THE LANCET Global Health

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Sbarra AN, Mosser JF, Jit M, et al. Estimating national-level measles case–fatality ratios in low-income and middle-income countries: an updated systematic review and modelling study. *Lancet Glob Health* 2023; **11**: e516–24.

Supplementary Information: Estimating national-level measles case fatality ratios in low- and middle-income countries: an updated systematic review and modelling study

Section 1. Covariate selection via statistical analysis
Section 2. Model selection
Section 3. Final covariate processing and model structure7
Section 4. Decomposition analysis for validating changes to model structure, covariates, and input data9
Section 5. Supplementary Results 10
Section 5. Supplementary Tables 11
Supplementary Table 1. GATHER compliance checklist11
Supplementary Table 2. PRISMA compliance checklist13
Supplementary Table 3. PRISMA abstract compliance checklist17
Supplementary Table 4. Input data sources for final model18
Supplementary Table 5. Proxy covariate sets used for analysis
Supplementary Table 6. Covariate set values by country in 2019
Supplementary Table 7. Second step model fitted meta-regression coefficients
Supplementary Table 8. In-sample validation metrics from first stage decomposition analysis33
Supplementary Table 9. Out-of-sample validation metrics from first stage decomposition analysis
Supplementary Table 10. In-sample validation metrics from second stage decomposition analysis. 33
Supplementary Table 11. Out-of-sample validation metrics from first and second stage decomposition analysis34
Supplementary Table 12. In-sample (IS) and out-of-sample (OOS) validation metrics from final model using age split input data for comparison34
Supplementary Table 13. In-sample (IS) and out-of-sample (OOS) validation metrics from final model using original (pre-age split) data for comparison34
Supplementary Table 14. Age-specific CFR by region in 2019
Section 7. Supplementary Figures
Supplementary Figure 1. Overview of modeling process37
Supplementary Figure 2. Recent data available by country

	Supplementary Figure 3. Relative age pattern from first-stage model with 4 knots (with 2 internal)
	Supplementary Figure 4. Relative age pattern from first-stage model with 5 knots (with 3 internal)
	Supplementary Figure 5. Relationship between age of input data and standardized measles incidence from country-year input data was collected40
	Supplementary Figure 6. Relationship between age of input data and standardized first-dose measles-containing vaccine (MCV1) coverage from country-year input data was collected41
	Supplementary Figure 7. Mean age of measles cases by country and year41
	Supplementary Figure 8. Standardized and unstandardized estimates of case-weighted measles CFR across all countries from 1990 to 201942
	Supplementary Figure 9a-d. Age-specific, community-based, case-weighted case fatality ratio (CFR) estimates among 0–14-year-olds for low- and middle-income countries – for single years 1990, 2000, 2010, and 2019
	Supplementary Figure 10a-d. Age-specific, community-based, case-weighted case fatality ratio (CFR) (CFR) estimates among 0–14-year-olds, by region – for single years 1990, 2000, 2010, and 2019
	Supplementary Figure 11. Heat maps of age- and year-specific CFR by community- and hospital- based settings by country
	Supplementary Figure 12. Distribution of CFR values for studies providing information on laboratory confirmation of cases (1) versus not providing information on laboratory confirmation of cases (0)
	Supplementary Figure 13. Distribution measles incidence values used for covariates of country- years for studies providing information on laboratory confirmation of cases (1) versus not providing information on laboratory confirmation of cases (0)102
	Supplementary Figure 14. Distribution MCV1 coverage values used for covariates of country- years for studies providing information on laboratory confirmation of cases (1) versus not providing information on laboratory confirmation of cases (0)102
	Supplementary Figure 15. CFR estimates from framework using all studies versus only studies providing information on laboratory confirmation of cases, for select years
	Supplementary Figure 16. CFR estimates from framework using all studies versus only studies providing definition of death attributable to measles, for select years
R	eferences

Section 1. Covariate selection via statistical analysis

Section 1.1. Rationale for covariate inclusion

We selected covariates for the remainder of this analysis based on a previous publication that used expert consultation to develop a conceptual framework of mechanisms related to measles CFR and literature review to assess the body of evidence related to population-level factors associated with these mechanisms.

Covariates associated with the underlying mechanism of health care access and care seeking were maternal education, mortality rate due to war and terrorism, and proportion living in urban settings. Each of these individual covariates contribute to the ability for persons to access health care as well as might influence behavior contributing to the decision to seek care, ultimately leading to higher CFR if care is not sought or accessed.

Covariates associated with the underlying mechanism of health care quality were under-5 mortality rate and GDP per capita. Higher under-5 mortality rates or lower GDP per capita might be associated with lower health care quality which might be related to higher CFR.

Covariates associated with the underlying mechanism of risk of secondary infection were HIV prevalence and total fertility rate (TFR). Based on the risk of secondary infection associated with higher HIV prevalence or TFR, CFR might be higher.

Covariates associated with the underlying mechanism of nutritional status were vitamin A deficiency prevalence and wasting prevalence. Higher vitamin A deficiency prevalence or wasting prevalence could be associated with higher CFR.

Covariates associated with the underlying mechanism of general measles control and epidemiology were MCV1 and MCV2 coverage. Lower MCV1 or MCV2 coverage values could be associated with higher CFR.

Section 1.2. Additional details on covariate interpolation

The following covariate sets did not require interpolation or use of regional values: education, maternal education, war rate due to mortality and terrorism, health access and quality index, universal health coverage, sociodemographic index, stunting prevalence, wasting prevalence, underweight prevalence, vitamin A deficiency prevalence, HIV prevalence, and MCV2 coverage. For 12 countries, we interpolated covariate values for GDP per capita; we also used regional values in 23 countries. For 7 countries, we interpolated covariate values for under-5 mortality rate; we also used regional values in 2 countries. We used regional covariate values in 6 countries for total fertility rate. We used regional covariate values in 14 countries for MCV1 coverage. For 1 country, we interpolated covariate values for proportion living in urban settings; we also used regional values in 2 countries.

Section 1.3. Test for collinearity per underlying mechanism

For the underlying mechanism of "health care access and care seeking", we tested covariate sets for education, maternal education, proportion living in an urban setting, and mortality rate due to war and terrorism. Education was correlated with maternal education; correlation coefficients shown below. As education was more correlated with the other covariates relative to maternal education, it was removed from further analysis. Covariates moving on to the second step of data analysis for the "health care access and care seeking" mechanism were: maternal education, proportion living in an urban setting, and mortality rate due to war and terrorism.

	Education	Maternal education	Prop. living in urban setting	War mortality rate
Education	1.0	0.9965	0.6539	-0.0648
Maternal education		1.0	0.6523	-0.0645
Prop. living in urban setting			1.0	-0.537
War mortality rate				1.0

For the underlying mechanism of "health care quality", we tested covariate sets for under-5 mortality rate, health access and quality index, universal health coverage, GDP per capita, and sociodemographic index. Under-5 mortality rate, health access and quality index, universal health coverage and sociodemographic index were all correlated with each other; correlation coefficients shown below. Health access and quality index, universal health coverage, and sociodemographic index were more correlated with the other covariates relative to under-5 mortality rate, and so they were removed from further analysis. Covariates moving on to the second step of data analysis for the "health care quality" mechanism were: under-5 mortality rate, and GDP per capita.

	Under-5 mortality rate	Health access and quality index	Universal health coverage	GDP per capita	Sociodemographic Index
Under-5 mortality rate	1.0	-0.8027	-0.8346	-0.3920	-0.8525
Heath access and quality index		1.0	0.9916	0.6428	0.9365
Universal health coverage			1.0	0.6311	0.9417
GDP per capita				1.0	0.6159
Sociodemographic Index					1.0

For the underlying mechanism of "nutritional status", we tested covariate sets for stunting prevalence, wasting prevalence, underweight prevalence, and vitamin A deficiency prevalence. Stunting prevalence, underweight prevalence, and wasting prevalence were correlated with each other; correlation coefficients shown below. Stunting prevalence, and underweight prevalence were more correlated with the other covariates relative to wasting prevalence, and so they were removed from further analysis. Covariates moving on to the second step of data analysis for the "nutritional status" mechanism were: wasting prevalence and vitamin A deficiency prevalence.

	Stunting	Wasting	Underweight	Vitamin A deficiency
Stunting	1.0	0.7597	0.8970	0.6965
Wasting		1.0	0.8927	0.5687
Underweight			1.0	0.6509
Vitamin A deficiency				1.0

For the underlying mechanism of "risk of secondary infection", we tested covariate sets for HIV prevalence and total fertility rate. The covariates were not correlated with each other; correlation coefficient shown below. Both covariates moved on to the second step of data analysis for the "risk of secondary infection" mechanism.

	HIV prevalence	TFR
HIV prevalence	1.0	0.2279
TFR		1.0

For the underlying mechanism of "measles control and epidemiology", we tested covariate sets for MCV1 and MCV2 coverage. The covariates were not correlated with each other; correlation coefficient shown below. Both covariates moved on to the second step of data analysis for the "measles control and epidemiology" mechanism.

	MCV1 coverage	MCV2 coverage
MCV1 coverage	1.0	0.4713
MCV2 coverage		1.0

Section 1.4. Test for predictive capacity per underlying mechanism

For the mechanism of "health care access and care seeking", no covariates tested had p-values greater than 0.3 (see below). Therefore, all remaining covariates (maternal education, proportion living in urban setting, and mortality rate due to war and terrorism) were kept as covariate sets for the remainder of the analysis.

	Estimate	P-value
Intercept	0.0876	< 0.0001
Maternal education	-0.0039	0.019
Prop urban	-0.0435	0.12
War mortality rate	13.15116	0.12

For the mechanism of "health care quality", no covariates tested had p-values greater than 0.3 (see below). Therefore, all remaining covariates (under-5 mortality rate and GDP per capita) were kept as covariate sets for the remainder of the analysis.

	Estimate	P-value
Intercept	-0.0001441	0.99
Under-5 mortality rate	0.0004097	< 0.0001
GDP per capita	0.0000007766	0.039

For the mechanism of "nutritional status", no covariates tested had p-values greater than 0.3 (see below). Therefore, all remaining covariates (wasting prevalence and vitamin A deficiency prevalence) were kept as covariate sets for the remainder of the analysis.

