	Ref. [1]
$K_{\phi_c,\rho}$: saturation of collagen due to cell proliferation	1.06	7	Ref. [1]
d_{ϕ_c} : decay coefficient for collagen content	0.00292 1/h (0.00291 - 0.00330 1/h)	7	From ϕ_c homeostasis $(\dot{\phi}_c = 0)$
$d_{\phi_c,\rho,c}$: rate of collagen degradation due to ρ and c	$4.85 \times 10^{-4} \text{ 1/h}$	7	Ref. [1]
p_{ξ_c,ϕ_c} : natural forward rate of collagen crosslinking	1 1/h	18	Assumed
K_{ξ_c,ϕ_c} : saturation of crosslinking in response to ϕ_c	0.5	18	Assumed
d_{ξ_c} : decay coefficient for collagen crosslinking	0.66326 1/h (0.66288 - 0.66327 1/h)	18	From ξ_c homeostasis $(\dot{\xi_c} = 0)$
$d_{\xi_c,\dot{\phi_c}}$: reduction of crosslinking due to ϕ_c depletion	1	18	Assumed
a: nonlinearity of the relation between k_1 and ξ_c	10	17	Selected to match k_1 evolution
$d_{\phi_f^w}$: decay coefficient for wound fibrin content	$=d_{\phi_c}$	15	Assumed
$d_{\phi_f^w,\rho,c}$: rate of fibrin degradation due to ρ and c	0.00325 1/h	15	To have negligible fibrin by d7
τ_{λ^p} : time constant for tissue growth	0.485	8	Ref. [1]

References

 $1. \ \, {\rm Buganza\ Tepole\ A.\ Computational\ systems\ mechanobiology\ of\ wound\ healing.} \ \, {\rm Computer\ Methods\ in\ Applied\ Mechanics\ and\ Engineering.}\ 2017; 314:46-70. }$