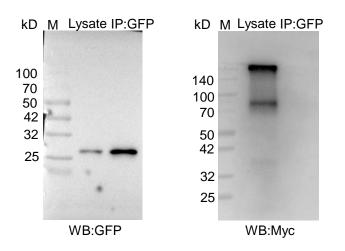
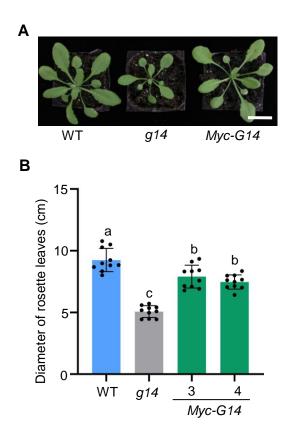
Plant Communications, Volume 4

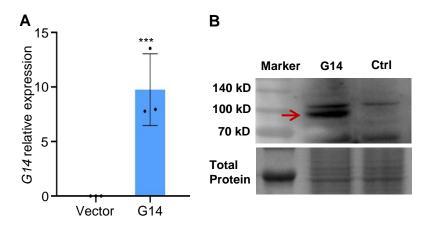

Supplemental information

Arabidopsis ABCG14 forms a homodimeric transporter for multiple cy-

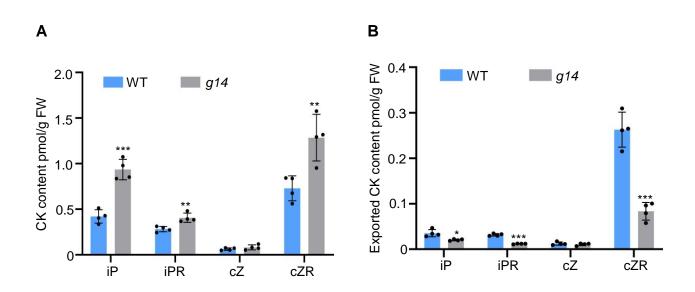

tokinins and mediates long-distance transport of isopentenyladenine-

type cytokinins

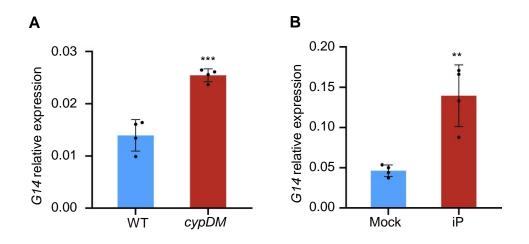
Jiangzhe Zhao, Xiaojuan Deng, Jiayun Qian, Ting Liu, Min Ju, Juan Li, Qin Yang, Xiaoxian Zhu, Weiqiang Li, Chang-Jun Liu, Zhigang Jin, and Kewei Zhang

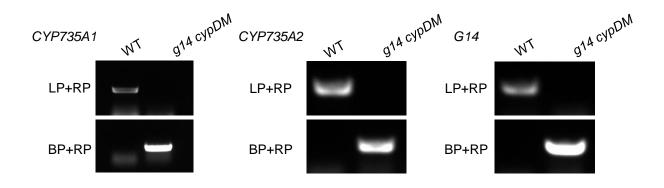


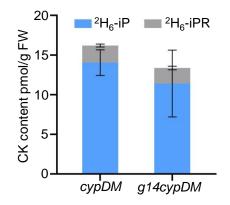
Supplemental Figure 1. Co-IP assay of free GFP and Myc-AtABCG14 expression in tobacco leaves. Total protein was extracted from tobacco leaves with co-expression of free GFP and Myc-AtABCG14.