	Estimate	P-value
Intercept	0.0097	0.19
Wasting	0.0901	0.27
Vitamin A deficiency	0.0767	0.13

For the mechanism of "risk of secondary infection", no covariates tested had p-values greater than 0.3 (see below). Therefore, all remaining covariates (HIV prevalence and total fertility rate) were kept as covariate sets for the remainder of the analysis.

	Estimate	P-value
Intercept	-0.01540	0.17
HIV prevalence	0.2675	0.25
TFR	0.008409	0.0003

For the mechanism of "measles control and epidemiology", MCV2 coverage had a p-value greater than 0.3 (see below). Therefore, MCV1 coverage was the only covariate sets kept for the remainder of the analysis.

	Estimate	P-value
Intercept	0.1160	< 0.0001
MCV1 coverage	-0.1078	< 0.0001
MCV2 coverage	0.0021	0.86

Section 2. Model selection

Section 2.1. First stage model with age granular data

We analyzed the relationship between age and CFR in reported studies with age-specific data both with and without controlling for other covariates. There was a consistent relationship between covariate values and CFR values, particularly for measles incidence and MCV1 coverage (Supplementary Figures 5-6). Taken together, these suggested that the relationship between age and CFR was confounded by these other covariates, and therefore we elected to adjust for other covariates in our first-stage model.

Section 2.2. Knot selection

We ran both first and second stage models with both 4 knots (with 2 internal) and 5 knots (with 3 internal) placed uniformly on data density and selected the best performing model based on the lowest Akaike information criterion (AIC) score among results from the second stage model. This process selected the model with 5 knots (AIC: 174907) instead of 4 knots (AIC: 175086).

Section 2.3. Inclusion of random effects

We additionally tested the inclusion of random effects in our second stage model, by testing a random effect placed on each study. This approach caused the coefficient for the community versus hospital-setting indicator to become 0, with a non-significant p-value (p-value=1). Because we know these sets of studies (i.e. those from community-based settings and those from hospital-based settings) were collected from different underlying populations with known difference in measles severity, we elected to use a model without the inclusion of random effects.

Section 3. Final covariate processing and model structure

For covariates requiring interpolation, we used the following formula:

$$y = y_1 + \frac{(x - x_1)(y_2 - y_1)}{(x_2 - x_1)}$$

Following transformation, covariates were standardized as follows such that μ represents the mean transformed covariate value and σ represents the standard deviation of the transformed covariate value:

$$standardized \ covariate = \frac{transformed \ covariate - \mu}{\sigma}$$

Our final first stage CFR model (that only uses age specific input data) follows the following structure. Using transformed and standardized covariate values for each study midpoint year, we fit a Bayesian fixed-effects meta-regression model¹ with the outcome variable of the logit of CFR. We computed standard error in logit space per study using the delta transformation and used these values as weights in the meta-regression. Before transforming to logit space, CFR ratios equalling 0 were offset to 0.0002202378 and ratios equal to 1 were offset to 0.999999999999.

Our regression equation is as follows:

$$y_i = X_i(\beta) + \epsilon_i$$
$$\epsilon_i \sim N(0, \Lambda)$$

where y_i is the vector of observations of logit of CFR from the i^{th} study, X_i is a vector of covariates paired with each data observation, β are regression coefficients ($\beta_{community indicator}$, $\beta_{incidence}$,

 β mortality rate due to war and terrorism, β maternal education, β GDP per capita, β HIV prevalence,

 $\beta_{MCV1 \ coverage}$, $\beta_{total \ fertility \ rate}$, $\beta_{under \ 5 \ mortality \ rate}$, $\beta_{proportion \ living \ in \ urban \ setting}$, $\beta_{vitamin \ A \ deficiency \ prevalence}$, $\beta_{wasting \ prevalence}$, β_{age}), and ϵ_i are measurement errors with a given covariance Λ . For age, our β coefficient is represented as a function f representing a quadratic spline with 5 knots (3 internal) placed uniformly based on data density at locations 0, 0.68, 1.31, 3.83 and 34 years. This can be represented via the following generalized equation for each data interval i:

$$s_i(x) = a_i x^2 + b_i x + c_i$$

For $x \in [x_i, x_{i+1}]$ and i = 1, 2, ..., n - 1. Data intervals are based on knot locations. Additionally, we included a prior to ensure a right linear tail on our quadratic spline function.

Our final second stage model (that uses all data) is as follows. Model specifications are identical to the first stage as previously defined, except with the following additional priors:

 $\beta_{community indicator} \sim Uniform(-\infty, 0)$ $\beta_{incidence} \sim Uniform(0, \infty)$ $\beta_{mortality rate due to war and terrorism} \sim Uniform(0, \infty)$ $\beta_{maternal education} \sim Uniform(-\infty, 0)$ $\beta_{GDP per capita} \sim Uniform(-\infty, 0)$ $\beta_{HIV prevalence} \sim Uniform(0, \infty)$ $\beta_{MCV1 coverage} \sim Uniform(-\infty, 0)$ $\beta_{total fertility rate} \sim Uniform(0, \infty)$ $\beta_{under 5 mortality rate} \sim Uniform(0, \infty)$ $\beta_{proportion living in urban setting} \sim Uniform(0, \infty)$ $\beta_{vitamin A deficiency prevalence} \sim Uniform(0, \infty)$ $\beta_{wasting prevalence} \sim Uniform(0, \infty)$

Priors in this work were only used to impose directionality on covariates, such that the direction of association estimated was consistent with the observed relationship in the literature identified by previous literature review.² Therefore, we did not update the priors at any point in this analysis as these directions of association are fixed.

Following our first-stage model, we used the following method to age-split our input data that was reported from sources in age groups wider than 1 year. For the given age range, we computed the proportion of cases for each single age year within the age range given overall age incidence. We then split the number of reported cases per study based on those proportions to generate single age year specific case counts.

Using the total number of deaths reported in the study for the entire age range, we then used the following algorithm:

$$X = \frac{D}{\sum_{a=b}^{B} (C_a * R_a)}$$

, where D was the total number of deaths reported for the age range per study, was the total number of C_a is the number of age-split cases per age a, and R_a was the reference proportion which was calculated taking the ratio of predicted age specific CFR from our first stage-model relative to the CFR among 0-year-olds CFR_a/C_0 . Then, we use the following to compute our adjusted CFR (aCFR) and adjusted number of deaths (aD_a) per single age year a to use as input data in our model:

$$aCFR_a = X * R_a$$

 $aD_{a=} aCFR_a * C_a$

We then use our second stage model (similar in specifications) to produce final estimates of age-, year-, and location-specific CFR using our age-split input data.

In model fitting, we use linear point optimization via cyipopt³ described in detail in the technical documentation¹ to the methods used in this paper. Therefore, as MCMC or another sampling algorithm was not used, a burn-in period was not applicable to our analysis. Since we used a numerical optimization technique¹ to fit our model, we do not need to perform replication tests as would be needed to assess stability from a model fit using MCMC. We generated 1000 posterior samples to allow for robust calculations for various uncertainty intervals. We calculated 95% uncertainty intervals (UI) for all estimates.

Section 4. Decomposition analysis for validating changes to model structure, covariates, and input data

To increase the robustness and rigor of measles CFR modeling, we considered various updates to the model structure, covariates, and input data sources relative to the model previously published by Portnoy et al.⁴ With updates to each component (model structure, covariates, and input data), we tracked the overall change in model performance to ensure updates were statistically beneficial in the estimation of measles CFR. Specific steps and validation at each step are described in each subsequent section.

Section 4.1. First stage, updates to model structure

We made the following sequential adaptations to the log-linear model published previously:

- Model 0: Generalized linear model, with log link and cases as weights
- Model 1.A: Generalized linear model, with log(CFR) as outcome and cases as weights
- Model 1.B: Generalized linear model, with logit(CFR) as outcome and cases as weights
- Model 1.C: Bayesian meta-regression, with logit(CFR) as outcome and standard error as weights

The structure of Model 0 is identical to the model previously published⁴, and serves as our baseline. In order to more accurately represent CFR as a ratio bounded between 0 and 1, we first removed the log link from the model and instead log (Model 1.A) then logit (Model 1.B) transformed CFR as our outcome. In order to best capture the underlying uncertainty from the data, we then implemented a Bayesian meta-regression framework using standard errors as weights (Model 1.C). We compared both in- and out-of-sample validation for each model iteration. Model 1.C performed best among both in- and out-of-sample validation exercises across metrics (Supplementary Tables 8-9) yielding generally lower root mean squared error (RMSE), mean error and man absolute error and higher correlation.

Section 4.2. Second stage, updates to covariates

We made the following sequential adaptations to the best model (previously referred to as Model 1.C) from our first decomposition step:

- Model 1: Previously described Model 1.C with original covariates and original data inputs
- Model 2: Previously described Model 1.C with updated covariates and original data inputs

We compared the best model using original covariates and data inputs to a new model fit using the updated covariate set. We compared the performance of these two models to the original model version (Model 0) in Supplementary Tables 10-11. Model 2 performed best across most in- and out-of-sample validation metrics yielding generally lower root mean squared error (RMSE), mean error and mean absolute error and higher correlation.

Section 4.3. Third stage, updates to input data sources

We made the following sequential adaptations to the best model from our second decomposition step updates:

- Model 2: Previously described Model 1.C with updated covariates and original data inputs
- Model 3: Previously described Model 1.C with updated covariates and updated data inputs

There were 40 additional new studies added across 21 additional countries. Because the input data sources were changing, we did not compare validation metrics to previous decomposition steps. Full model validation can be found in Supplementary Tables 12-13.

The mean predicted CFR from 1990 to 2015 in the previously published model was 1.5% (95% confidence interval (CI): 0.5 - 3.1%) in community-based settings and 2.9% (95% CI: 0.9 - 6.0%) in hospital-based settings. Our findings had a mean case-weighted CFR from 1990 to 2015 of 2.2% (95% uncertainty interval (UI): 2.1 - 2.2%) in community-based settings and in 8.4% (95% uncertainty interval (UI): 8.1 - 8.8%) in hospital-based settings.

Section 5. Supplementary Results

Section 5.1. Age-standardized results

Because the age distribution of cases within a country impacts the ability to compare trends across locations, we also computed country-specific age-standardized CFRs using a reference population of the global age pattern of cases from 1990 as well as the general population age distribution from the UN in 1990 (Supplementary Figure 8). Age-standardized estimates of CFR allow users to more directly compare estimates across locations and years.