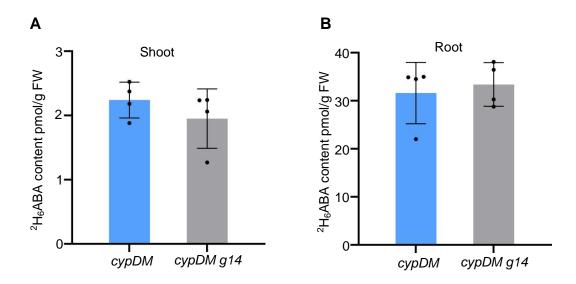


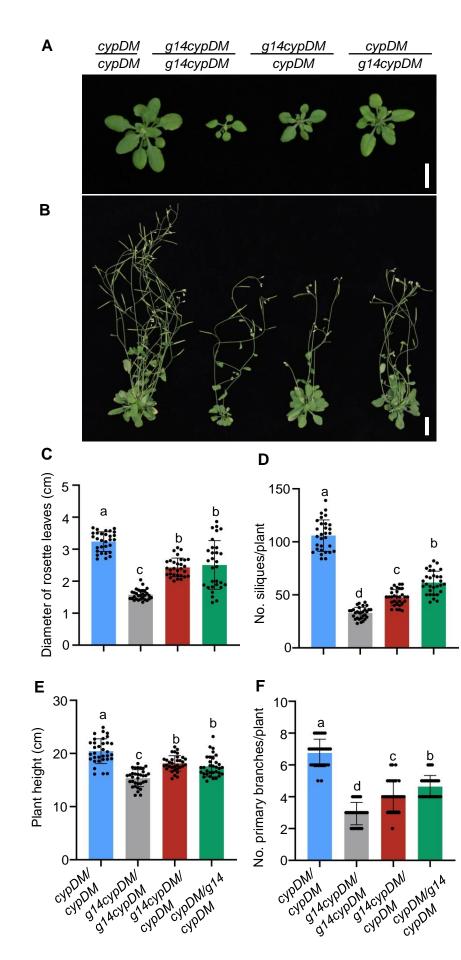
Supplemental Figure 2. Phenotypes of *atabcg14* mutant plants complemented by *Myc-AtABCG14* fusion gene. (A) Phenotypes of 20-DAG *atabcg14* plants complemented with *Myc-AtABCG14* gene driven by 35S promoter. Scale bar, 2 cm. (B) Rosette leaf diameters of the plants in (A). The data are means \pm SD, n = 10. Groups marked by different letters are significantly different (P < 0.05, ANOVA). *G14* represents *AtABCG14*.

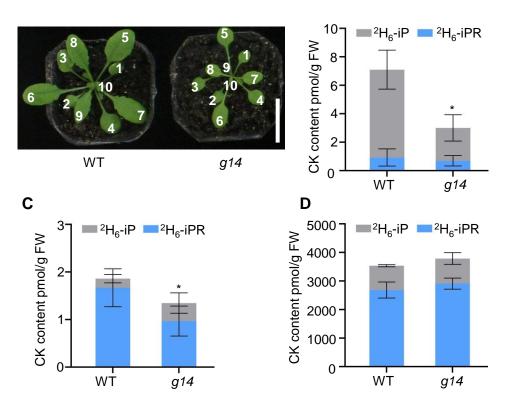

•

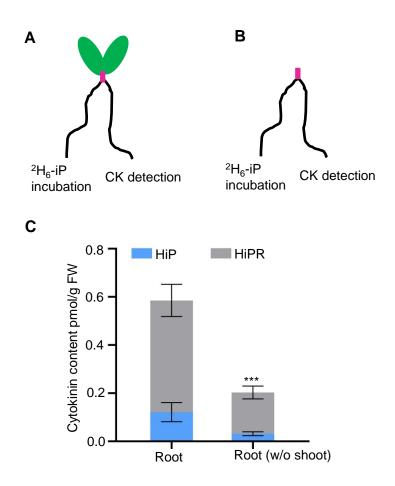

Supplemental Figure 3. The expression of *AtABCG14* in BY-2 cells transformed with 35S::*GFP*-*AtABCG14*. (A) Stable expression of empty vector 35S::*GFP* (RCS2) and 35S::*GFP*-*AtABCG14* in BY-2. The transcript levels of the target genes were normalized to that of *ACTIN2*. Data are means \pm SD (n = 4). (B) Detection of GFP-AtABCG14 fusion protein expression in BY-2 by immunity blotting. The red arrow indicates GFP–AtABCG14 protein. ***P < 0.001 (Student's *t*-test). G14 represents AtABCG14.