Section 5.2. Sensitivity analyses

We ran sensitivity analyses to investigate the implications of using all studies regardless of if they provided information on laboratory confirmation of cases or a definition of a death attributable to measles. Generally, studies that reported information on laboratory confirmation of cases were from countries and years with lower measles incidence, higher MCV1 coverage, and lower CFRs relative to studies that did not report information on laboratory confirmation (Supplementary Figures 10-11). In a sensitivity analysis excluding first studies without information on laboratory confirmation of cases, we were estimated systematically lower CFRs than when including all studies in our model (Supplementary Figures 13).

Additionally, studies reporting definitions of deaths attributable to measles were most often from hospital-based settings rather than community-based settings (Chi-squared p-value < 0.0001). When excluding studies without information on a death definition, we also estimated systematically lower CFRs than when including all studies in our model (Supplementary Figures 14).

Section 5. Supplementary Tables

Supplementary Table 1. GATHER compliance checklist.

Item	Checklist item	Reported on page
number		number(s):
	Objectives and funding	
1	Define the indicator(s), populations (including age, sex,	Introduction (page 4, lines
	and geographic entities), and time period(s) for which	175-181)
-	estimates were made.	
2	List the funding sources for the work.	Acknowledgements (page 11,
	Data inputs	line 544-545)
	For all data inputs from multiple sources that are synthesised	l as part of the study:
3	Describe how the data were identified and how the data	Methods (pages 4-5, lines
5	were accessed.	184-192)
4	Specify the inclusion and exclusion criteria. Identify all	Methods (pages 4-5, lines
	ad hoc exclusions.	192-206)
5	Provide information on all included data sources and	Supplementary Table 4 (SI
	their main characteristics. For each data source used,	pages 18-28)
	report reference information or contact name/institution,	
	population represented, data collection method, year(s) of	
	data collection, sex and age range, diagnostic criteria or	
6	measurement method, and sample size, as relevant.	
6	Identify and describe any categories of input data that	Methods (page 7, lines 327-
	have potentially important biases (e.g., based on characteristics listed in item 5).	328); Discussion (page 10, lines 479-496)
Eor	data inputs that contribute to the analysis but were not synthe	,
7	Describe and give sources for any other data inputs.	Methods (page 5, lines 231-
/	Describe and give sources for any other data inputs.	238)
	<i>For all data inputs:</i>	
8	Provide all data inputs in a file format from which data	Data sharing statement (page
-	can be efficiently extracted (e.g., a spreadsheet rather	11, lines 527-533)
	than a PDF), including all relevant meta-data listed in	
	item 5. For any data inputs that cannot be shared because	
	of ethical or legal reasons, such as third-party ownership,	
	provide a contact name or the name of the institution that	
	retains the right to the data.	
	Data analysis	
9	Provide a conceptual overview of the data analysis	Supplementary Figure 1 (SI
10	method. A diagram might be helpful.	page 37)
10	Provide a detailed description of all steps of the analysis,	Methods (pages 4-7, line 217-
	including mathematical formulae. This description	333); Supplementary
	should cover, as relevant, data cleaning, data pre-	Information Section 3 (SI
	processing, data adjustments and weighting of data	pages 7-9, lines 183-263)
11	sources, and mathematical or statistical model(s). Describe how candidate models were evaluated and how	Supplementary Information
11	the final model(s) were selected.	Supplementary Information Section 2 (SI page 4, lines
	the mar model(s) were selected.	162-182)

12	Provide the results of an evaluation of model	Methods (page 7, lines 321-
	performance, if done, as well as the results of any	323)
	relevant sensitivity analysis.	
13	Describe methods for calculating uncertainty of the	Methods (page 7, lines 313-
	estimates. State which sources of uncertainty were, and	315)
	were not, accounted for in the uncertainty analysis.	
14	State how analytic or statistical source used to generate	Data sharing statement (page
	estimates can be accessed.	11, lines 527-533)
	Results and discussion	
15	Provide published estimates in a file format from which	Data sharing statement (page
	data can be efficiently extracted.	11, lines 527-533)
16	Report a quantitative measure of uncertainty of the	Results (page 8, line 368-392)
	estimates (e.g., uncertainty intervals).	
17	Interpret results in light of existing evidence. If updating	Discussion (page 9, lines 431-
	a previous set of estimates, describe the reasons for	456)
	changes in estimates.	
18	Discuss limitations that affect interpretation of the	Discussion (page 10, line 479-
	estimates.	511)

Section and Topic	Item #	Checklist item	Location where item is reported	
TITLE				
Title	1	Identify the report as a systematic review.	Title (line 2)	
ABSTRACT				
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Supplementary Table 3 (SI page 17)	
INTRODUCT	ION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Research in context (page 3, lines 103- 140)	
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Introduction (page 4, lines 175-181)	
METHODS	_			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Methods (page 4-5, lines 192-206)	
Information sources				
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Methods (page 4, lines 185-189)	
process the inclusion criteria of the review, include reviewers screened each record and each retrieved, whether they worked independent applicable, details of automation tools use		Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Methods (page 4-5, lines 191-215)	
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Contributors (page 11, lines 521-522)	
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Methods (page 5, lines 208-215)	
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Methods (page 5, lines 208-215)	

Supplementary Table 2. PRISMA compliance checklist.

Section and Topic	Item #	Checklist item	Location where item is reported
Study risk of bias assessment	11	Methods (page 5, lines 208-215)	
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Methods (page 5, lines 208-215)
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Methods (pages 6-7, lines 285-325)
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Methods (pages 5-7, lines 208-307)
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Methods (page 5, lines 212-215)
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Methods (pages 6-7, lines 285-325)
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Methods (pages 6-7, lines 285-325)
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Methods (page 7, lines 327-334)
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Methods (page 7, lines 327-334)
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Methods (page 7, lines 313-315)
RESULTS	•		
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	N/A
Study characteristics	17	Cite each included study and present its characteristics.	Supplementary Table 4 (SI pages 18-28)

Section and Topic	Item #	Checklist item	Location where item is reported
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Data sharing statement (page 11, lines 528-530)
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Data sharing statement (page 11, lines 528-530)
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Results (pages 7-8, lines 347-366)
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Results (page 8, lines 368-398); Data sharing statement (page 11, lines 531- 533)
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Results (page 8, lines 368-398); Supplementary Information Section 5.2 (SI page 10, lines 325-337)
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Supplementary Information Section 5.2 (SI page 10, lines 325-337)
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Results (pages 7-8, lines 347-366)
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Data sharing statement (page 11, lines 531-533)
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Discussion (page 9, lines 431-456)
	23b	Discuss any limitations of the evidence included in the review.	Discussion (page 10, lines 479-496)
	23c	Discuss any limitations of the review processes used.	Discussion (page 10, lines 498-511)
	23d	Discuss implications of the results for practice, policy, and future research.	Discussion (pages 9- 10, lines 431-456 and 513-516)
OTHER INFORMATION	ON		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state	This review was not registered.

Section and Topic	Item #	Checklist item	Location where item is reported
		that the review was not registered.	
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	No protocol was prepared for this review.
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	No protocol was prepared for this review.
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Acknowledgements (page 11, lines 544- 545)
Competing interests	26	Declare any competing interests of review authors.	Declaration of interest (page 11, lines 535-541)
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Data sharing statement (page 11, lines 527-533)

Section and Topic	Item #	Checklist item	Reported (Yes/No)	
TITLE				
Title	1	Identify the report as a systematic review.	Title (line 2)	
BACKGROU	ND			
Objectives	2	Provide an explicit statement of the main objective(s) or question(s) the review addresses.	Background subsection (lines 24-29)	
METHODS				
Eligibility criteria	3	Specify the inclusion and exclusion criteria for the review.	Methods subsection lines (31-33)	
Information sources	4	Specify the information sources (e.g. databases, registers) used to identify studies and the date when each was last searched.	Methods subsection lines (31-33)	
Risk of bias	5	Specify the methods used to assess risk of bias in the included studies.	Methods subsection (lines 31-33)	
Synthesis of results			Methods subsection (lines 33-34)	
RESULTS	-			
Included studies	7	Give the total number of included studies and participants and summarise relevant characteristics of studies.	Results subsection (line 36)	
Synthesis of results			Results subsection (lines 37-42)	
DISCUSSION	J			
Limitations of evidence	9	Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, inconsistency and imprecision).	Interpretation (line 44)	
Interpretation	10	Provide a general interpretation of the results and important implications.	Interpretation (lines 45- 46)	
OTHER				
Funding	11	Specify the primary source of funding for the review.	Funding subsection, lines 48-49	
Registration	12	Provide the register name and registration number.	This review was not registered.	

Supplementary Table 3. PRISMA abstract compliance checklist.

Supplementary Table 4. Input data sources for final model.

Citation	ISO3	Midpoint Year	Community indicator	Minimum age (years)	Maximum age (years)
Arya LS, Azamy S, Ghani AR, Singh M. Outcome of measles in Afghanistan. Indian pediatrics. 1981 Feb;18(2):112-6.	AFG	1978	0	0.4167	12
Arya LS, Taana I, Tahiri C, Saidali A, Singh M. Spectrum of complications of measles in Afghanistan: a study of 784 cases. The Journal of tropical medicine and hygiene. 1987 Jun 1;90(3):117-22.	AFG	1981	0	0.3333	12
Choudhry VP, Atmar M, Amin I, Aram GN, Ghani R. Effect of protein energy malnutrition on the immediate outcome of measles. The Indian Journal of Pediatrics. 1987 Sep;54(5):717-22.	AFG	1984	0	0	17
Wakeham PF. Severe measles in Afghanistan. Journal of Tropical Pediatrics and Environmental Child Health. 1978;24(2):87-8.	AFG	1971	1	0	99
Chen RT, Weierbach R, Bisoffi Z, Cutts F, Rhodes P, Ramaroson S, Ntembagara C, Bizimana F. A 'post-honeymoon period' measles outbreak in Muyinga sector, Burundi. International journal of epidemiology. 1994 Feb 1;23(1):185-93.	BDI	1988	1	0	5
Kambiré C, Konde MK, Yaméogo A, Tiendrébéogo SR, Ouédraogo RT, Otten Jr MW, Cairns KL, Zuber PL. Measles incidence before and after mass vaccination campaigns in Burkina Faso. Journal of Infectious Diseases. 2003 May 15;187(Supplement 1):S80-5.	BFA	2000	1	0	99
Kidd S, Ouedraogo B, Kambire C, Kambou JL, McLean H, Kutty PK, Ndiaye S, Fall A, Alleman M, Wannemuehler K, Masresha B. Measles outbreak in Burkina Faso, 2009: a case–control study to determine risk factors and estimate vaccine effectiveness. Vaccine. 2012 Jul 13;30(33):5000-8.	BFA	2009	1	0	99
Sahuguède P, Roisin A, Sanou I, Nacro B, Tall F. Epidémie de rougeole au Burkina Faso: 714 cas hospitalisés à l'hôpital de Bobo-Dioulasso: étude des facteurs de risque. InAnnales de pédiatrie (Paris) 1989 (Vol. 36, No. 4, pp. 244-251).	BFA	1986	0	0	18
World Health Organization. Measles mortality reduction in West Africa, 1996-2002. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire. 2003;78(45):390-2.	BFA	2002	1	0	99
Bhuiya A, Wojtyniak B, D'Souza S, Nahar L, Shaikh K. Measles case fatality among the under-fives: a multivariate analysis of risk factors in a rural area of Bangladesh. Social science & medicine. 1987 Jan 1:24(5):439-43.	BGD	1980	1	0	4
Francisco AD, Fauveau V, Sarder AM, Chowdhury HR, Chakraborty J, Yunus MD. Measles in rural Bangladesh: issues of validation and age distribution. International journal of epidemiology. 1994 Apr 1;23(2):393-9.	BGD	1989	1	0	5
Fauveau V, Chakraborty J, Sarder AM, Khan MA, Koenig MA. Measles among under-9-month-olds in rural Bangladesh: its significance for age at immunization. Bulletin of the World Health organization. 1991;69(1):67.	BGD	1980	1	0.5	99
Koster FT, Curlin GC, Aziz KM, Haque A. Synergistic impact of measles and diarrhoea on nutrition and mortality in Bangladesh. Bulletin of the World Health Organization. 1981;59(6):901.	BGD	1975	1	0	10
Shahid NS, Clauquin P, Shaikh K, Zimicki S. Long-term complication of measles in rural Bangladesh. The Journal of Tropical Medicine and Hygiene. 1983 Apr 1;86(2):77-80.	BGD	1980	1	0	1
World Health Organization. Expanded Programme on Immunization: Public health importance of measles. Weekly Epidemiological Record. 1986;61(12):89-90.	BGD	1984	1	0	99
Tricou V, Pagonendji M, Manengu C, Mutombo J, Mabo RO, Gouandjika-Vasilache I. Measles outbreak in Northern Central African Republic 3 years after the last national immunization campaign. BMC Infectious Diseases. 2013 Dec;13(1):1-6.	CAF	2011	1	0	99
Aiqiang X, Zijian F, Wenbo X, Lixia W, Wanshen G, Qing X, Haijun S, Lee LA, Xiaofeng L. Active Case-Based Surveillance for Measles in China: Lessons Learned from Shandong and Henan Provinces. Journal of Infectious Diseases. 2003 May 15;187(Supplement 1):S258-63.	CHN	2001	1	0	53
Ji Y, Zhang Y, Xu S, Zhu Z, Zuo S, Jiang X, Lu P, Wang C, Liang Y, Zheng H, Liu Y. Measles resurgence associated with continued circulation of genotype H1 viruses in China, 2005. Virology Journal. 2009 Dec;6(1):1-8.	CHN	2005	1	0	99
	CHN	2013	1	0	99