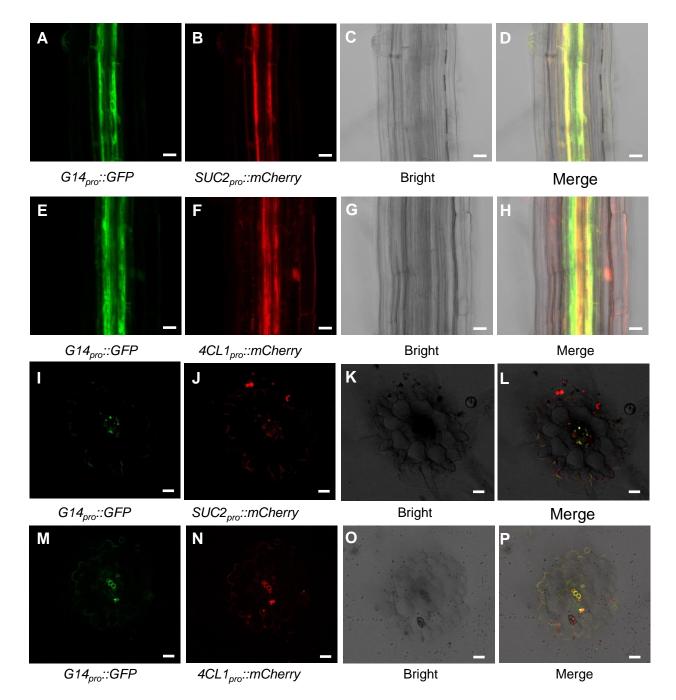

Supplemental Figure 4. Less CKs exported from *atabcg14* mutant. (A) Quantification of iP, iPR, *c*Z and *c*ZR in WT *Arabidopsis* cells and *atagcg14* mutant cells 5 d after subculture. Data are means \pm SD (n = 4). (B) Quantification of the exported iP, iPR, *c*Z and *c*ZR in the B5 medium culturing WT *Arabidopsis* cells and *atagcg14* mutant cells at 4 hours. Data are means \pm SD (n = 4). *, ** and *** indicate *P*-values of *P* < 0.05, *P* < 0.01 and *P* < 0.001 respectively, from Student's *t*-test.


Supplemental Figure 5. Expression of *AtABCG14* was induced by iP. (A) RT-qPCR analysis of *AtABCG14* expression in 8-DAG seedlings of WT and *cypDM*. Data are means \pm SD (n = 4). (B) RT-qPCR analysis of *AtABCG14* expression of 8-DAG seedlings of *cypDM* treated with 1 µM iP for 4 h. Data are means \pm SD (n = 4). **P < 0.01, ***P < 0.001 (Student's *t*-test). G14 represents AtABCG14.


Supplemental Figure 6. Characterization of *atabcg14 cypDM* triple mutant. *abcg14 cypDM* triple mutant lines were obtained by crossing *atabcg14* with double mutant *cypDM*. Sepecific primers CYP735A1-P1, P2 and T-DNA border primer LB1.3 were used for identifying T-DNA insertion of *cyp735a1* mutant. Sepecific primers CYP735A2-P1, P2 and T-DNA border primer LB1.3 were used for identifying T-DNA insertion of *cyp735a2* mutant. Sepecific primers AtABCG14-P7, -P8 (amplifying genomic DNA fragment of *AtABCG14*) and pSKTAIL, AtABCG14-P11 (amplifying T-DNA fragment) were used for identifying T-DNA insertion of *atabcg14* mutant. *g14cypDM*, *atabcg14 cypDM*.


Supplemental Figure 7. ²H-labled iP and iPR in *atabcg14 cypDM* roots. Roots of the 8-DAG *cypDM* and *atabcg14 cypDM* seedlings were incubated with 50 nM $^{2}H_{6}$ -iP for 1 h. The roots were harvested for CK quantification.


Supplemental Figure 8. Translocation of ${}^{2}\text{H}_{6}$ -ABA in *atabcg14 cypDM*. Roots of the 8-DAG *cypDM* and *atabcg14 cypDM* seedlings were incubated with 50 nM ${}^{2}\text{H}_{6}$ -ABA for 1 h. The shoots (A) and roots (B) were harvested for ${}^{2}\text{H}_{6}$ -ABA quantification. Data are means \pm SD, n = 4.


Supplemental Figure 9. The phenotypes of the grafted plants between *cypDM* and *atabcg14 cypDM*. (A) Morphological phenotypes of 25-DAG *cypDM/cypDM*, *atabcg14 cypDM/atabcg14 cypDM/atabcg14 cypDM/cypDM*, *cypDM/cypDM*, *cypDM/atabcg14 cypDM* grown on soil. Scale bar, 1.5 cm. (B) Phenotypes of 35-DAG *cypDM/cypDM*, *atabcg14cypDM/atabcg14cypDM*, *atabcg14cypDM/cypDM*, *cypDM /atabcg14cypDM*, *atabcg14cypDM/atabcg14cypDM*, *atabcg14cypDM/cypDM*, *cypDM /atabcg14cypDM*. Scale bar, 1.5 cm. (C) Quantification of rosette diameter in (A). Data are means \pm SD (n = 30). (D–F) Quantification of number of siliques per plant (D), plant height (E) and number of primary rosette branches per plant (F) in (B). Data are means \pm SD (n = 30). Groups marked by different letters are significantly different (P < 0.05, ANOVA). *g14cypDM*, *atabcg14 cypDM*.