H. Wang H. Goodson JL. Progress Toward Maselss Elimination—China, Universe 2019. China CDC. Weekly. 2019 Dec;12(2:1. CITN 2015 1 0 99 January 2013. Jane 2019. China CDC. Weekly. 2019 Dec;12(2:1. CITN 2018 1 0 99 World Health Organization. Expanded Programme on Immunization: Tombé de orogeoide 1990; 65(49), 379-81. CITN 2018 1 0 99 World Health Organization. Expanded Programme on Immunization: Tox X. Wing S. Cool 909: Stanghan, China. China's CITN 2002 0 0 18 Pediatris. 2011 Oct;50(109):62-2: Trax. Xing S. Cool 90: Stanghan, China. China's CITN 2004 1 0 35 Padiatris infections discassio promal. 2007 Inn 1;2(6)(513-8. CITN 2004 1 0 35 Padiatris infection and proble Health. 2017 Sep 1:10(5):624-9. Nim T. Ayring B. Chinal Pediatrics. 1988 COD 1 0 99 Cruzy Constance and Park Chinal Pediatrics. 1988 COD 1 0 99 Cruzy Constance and Park Chinal Pediatrics. 1988 COD 1 0 99 Cruzy Constance anding M. Torten K. Kick factors for meastes: anomabally la	Ma C, Rodewald L, Hao L, Su Q, Zhang Y, Wen N, Fan C, Yang H, Luo	CHN	2014	1	0	99
CHN 2017 1 0 99 CHN 2018 1 0 99 CHN 2018 1 0 99 Meades outhrack= PROKRAMME FLARGI DE VACCINATION: Fambée de rougeoid-1990 (549) 379-81. CHN 1988 1 0 99 Ye Y, Wang X, Yu H, Tbe clinical epidemiology of podiarie relations with meases from 2000 to 2009 in Shanghai, China (Linical Pediatric): 2017 using and the clinical clinical clinical the clinical c						
CHN 2018 1 0 99 World Health Organization: Expanded Programme on Immunization: Mealse outbreak IE: LARGI DE VACCINATION: CHN 1988 1 0 99 Mealse outbreak IE: LARGI DE VACCINATION: CHN 2002 0 0 18 Patheness outbreak IE: LARGI DE VACCINATION: CHN 2007 0 0 18 Patheness outbreak II: Christian II: Chr	January 2013-June 2019. China CDC weekly. 2019 Dec;1(2):21.					
CHN 2019 1 0 99 Weaks outbreak – PROGRAMME ELARGI DE VACCINATION: CHN 1988 1 0 99 Weaks outbreak – PROGRAMME ELARGI DE VACCINATION: CHN 1988 1 0 99 Veaks outbreak – PROGRAMME ELARGI DE VACCINATION: CHN 2002 0 0 18 Viet Vuag W, Vang X, Yu H. The clinical epidemiology of pediatric CHN 2002 0 0 18 Viet X, Wang S, Can J, Gou A, Liu Q, Jin X, Ghildyal R. Analysis of the CHN 2004 1 0 35 Pediatric infectional disease jurnal. 2007 Jun 1260(513-8. CHN 2004 1 0 99 Standerstrict On seasies from 2000 to 10 2014: Bestalts of a measies catch-paration campaign in xianyang, china. Journal of Infection and Public Health. 2017 Sep 1:10(5):624-9. CHN 2015 1 0 99 Stansates in Zaire 1987. Clinical pediatrics. 1988 COD 1986 0 0 15 May 27(5):2144. Neales in Themore of Generatize and targing in ansaugul agree and seasies profile in eastern Demonstric Republic of Congo: an outbreak accerption from 2000 2010 1 0<						
World Health Organization: Expanded Programme on Immunization: Waskso outbreak: PLAGRID EVACCINATION: CHN 1988 1 0 99 Iambée de rougeole. 1990; (56(49): 379-81. CHN 2002 0 0 18 Statients: with measles from 2000 to 2009 in Shanghai. China. Clinical evaluation: 2010; (56(49): 272. CHN 2007 0 0 18 Var, Wang S, Guan J, Gou A, Liu Q, Jin X, Ghildyal R. Analysis of the evaluation inflections disease journal. 2007 Unit 126(6):513-8. CHN 2004 1 0 35 yaccination camping in in xiaryna, china. Journal of Inflection and Vabiti Health. 2017 Sep 1:10(5):624-9. CHN 2009 1 0 99 yaccination camping in in xiaryna, china. Journal of Inflection and Vabiti Health. 2017 Sep 1:10(5):624-9. CMR 2015 1 0 99 schear M, Kanalse In Zmerron: a retrospective analysis of for measles cause in the Benakum Health District. The Pan African Medical formality and the mortanic of decentralized case management during in unusually large measles expleting in castern 2002 (CHN 2012 1 0 99 Signoux E, Poolosky J, Ciglenceki I, Bichet M, Coldring M, Thaambe waryo E, Akonda I, Serafini M, Porten K, Risk factors for measles formality and the importance of decentralized case management during in unusually large measles epi						
deasts outbreatPROGRAMME FLARGIDE VACCINATION: Tambéd e rouged: 1990 65(49): 379-81.ChiChiConfe Y, Wang X, Yu H. The clinical epidemiology of pediatric incritens with messifes from 2000 to 2009 in shanghai, China Clinical tediatrics. 2011 Oct:50(10):1916-22.O018Weiters With messifes molecules in Xinjiang, China in 2004. The Fediatric infectional disease journal. 2007 Jun 12(6):1518.CHN20041035Zhang RD, Li HB, Li FY, Han LX, Xiong YM, Epidemiological homacteristics of messifes from 2000 to 2014 Restelland proteines in measles from 2000 to 2014 Restelland proteines in the measles from 2000 to 2014 Restelland proteines in the measles from 2000 to 2014 Restelland proteines in carent penetric analysis of 223 measles cases in the Benakuma Health District. The Pan African Medical ournal. 2016:23.CMR20151099sizeher PR, Mandes in Zaire: 1987. Clinical pediatrics. 1988 mortality and the importance of decentralized case management during numsuuly large measles epidemic in castern Democratic Republic of congo: a 2018. Mar 1413(2)Arc10194276.COD20101030congo, 2010-2011. BMC infection discusse 2013 Doc:13(1):1-8. Congo: a 2019. Clinic R- datasit is for Manales epidemic in Castern Democratic Republic of congo: a 2019. Clinic R- datasits in Democratic Republic of congo: a 2010-2011. 1099congo, 2010-2011. BMC infection discusse: 2013 Doc:13(1):1-8. Congo: a 2010-2011. 1099congo, 2010-2011. BMC infection discusse: 2013 Doc:13(1):1-8. Congo: 2010-2011. 1099congo: 2010-2011. BMC infection discusse: 2013 Doc:13(1):1-8. Congo: 2010-2011. 1 <td></td> <td>CHN</td> <td></td> <td>1</td> <td>0</td> <td></td>		CHN		1	0	
Cey, Wang X, Yu H, The clinical epidemiology of pediaric statems with meassis from 2000 to 2009 in Shanghai, China, Clinical delatires. 2011 Oct;50(10):916-22. O 0 18 Va, Wang X, Caun J, Guo A, Lio Q, Jin X, Childyal R. Analysis of the atase of increased measles incidence in Xinjiang, China in 2004. The elatire infectious disease journal. 2007 Jun 1;26(0):913-8. CHN 2004 1 0 35 Thang RO, Li HB, Li FY, Han LX, Xiong YM. Epidemiological haracteristics of measles from 2000 to 2014: Results of a measles catch- py vaccination campaign in xianyang, china. Journal of Infection and value Health. 2017 Sep 1:10(5):624-9. CHN 2009 1 0 99 siman. 2016;23. CMR 2015 1 0 99 aneadse in Zaire: 1987. Clinical pediatrics. 1988 COD 1986 0 0 15 aiyoyo: L, Konda L, Sardmi M, Marthe KJ, Kichors for measles mortality and the importance of docentralized case management during an unsually large measles epidemic in zestern Democratic Republic of rongo in 2013. PtoS one. 2018 Mar 14;13(3):e0194276. COD 2010 1 0 99 control L, Menet T, Hurtado N, Engense K, Charlens R, Enders ID, N-Sanga Z, 2019. 2011. Bit Marcet A, Sanga M, Hurtado M, Engense R, 2013 Deci J, 12(1): 1-8. COD 2010 1 0 99 vapper Escheend Deciderie in Democn	Measles outbreak = PROGRAMME ÉLARGI DE VACCINATION:	CHN	1988	1	0	99
atients with messles from 2000 to 2009 in Shanghai, China. Clinical (editaries, 2011 Oct;50(10))51C-22.CHN20070018'a X, Wang S, Guan J, Gou A, Liu Q, Jin X, Ghildyal R, Analysis of the tause of increased messles incidence in Xinjian, China in 2004. This in 2004. This hancelensis in of messles incompany, china. Journal of Infection and ubits Health. 2017 Sep 1:10(5):6724-9.CHN20091035y accination camping in sizury, china. Journal of Infection and ubits Health. 2017 Sep 1:10(5):6724-9.CHN20091099y accination camping in sizury, china. Journal of Infection and ubits Health. 2017 Sep 1:10(5):6724-9.CHN20151099y accination camping in sizury, china. Journal of Infection and ubits Health. 2017 Sep 1:10(5):6724-9.CMRCMR20151099y accination camping in sizury, china. Journal of Infection and ubits Health. 2017 Sep 1:10(5):6724-9.CMRCMR20151099y accination camping in sizury, china. Journal of Infection M, trage 12, 2016 Sizury, china. Journal of Infection M, trage 23, 2016 Sizury, china. Journal of Infection M, trage 24, 2015 Sizury, china. Journal of Infection M, trage 24, 2015 Sizury, china. Journal of Infection M, trage 24, 2015 Sizury, china. Journal of Infection M, trage 24, 2016 Sizury, china. Journal of Infection M,		CHN	2002	0	0	18
rediations: 2011 Oct:50(10):916-22. rediation: infectional , Gou A, Lio Q, Jin X, Ghildyal R, Analysis of the ause of increased measles incidence in Xinjiang, China in 2004. The ediatric infections disease journal. 2007 Jun 1:8(6):913-8. 2004 1 0 35 Jinng RO, Li HB, Li FY, Han LX, Xiong YM. Epidemiological haracteristics of measles from 2000 to 2014: Results of a measles eatch-transels outbreak in Cameroon: a retrospective analysis of 223 CHN 2009 1 0 99 prescination campaign in xianyang, china. Journal of Infection and unbite Health. 2017 Sec. Annibel LN. Aunij EF: Trend in mortality from a scenet measles outbreak in Cameroon: a retrospective analysis of 223 CMR 2015 1 0 99 scher PR. Measles in Zaire: 1987. Clinical pediatrics. 1988 COD 1986 0 0 15 aya;27(5):224-5. Jingoux E, Polonsky J, Ciglenceki I, Bichet M, Coldiron M, Thuambe wiyo E, Akonda I, Sentfini M, Porten K, Risk factors for measles outbreak in the J(13)(2)(9)(4)(276. COD 2010 1 0 30 arcar; G, do Die Nob so, 2018 MH (14)(3)(3)(2)(19)(4)(276. COD 2010 1 0 5 arcar; G, do Die Allong N, Soloci an 14 Mild (14)(3)(2)(4)(4)(276. COD 2010 1 0 5 arcar; G, do Die Allong N, Soloci an 14 Mild (13)(3)(2)(19) 20 COD 2010 1 </td <td></td> <td>CHN</td> <td>2007</td> <td></td> <td></td> <td></td>		CHN	2007			
name of increased measles incidence in Xinjiang, China in 2004. The editaric infectious disease journal. 2007 Jun 1246(5):513-8. Image OL Li HB, Li FY, Han LX. Xiong YM. Epidemiological haracteristics of measles catcher measles on the measles for a topolo 12014. Results of a measles catcher the measles on the measles catcher the measles catcher the Measles in Zaire: 1987. Clinical pediatrics. 1988 CMR 2015 1 0 99 scent measles outbreak in Cameroon: a retrospective analysis of 223 randor 201623. CMR 2015 1 0 99 scent measles outbreak in Zaire: 1987. Clinical pediatrics. 1988 COD 1986 0 0 15 fagu21(5):234-5. Bicher JM. Measles in Zaire: 1987. Clinical pediatrics. 1988 COD 2012 1 0 99 ortality and the importance of decentralized case management during nurusually large measles epidemic in eastern Democratic Republic of fongo: an outbreak description from a fanga, 2010–2011. BMC infections diseases. 2013 Bec; 13(1):1-8. COD 2010 1 0 5 asongo Project Team. Influence of measles vaccination on survival atter of 7-35-month-old children in Kasongo, Zaire. The Lancet. 1981 COD 2011 0 99 origo and 2013. Planter and health. 2014 Dec;8(1):1-8. COD 2011 0 99				-		-
hamoentistics of measles from 2000 to 2014 Results of a measles catch- protectination companying in Xingyang, china Journal of Infection and ubite Health. 2017 Sep 1:10(5):624-9. Sectim Reasles outbreak in Cameronia: Partospective analysis of 223 neasles cases in the Benakuma Health District. The Pan African Medical Journal. 2016:23. Sischer PR, Measles in Zaire: 1987. Clinical pediatrics. 1988 May;27(5):234-5. Sigener RF, Measles in Zaire: 1987. Clinical pediatrics. 1988 May;27(5):244-5. Sigener RF, Polonsky J, Ciglenecki I, Bichet M, Coldiron M, Thuambe wiyo E, Akonda I, Scartlini M, Porter K, Risk Refors for measles sortality and the importance of decentralized case management during nunusually largene measles epidemic in easterno Democratic Republic of Orong 1013. PloS one. 2018 Mar 14;13(3):e0194276. Marci S, Coldron ME, Ronse A, Lunguero FJ, Grais RF. Aasongo Project Team. Influence of measles vaccination on survival attern 67:73-57-001-dol children in Kasongo. 221:31(1):1-8. Sasongo Project Team. Influence of measles vaccination on survival attern 67:73-57-01. Marci S, Coldron ME, Ronses A, Ilunga BK, Porten K, Grais RF. COD 2010 1 0 999 COD 2011 0 0 999 COD 2011 1 0 999 COD 20	ause of increased measles incidence in Xinjiang, China in 2004. The	CHN	2004	1	0	35
haracteristics of measles from 2000 to 2014: Results of a measles catch- y accination campaign in xiayang, china. Journal of Infection and ubite Heath. 2017 Sep 1:10(5):624-9. GMR 2015 1 0 0 0 15 acont measles outbreak in Cameroon: a retrospective analysis of 223 neasles cases in the Benakuma Health District. The Pan African Medical Distribution of the Benakuma Health District. The Pan African Medical Distribution of the Benakuma Health District. The Pan African Medical Distribution of the Benakuma Health District. The Pan African Medical Distribution of the Benakuma Health District. The Pan African Medical Distribution of the Benakuma Health District. The Pan African Medical Distribution of the Benakuma Health District. The Pan African Medical Distribution of the Benakuma Health District. The Pan African Medical Distribution of the Distribution of Distribution o	1 7 7 7	CHN	2009	1	0	99
p vaccination campaign in xianyang, china Journal of Infection and ubic Health. 2017 Sep 1:10(5):624-9. Sigm T, Agyingi K, Amide LN, Atunji FF. Trend in mortality from a cecart messles outbreak in Cameroom: a retrospective analysis of 223 easily cancel the Benakuma Health District. The Pan African Medical ournal. 2016;23. Sicher PR. Measles in Zaire: 1987. Clinical pediatrics. 1988 COD 1986 0 0 0 15 fay;27(5):234-5. Concel the Benakuma Health District. The Pan African Medical ournal. 2016;23. Sicher PR. Measles in Zaire: 1987. Clinical pediatrics. 1988 COD 2012 1 0 0 99 origon 1021. Pholosky J, Ciglenecki I, Bichet M, Coldiron M, Thuambe wiyo E, Akonda I, Senfini M, Porten K, Risk factors for measles on origon 1021. Phosone. 2018 Mar 14:13(3):00194276. Front L, Minetti A, Hurtado N, François G, Fermon F, Chatelain A, farezi G, de Dieu Ilunga Ngoie J, N'Goran A, Luquero FJ, Grais RF. Forsy J, Ciglenecki L, Bichet M, Coldiron ME, Grais RF. Seorifour on a Image measles epidemic in Democratic Republic of congo. 2010-2011. BMC infectious diseases. 2013 Dec;13(1):1-8. Tamerin S, Coldiron ME, Ronsse A, Ilunga BK, Porten K, Grais RF. Seorifour on a Image measles epidemic in Democratic Republic of corolo. 2010 1 0 99 OCD 2011 0 0 999 COD 2011 0 0 999 COD 2013 1 0 999 COD 2014 1 0 999 COD 2013 1 0 999 COD 2013 1 0 999 COD 2013 1 0 999 COD 2013 1 0 999 COD 2014 1 0 999 COD 2013 1 0 999 COD 2015 1 0 0 999 COD 2016 1 0 0 999 COD 2016 1 0 0 999 COD 2017 1 0 0 999 COD 2018 1 0 0 999 COD 2018 1 0 0 999 COD 2019 1 0 0 999 COD 2010 1 0 0 999 COD 2010 1 0 0 999 COD 2011 1 0 0 999 COD 2013 1 0						
uhite Health. 2017 Sep. 1:10(5):624-9.						
jim T. Agyingi K. Aminde LN. Atunji EF. Trend in mortality from a cent measles outbreak in Cameron: a retrospective analysis of 223 measles cases in the Benakuma Health District. The Pan African Medical ourmal. 2016;23.CMR20151099neasles cases in the Benakuma Health District. The Pan African Medical ourmal. 2016;23.COD19860015fay:27(5):234-5.Clinical pediatrics. 1988 (5):234-5.COD19860015fay:27(5):234-5.Corrout L, Minett M, Porten K, Risk factors for measles orangin 12013. PloS one. 2018 Mar 14;13(3):e0194276.COD20101030farezi G, de Dieu Ilunga Ngoie J, N'Goran A, Luquero FJ, Grais RF. Beasles in Democratic Republic of Congo: an outbreak description from datang. 2010–2011. BMC infectious diseases. 2013 Dec;13(1):1-8.COD20101099congo, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20101099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099core, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111COD20111099COD20111099COD20111099COD201110 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
ischer PR. Measles in Zaire: 1987. Clinical pediatrics. 1988COD19860015fay:27(5):234-5. (signoux E, Polonsky J, Ciglenecki I, Bichet M, Coldiron M, Thuambe wiyo E, Akonda I, Serafini M, Porten K. Risk factors for measles nortality and the importance of decentralized case management during n unusually large measles epidemic in eastern Democratic Republic of Congo in 2013. PloS one. 2018 Mar 14;13(3):e0194276. Forout L, Minetti A, Hurtado N, François G, Fermor P, Chatelain A, farezi G, de Dieu Ilunga Ngoiz J, N'Goran A, Luquero FJ, Grais RF. Casongo Project Team. Influence of measles vaccination on survival attern of 7-35-month-old children in Kasongo, Zaire. The Lancet. 1981 Macris C, Coldron ME, Ronsse A, Ilunga BK, Porten K, Grais RF. Description of a large measles epidemic in Democratic Republic of COD 20101099COD COD 2010-2013. Conflict and health. 2014 Dec;8(1):1-8.COD COD 20111099COD COD 20121099COD COD 20131099COD COD 20131099COD COD 20131099COD COD 20131099COD COD 20131099COD COD 20111099COD COD 20111099COD COD 20131099COD COD 20131099COD COD 20141099COD COD 20151099COD COD 20161099COD COD 20171099V'Go	Jjim T, Agyingi K, Aminde LN, Atunji EF. Trend in mortality from a ecent measles outbreak in Cameroon: a retrospective analysis of 223 neasles cases in the Benakuma Health District. The Pan African Medical	CMR	2015	1	0	99
Aay:27(5):234-5. Image: Constraint of the second secon		COD	1097	0	0	15
ignoux E, Polonsky J, Ciglenecki I, Bichet M, Coldiron M, Thuambe wiyo E, Akonda I, Serafini M, Porten K. Risk factors for measles nortality and the importance of decentralized case management during norgo in 2013. PloS one. 2018 Mar 144;13(3):e0194276.COD cold20121099orgo in 2013. PloS one. 2018 Mar 144;13(3):e0194276.COD20101030farezi G, de Dieu Ilunga Ngoie J, N'Goran A, Luquero FJ, Grais RF. teasles in Democratic Republic of Congo: an outbreak description from catanga, 2010–2011. BMC infectious diseases. 2013 Dec;13(1):1-8.COD19761030acsongo Project Team. Influence of measles vaccination on survival attem of 7-35-month-old children in Kasongo, Zaire. The Lancet. 1981COD101099cong, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20101099cong, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111099cong, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111099cong, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111099COD2011109920111099cong, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111099COD2011109920111099add mealse mortaline, in two districts of Katanga trovince, Democratic Republic of Congo. BMC Research Notes. 201320111099Par American Health Org		COD	1986	0	0	15
wiyo E, Akonda I, Serafini M, Porten K. Risk factors for measles nortality and the importance of decentralized case management during n unusually large measles epidemic in eastern Democratic Republic of Congo in 2013. PloS one. 2018 Mar 14;13(3):e0194276. Torout L, Minett A, Hurato N, François E, Fermon F, Chatelain A, farzzi G, de Dieu Ilunga Ngoie J, N'Goran A, Luquero FJ, Grais RF. feasles in Democratic Republic of Congo: an outbreak description from catanga, 2010–2011. BMC infectious diseases. 2013 Dec; 13(1):1-8.COD COD20101030Composition Congo: an outbreak description from catanga, 2010–2011. BMC infectious diseases. 2013 Dec; 13(1):1-8.COD COD10099Composition Congo: an outbreak description from catanga, 2010–2013. Conflict and health. 2014 Dec; 8(1):1-8.COD COD20101099Congo, 2010–2013. Conflict and health. 2014 Dec; 8(1):1-8.COD COD20111099ViGoran AA, Ilunga N, Coldiron ME, Grais RF, Porten K. Community- oased measles mortality surveillance in two districts of Katanga trovince, Democratic Republic of Congo. BMC Research Notes. 2013COD COD20111099ViGoran AA, Ilunga N, Coldiron ME, Grais RF, Porten K. Community- rose (f1):1-3.COL 20112011014Pan American Health Organization / World Health Organization. pidemiological tudy. The Journal of the gyptian public Health Association. 1997 Jan 1;72(5):527-48.COL 2018201810992013. Diate Health Association. 1997 Jan 1;72(5):527-48.ETH 2019201110252019. Colling. The pan African Medical Journal. 		COD	2012	1	0	00
Harczi G, de Dieu Ilunga Ngoie J, N'Goran A, Luquero FJ, Grais RF. Measles in Democratic Republic of Congo: an outbreak description from Katanga, 2010–2011. BMC Infectious diseases. 2013 Dec;13(1):1-8.COD1976105Kasongo Project Team. Influence of measles vaccination on survival pattern of 7-35-month-old children in Kasongo, Zaire. The Lancet. 1981 Apt 4;317(8223):764-7.COD1009999Description of a large measles epidemic in Democratic Republic of Congo, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111099O'GOT AA, Ilunga N, Coldiron ME, Grais RF, Porten K, Crais RF. protec, Democratic Republic of Congo. BMC Research Notes. 2013 Dec;6(1):1-3.COD20111099Pan American Health Organization / World Health Organization. Epidemiological Update: Measles. 18 January 2019, Washington, D.C.: PAHOWHO; 2019COL20181099El Shazly MK, Atta HY, Kishk NA. Poliomyelitis, measles and neonatal etanynic Health Nersha AM, Bayenessagne MG, Hussein I, Bezabeth B. Measles outbreak investigation in Guij zone of Oromia Region, Ethiopia. The Pan African Medical Journal. 2027;7:(Sypt) 2).COL20181099Sutti MA, Bekele A, Seid Y, Woyessa AB. Epidemiology of measles in Dromia region, Ethiopia, 2007-2016. The Pan African Medical Journal. 2020 May 14;36(1).ETH20111099Sutti MA, Bekele A, Seid Y, Woyessa AB. Epidemiology of measles in Dromia region, Ethiopia, 2007-2016. The Pan African Medical Journal. 2020 May 2019. Pan African Medical Journal. 2020 May 14;36(1).ETH20181025Gunal of trop	Lwiyo E, Akonda I, Serafini M, Porten K. Risk factors for measles nortality and the importance of decentralized case management during an unusually large measles epidemic in eastern Democratic Republic of	COD	2012	1	0	99
feasles in Democratic Republic of Congo: an outbreak description from tatanga, 2010–2011. BMC infectious diseases. 2013 Dec;13(1):1-8. assongo Project Team. Influence of measles vaccination on survival attern of 7-35-month-old children in Kasongo, Zaire. The Lancet. 1981 pr 4;317(8223):764-7. Iancini S, Coldiron ME, Ronsse A, Ilunga BK, Porten K, Grais RF. Description of a large measles epidemic in Democratic Republic of COD 2010COD 20101099Cord 20100090090099099Cord 2010009109990099099Cord 201210990099990999090Cord 20131099009990 </td <td>Frout L, Minetti A, Hurtado N, François G, Fermon F, Chatelain A,</td> <td>COD</td> <td>2010</td> <td>1</td> <td>0</td> <td>30</td>	Frout L, Minetti A, Hurtado N, François G, Fermon F, Chatelain A,	COD	2010	1	0	30
attern of 7-35-month-old children in Kasongo, Zaire. The Lancet. 1981Colancini S, Coldiron ME, Ronsse A, Ilunga BK, Porten K, Grais RF. Description of a large measles epidemic in Democratic Republic of Congo, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20101099COD201110990020121099COD201110990020121099COD201110990020111099COD201110990020111099COD201110990020111099COD201110990020111099COD2011109900014rovince, Democratic Republic of Congo. BMC Research Notes. 20130014pidemiological Update: Measles. 18 January 2019, Washington, D.C.:0000021 Shazly MK, Atta HY, Kishk NA. Poliomyelitis, measles and neonatal etapath Public Health Association. 1997 Jan 1;72(5:05:27:48.EGY19940000Bezabeh B. Measles outbreak investigation in Guji zone of Oromia tegion, Ethiopia, 2007-2016. The Pan African Medical Journal. 200;37.ETH201510.2530Jutu MA, Bekela A, Seid Y, Woyessa AB, Epidemiology of measles outbreak thropia, May 2019. Pan African Medical Journal. 2020 May 14;36(1).ETH20181	Iarczi G, de Dieu Ilunga Ngoie J, N'Goran A, Luquero FJ, Grais RF. Jeasles in Democratic Republic of Congo: an outbreak description from					
Description of a large measles epidemic in Democratic Republic of Congo, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111099COD20121099COD20131099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD201911099COD201911099COD20191014099COD20192018100020141010992015102530992016The Pan African Medical Journal.2017	attern of 7-35-month-old children in Kasongo, Zaire. The Lancet. 1981	COD	1976	1	0	5
Description of a large measles epidemic in Democratic Republic of Congo, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20111099COD20121099COD20131099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD201911099COD201911099COD20191014099COD20192018100020141010992015102530992016The Pan African Medical Journal.2017	Iancini S, Coldiron ME, Ronsse A, Ilunga BK, Porten K, Grais RF.	COD	2010	1	0	99
Congo, 2010–2013. Conflict and health. 2014 Dec;8(1):1-8.COD20121099COD20131099COD20131099COD20111099COD20111099COD20111099COD20111099COD20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod20111099Cod201911099Cod201911099Cod201911099Cod201911099Cod201911099Cod201911099Cod20191101Cod201911101Cod201911101Cod201911<	Description of a large measles epidemic in Democratic Republic of	COD	2011	1	0	99
COD20131099'Goran AA, Ilunga N, Coldiron ME, Grais RF, Porten K. Community- ased measles mortality surveillance in two districts of Katanga rovince, Democratic Republic of Congo. BMC Research Notes. 2013COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111099COD20111014ec;6(1):1-3.COD20111014Pan American Health Organization / World Health Organization. pidemiological Update: Measles. 18 January 2019, Washington, D.C.: AHO/WHO; 2019COD20181099I Shazly MK, Atta HY, Kishk NA. Poliomyelitis, measles and neonatal tanus: a hospital based epidemiological study. The Journal of the gyptian Public Health Association. 1997 Jan 1;72(5-6):527-48.EGY19940060elda K, Tegegne AA, Mersha AM, Bayenessagne MG, Hussein I, ezabeh B. Measles outbreak investigation in Guji zone of Oromia egion, Ethiopia. The Pan African Medical Journal. 2017;27(Suppl 2).ETH201510.2530utu MA, Bekele A, Seid Y, Woyessa AB. Epidemiology of measles in tromia region, Ethiopia, 2007-2016. The Pan African Medical Journal. 200;37.ETH20181099alil FS, Gemeda DH, Bedaso MH, Wario SK. Measles outbreak thiopia, May 2019. Pan African Medical Journal. 2020 May 14;36(1).ETH20				1	0	99
COD20111099ased measles mortality surveillance in two districts of Katanga rovince, Democratic Republic of Congo. BMC Research Notes. 2013 bec;6(1):1-3.COD20111014an American Health Organization / World Health Organization. pidemiological Update: Measles. 18 January 2019, Washington, D.C.: AHO/WHO; 2019COL201810991 Shazly MK, Atta HY, Kishk NA. Poliomyelitis, measles and neonatal gyptian Public Health Association. 1997 Jan 1;72(5-6):527-48.EGY19940060tanus: a hospital based epidemiological study. The Journal of the gyptian Public Health Association. 1997 Jan 1;72(5-6):527-48.ETH201510.2530telda K, Tegegne AA, Mersha AM, Bayenessagne MG, Hussein I, ergion, Ethiopia. The Pan African Medical Journal. 2017;27(Suppl 2).ETH20111099000003;37.Semeda DH, Bedaso MH, Wario SK. Measles outbreak thoipia, May 2019. Pan African Medical Journal. 2020 May 14;36(1).ETH20181099indigram B. Severe measles in the Gardulla area of southwest Ethiopia. Torpia pediatrics. 1986;32(5):234-9.ETH19810025titku K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, figzaw A. Progress in measles mortality reduction in Ethiopia, 2002- 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl 1):S232-ETH200610.083365009. The Journal of infectious diseases. 2011 Jul 1;204(suppl 1):S232-ETH200610.083365						
ased measles mortality surveillance in two districts of Katanga rovince, Democratic Republic of Congo. BMC Research Notes. 2013 Dec;6(1):1-3.COD20111014Pan American Health Organization / World Health Organization. pidemiological Update: Measles. 18 January 2019, Washington, D.C.: AHO/WHO; 2019COL2018109921 Shazly MK, Atta HY, Kishk NA. Poliomyelitis, measles and neonatal etanus: a hospital based epidemiological study. The Journal of the gyptian Public Health Association. 1997 Jan 1;72(5-6):527-48.EGY199400608edda K, Tegegne AA, Mersha AM, Bayenessagne MG, Hussein I, bezabeh B. Measles outbreak investigation in Guji zone of Oromia legion, Ethiopia. The Pan African Medical Journal. 2017;27(Suppl 2).ETH201510.2530900 romia region, Ethiopia, 2007-2016. The Pan African Medical Journal. 020;37.ETH2018109912 Mut MA, Bedaso MH, Wario SK. Measles outbreak thiopia, May 2019. Pan African Medical Journal. 2020 May 14;36(1).ETH2018109910 further Medical Journal. 2020 May 14;36(1).ETH1981002510 further M, Bedaso MH, Wario SK. Measles outbreak twestigation in Ginnir district of Bale zone, Oromia region, Southeast thiopia, May 2019. Pan African Medical Journal. 2020 May 14;36(1).ETH1981002510 furthur K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, rigzaw A. Progress in measles mortality reduction in Ethiopia, 2002- 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl 1):S232-ETH19810025	l'Goran A A. Ilunga N. Coldiron ME. Grais RE. Porten K. Community-					
Epidemiological Update: Measles. 18 January 2019, Washington, D.C.: AHO/WHO; 2019Emiliary StressEmiliary StressEmiliary StressStre	ased measles mortality surveillance in two districts of Katanga province, Democratic Republic of Congo. BMC Research Notes. 2013					
El Shazly MK, Atta HY, Kishk NA. Poliomyelitis, measles and neonatal etanus: a hospital based epidemiological study. The Journal of the Egyptian Public Health Association. 1997 Jan 1;72(5-6):527-48.EGY19940060Belda K, Tegegne AA, Mersha AM, Bayenessagne MG, Hussein I, Bezabeh B. Measles outbreak investigation in Guji zone of Oromia tegion, Ethiopia. The Pan African Medical Journal. 2017;27(Suppl 2).ETH201510.2530South A, Bekele A, Seid Y, Woyessa AB. Epidemiology of measles in Dromia region, Ethiopia, 2007-2016. The Pan African Medical Journal.ETH20111099Corriso 27.Saude DH, Bedaso MH, Wario SK. Measles outbreak nvestigation in Ginnir district of Bale zone, Oromia region, Southeast thiopia, May 2019. Pan African Medical Journal. 2020 May 14;36(1). ournal of tropical pediatrics. 1986;32(5):234-9.ETH19810025Mitiku K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, (rigzaw A. Progress in measles mortality reduction in Ethiopia, 2002– 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl 1):S232-ETH200610.083365	Pan American Health Organization / World Health Organization. Epidemiological Update: Measles. 18 January 2019, Washington, D.C.:	COL	2018	1	0	99
Bezabeh B. Measles outbreak investigation in Guji zone of Oromia tegion, Ethiopia. The Pan African Medical Journal. 2017;27(Suppl 2).ETH20111099Gutu MA, Bekele A, Seid Y, Woyessa AB. Epidemiology of measles in Dromia region, Ethiopia, 2007-2016. The Pan African Medical Journal. 020;37.ETH20111099Calil FS, Gemeda DH, Bedaso MH, Wario SK. Measles outbreak 	etanus: a hospital based epidemiological study. The Journal of the	EGY	1994	0	0	60
Jutu MA, Bekele A, Seid Y, Woyessa AB. Epidemiology of measles in Dromia region, Ethiopia, 2007-2016. The Pan African Medical Journal. 020;37.ETH20111099Juti Color2007-2016. The Pan African Medical Journal. 020;37.ETH20111099Juti Color2007-2016. The Pan African Medical Journal. 020;37.ETH20181099Jut Color2019. Pan African Medical Journal. 2020 May 14;36(1).ETH20181099Jut Color2019. Pan African Medical Journal. 2020 May 14;36(1).ETH19810025Jut Color104104Jut K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, Tigzaw A. Progress in measles mortality reduction in Ethiopia, 2002- 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S232ETH200610.083365	ezabeh B. Measles outbreak investigation in Guji zone of Oromia	ETH	2015	1	0.25	30
Lali FS, Gemeda DH, Bedaso MH, Wario SK. Measles outbreak nvestigation in Ginnir district of Bale zone, Oromia region, Southeast thiopia, May 2019. Pan African Medical Journal. 2020 May 14;36(1).ETH20181099indtjørn B. Severe measles in the Gardulla area of southwest Ethiopia. burnal of tropical pediatrics. 1986;32(5):234-9.ETH19810025ETH1981104fitiku K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, 'igzaw A. Progress in measles mortality reduction in Ethiopia, 2002- 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S232-ETH200610.083365	utu MA, Bekele A, Seid Y, Woyessa AB. Epidemiology of measles in promia region, Ethiopia, 2007-2016. The Pan African Medical Journal.	ETH	2011	1	0	99
indtjørn B. Severe measles in the Gardulla area of southwest Ethiopia. Durnal of tropical pediatrics. 1986;32(5):234-9. Itiku K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, igzaw A. Progress in measles mortality reduction in Ethiopia, 2002– 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S232-	alil FS, Gemeda DH, Bedaso MH, Wario SK. Measles outbreak vestigation in Ginnir district of Bale zone, Oromia region, Southeast	ETH	2018	1	0	99
burnal of tropical pediatrics. 1986;32(5):234-9.ETH1981104fitiku K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, figzaw A. Progress in measles mortality reduction in Ethiopia, 2002– 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S232-ETH200610.083365		ETH	1981	0	0	25
Itiku K, Bedada T, Masresha BG, Kegne W, Nafo-Traoré F, Tesfaye N, ETH 2006 1 0.0833 65 rigzaw A. Progress in measles mortality reduction in Ethiopia, 2002– 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S232- 2006 1 0.0833 65	5					
'igzaw A. Progress in measles mortality reduction in Ethiopia, 2002– 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S232- .						
	'igzaw A. Progress in measles mortality reduction in Ethiopia, 2002– 009. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S232-	5111	2000	1	0.0035	05
Avarro-Colorado C, Mahamud A, Burton A, Haskew C, Maina GK, ETH 2011 0 0 99	Javarro-Colorado C, Mahamud A, Burton A, Haskew C, Maina GK,	ETH	2011	0	0	99