Supplemental Figure 10. Phloem unloading of iP-type CKs was medicated by AtABCG14. (A) Morphological phenotypes of 21-DAG WT and *atabcg14* plants. The 3rd and 4th leaves of plants were dripped with 5 ppm ${}^{2}\text{H}_{6}$ -iP (7 µL/cm² leaf area) and incubated for 6 h. Then the roots (B), the younger (from the 5th to 10th) leaves (C) and the 3rd and 4th leaves (D) were harvested for quantification of ${}^{2}\text{H}_{6}$ -iP and ${}^{2}\text{H}_{6}$ -iPR. Data are means \pm SD (n = 3), *P < 0.5 (Student's *t*-test). Scale bars, 2 cm for (A). *g14* represents *atabcg14*. FW, fresh weight.

Supplemental Figure 11. Circulated transport of iP-type CKs in *Arabidopsis* seedlings. (A) and (B) The WT plants were incubated under split-root with shoot (A) and without shoot (B) conditions with or without ${}^{2}\text{H}_{6}$ -labeled iP. (C) Quantification of ${}^{2}\text{H}_{6}$ -labeled iP and iPR contents in the root (without feeding ${}^{2}\text{H}_{6}$ -labeled iP) after feeding with ${}^{2}\text{H}_{6}$ - iP for 4 h in (A and B). Data are means \pm SD, n = 4. ***P < 0.001 (Student's *t*-test). FW, fresh weight.

Supplemental Figure 12. Co-expression of *AtABCG14*, *SUC2*, and *4CL1* in the root steles of *Arabidopsis* seedlings. (A), (E), (I) and (M), GFP fluorescence. (B), (F), (J) and (N), mCherry fluorescence. (C), (G), (K) and (O), Bright field. (D), (H), (L) and (P), merged signals. Scale bars = 20 μ m. The seedlings for fluorescence observation are *AtABCG14*_{pro}::*GFP* and *SUC2*_{pro}::*mCherry* or *AtABCG14*_{pro}::*GFP* and *4CL1*_{pro}::*mCherry* double-transgenic plants. *G14*_{pro}::*GFP*, *SUC2*_{pro}::*mCherry* and *4CL1*_{pro}::*mCherry* indicate transgenic plants of WT transformed with GFP and mCherry under *AtABCG14* promoter and *4CL1* promoter, and *SUC2* promoter.

Primer name	Primer sequences (5'-3')	Restriction site (with underline)	Purpose
AtABCG14-P1	GCAGGCTCC <u>GAATTC</u> ATCCCATCGATTTAAAGCTATG	EcoR I	For constructing Myc-and Flag-AtABCG14
AtABCG14-P2	AAGCTGGGTC <u>GAATTC</u> TTACCGCAACTTCACCCGATGCAG	EcoR I	expression in Arabidopsis
AtABCG14-P3	CGAGCGGCCGC <u>GGATCC</u> ATGGTGAGCAAGGGCGAGGA	BamH I	For constructing AtABCG14-pDR195 expression in
AtABCG14-P4	AGTCCAAAGCT <u>GGATCC</u> TTACCGCAACTTCACCCGATG	BamH I	yeast
ACTIN-F	GGTAACATTGTGCTCAGTGGTGG		The standard gene for qRT-PCR
ACTIN-R	CTCGGCCTTGGAGATCCACATC		
AtABCG14-P5	TCGGTGCTCTGCTTATGAAC		For AtABCG14 qRT-PCR
AtABCG14-P6	ACGATGAAGGGAGGAATTTG		
LB1.3	ATTTTGCCGATTTCGGAAC		SALK T-DNA insert line order primer (BP)
AtABCG14-P7	TGCTGAGCTTTTGAGTTGTACC		For atabcg14 homozygote identification (LP+RP)
AtABCG14-P8	CACAATGCGATGAGCAGTGG		
AtCYP735A1-P1	AGGTGATCGATGGACATATGC		For cyp735a1 homozygote identification (LP+RP)
AtCYP735A1-P2	AGAAGCACTTCGCATGATCAC		
AtCYP735A2-P1	TCAAAAATGACTGAAATGGCC		For cyp735a2 homozygote identification (LP+RP)
AtCYP735A2-P2	ATTATGAGCAAGGAGCATG		
AtABCG14-P9	ATGCCTCAGAACTGCATAGCACCAAGGCCT		For pCS2 vector construction
AtABCG14-P10	GCATCTAGACCGCAACTTCACCCGATGCAG	Xba I	
pSKTAIL	ATACGACGGATCGTAATTTGTCG		T-DNA insert line order primer for <i>abcg14</i> (BP)
AtABCG14-P11	ATGCCTCAGAACTGCATAGCAC		For atabcg14 homozygote identification (RP)

Supplemental Table S1. Primers used in this study.