Schilperoord M. Measles outbreak response among adolescent and adult Somali refugees displaced by famine in Kenya and Ethiopia, 2011. The					
Journal of infectious diseases. 2014 Dec 15;210(12):1863-70.					
Poletti P, Parlamento S, Fayyisaa T, Feyyiss R, Lusiani M, Tsegaye A, Segafredo G, Putoto G, Manenti F, Merler S. The hidden burden of measles in Ethiopia: how distance to hospital shapes the disease mortality rate. BMC medicine. 2018 Dec;16(1):1-2.	ETH	2015	0	0	65
Fariku MK, Misikir SW. Measles outbreak investigation in Artuma Fursi Woreda, Oromia zone, Amhara region, Ethiopia, 2018: a case control study. BMC Research Notes. 2019 Dec;12(1):1-6.	ETH	2018	1	0	99
Güris D, Auerbach SB, Vitek C, Maes E, McCready J, Durand M, Cruz X, Iohp K, Haddock R, Rota J, Rota P. Measles outbreaks in Micronesia, 991 to 1994. The Pediatric infectious disease journal. 1998 Jan ;17(1):33-9.	FSM	1992	1	0	19
Bosu WK, Odoom S, Deiter P, Essel-Ahun M. Epidemiology of measles n the Central Region of Ghana: a five-year case review in three district pospitals. East African medical journal. 2003;80(6):312-7.	GHA	1998	0	0	60
Commey JO, Dekyem P. Measles in southern Ghana: 1985-1993. West African Journal of Medicine. 1994 Oct 1;13(4):223-6.	GHA	1989	0	0.25	12
Commey JO, Richardson JE. Measles in Ghana—1973–1982. Annals of ropical paediatrics. 1984 Sep 1;4(3):189-94.	GHA	1977	0	0.3333	14
Dollimore N, Cutts F, Binka FN, Ross DA, Morris SS, George Smith P. Measles incidence, case fatality, and delayed mortality in children with or without vitamin A supplementation in rural Ghana. American journal of epidemiology. 1997 Oct 15;146(8):646-54.	GHA	1990	1	0	7
n rural West Africa. The Lancet. 1983 Apr 30;321(8331):972-5.	GMB	1981	1	0.25	10
Hull HF. Increased measles mortality in households with multiple cases n the Gambia, 1981. Clinical Infectious Diseases. 1988 Mar 1;10(2):463- 7.	GMB	1981	1	0	10
amb WH. Epidemic measles in a highly immunized rural West African Gambian) village. Clinical Infectious Diseases. 1988 Mar 1;10(2):457-	GMB	1984	1	0	99
2. Villiams PJ. Effect of measles immunization on child mortality in rural Gambia. Journal of Biosocial Science. 1989;21(S10):95-104.	GMB	1984	1	0	15
Villiams PJ, Hull HF. Status of measles in the Gambia, 1981. Reviews of nfectious diseases. 1983 May 1;5(3):391-4.	GMB	1981	1	0.25	10
haby P, Bukh J, Lisse IM, da Silva MC. Further community studies on the role of overcrowding and intensive exposure on measles mortality. Clinical Infectious Diseases. 1988 Mar 1;10(2):474-7.	GNB	1981	1	0.42	18
Aaby P, Bukh J, Lisse IM, Smits AJ. Introduction of measles into a ighly immunised West African community: the role of health care nstitutions. Journal of Epidemiology & Community Health. 1985 Jun ;39(2):113-6.	GNB	1981	1	0	99
Aaby P, Bukh J, Lisse IM, Smits AJ. Measles mortality, state of nutrition, nd family structure: a community study from Guinea-Bissau. Journal of nfectious diseases. 1983 Apr 1;147(4):693-701.	GNB	1979	1	0	18
aby P, Knudsen K, Jensen TG, Thirup J, Poulsen A, Sodemann M, da	GNB	1983	1	0	1
ilva MC, Whittle H. Measles incidence, vaccine efficacy, and mortality n two urban African areas with high vaccination coverage. Journal of infectious diseases. 1990 Nov 1;162(5):1043-8.	GNB	1986	1	0	1
haby P, Martins C, Bale C, Garly ML, Rodrigues A, Biai S, Lisse IM, Whittle H, Benn CS. Sex differences in the effect of vaccines on the risk of hospitalization due to measles in Guinea-bissau. The Pediatric Infectious disease journal. 2010 Apr 1;29(4):324-8.	GNB	2003	0	0.5	5
aby P, Bukh J, Lisse IM, da Silva MC. Decline in measles mortality:	GNB	1979	1	0	17
atrition, age at infection, or exposure?. Br Med J (Clin Res Ed). 1988 pr 30;296(6631):1225-8.	GNB	1982	1	0	17
aby P, Bukh J, Lisse IM, Smits AJ, Gomes J, Fernandes MA, Indi F, pares M. Determinants of measles mortality in a rural area of Guinea- issau: crowding, age, and malnutrition. Journal of tropical pediatrics. 084 Jun 1;30(3):164-8.	GNB	1980	1	0	20
lartins CL, Garly ML, Balé C, Rodrigues A, Ravn H, Whittle HC, Lisse <i>A</i> , Aaby P. Protective efficacy of standard Edmonston-Zagreb measles accination in infants aged 4.5 months: interim analysis of a randomised inical trial. Bmj. 2008 Jul 24;337.	GNB	2003	1	0.375	0.375
aby P, Bukh J, Lisse IM, Smits AJ. Overcrowding and intensive xposure as determinants of measles mortality. American journal of pidemiology. 1984 Jul 1;120(1):49-63.	GNB	1979	1	0	5

Tollefson JE, Hospedales CJ, White FM. Epidemiological indicators and the epidemiology of measles in the English-speaking Caribbean and	GUY	1988	1	0	99
Suriname. The West Indian Medical Journal. 1992 Mar 1;41(1):2-7. World Health Organization. Measles surveillance: Measles in the	GUY	1988	1	0	99
Caribbean prior to the elimination campaign. Weekly Epidemiological					
Record= Relevé épidémiologique hebdomadaire. 1991;66(40):291-4. Lubis CP, Pasaribu S, Lubis MM. Morbidity and mortality of tetanus,	IDN	1982	0	0	15
diphtheria and morbilli (measles) cases (a 1982-1985 study at the Child	IDN	1983	0	0	15
Health Department, Dr. Pirngadi Hospital, Medan). The Journal of the	IDN	1984	0	0	15
Singapore Paediatric Society. 1987 Jan 1;29:66-72.	IDN	1985	0	0	15
	IDN	1986	0	0	15
Munir M, Mustadjab I, Wulur FH. Measles and its problems. A clinical analysis of hospitalized patients under 5 years of age. Paediatrica Indonesiana. 1982 Apr 30;22(3-4):49-64.	IDN	1980	0	0	5
Rangkuti SM, Nazir N, Sutanto AH, Lubis A, Siregar H. Measles morbidity and mortality in the Department of Child Health, Dr Pirngadi General Hospital, Medan, in 1973-1977. Paediatrica Indonesiana. 1980;20(7/8):139-44.	IDN	1975	0	0	12
Samsi TK, Ruspandji T, Susanto I, Gunawan K. Risk factors for severe measles. The Southeast Asian Journal of Tropical Medicine and Public Health. 1992 Sep 1;23(3):497-503.	IDN	1984	0	0.5	18
Agarwal DK, Dutta A, Arora RR, Nair MR. Natural history of measles in rural and urban community of Varanasi. Journal of Communicable Diseases. 1976;8(4):289-98.	IND	1974	1	0	18
Ananthakrishnan S, Srinivasan S, Mahadevan S. Vitamin A and post measles complications. Indian pediatrics. 1993;30(4):520-2.	IND	1989	0	0.5	18
Basa S, Das RR, Khan JA. Root-Cause Analytical Survey for Measles Outbreak: Vaccination or Vaccine?-A Study From Madhepura District, Bihar, India. Journal of Clinical and Diagnostic Research: JCDR. 2015 Jun;9(6):SC04.	IND	2008	1	0	12
Basu RN. Measles vaccine—feasiblity, efficacy and complication rates in a multicentric study. The Indian Journal of Pediatrics. 1984 Mar;51(2):139-43.	IND	1982	1	0.75	2
Bhatia R. Measles outbreak in village Tophema in Nagaland. Journal of communicable diseases. 1985;17(2):185-9.	IND	1983	1	1	12
Bose AS, Jafari H, Sosler S, Narula AP, Kulkarni VM, Ramamurty N, Oommen J, Jadi RS, Banpel RV, Henao-Restrepo AM. Case based measles surveillance in Pune: evidence to guide current and future measles control and elimination efforts in India. PLoS One. 2014 Oct 7;9(10):e108786.	IND	2010	1	0	99
Chand P, Rai RN, Chawla U, Tripathi KC, Datta KK. Epidemiology of measlesa thirteen years prospective study in a village. The Journal of Communicable Diseases. 1989 Sep 1;21(3):190-9.	IND	1980	1	0	14
Cherian T, Joseph A, John TJ. Low antibody response in infants with measles and children with subclinical measles virus infection. The Journal of Tropical Medicine and Hygiene. 1984 Feb 1;87(1):27-31.	IND	1979	1	0	5
Dhanoa JA, Cowan BE. Measles in the community-a study in non- hospitalised young children in Punjab. Journal of Tropical Pediatrics. 1982;28(2):59-61.	IND	1980	1	0	2
Gupta BP, Sharma S. Measles outbreak in a rural area near Shimla. Indian Journal of Community Medicine. 2006 Apr 1;31(2):106.	IND	2004	1	0	14
Gupta BP, Swami HM, Bhardwaj AK, Vaidya NK, Sharma CD, Kaushal RK. An outbreak of measles in a remote tribal area of Himachal Pradesh. Indian J Comm Health. 1989;5:25-8.	IND	1986	1	0	14
Jajoo UN, Chhabra S, Gupta OP, Jain AP. Measles epidemic in a rural community near Sevagram (Vidarbha). Indian journal of public health. 1984;28(4):204-7.	IND	1982	1	0	10
John S, Sanghi S, Prasad S, Bose A, George K. Two doses of measles	IND	1999	1	0	9
vaccine: are some states in India ready for it?. Journal of tropical pediatrics. 2009 Aug 1;55(4):253-6.	IND	2006	1	0	18
John TJ, Joseph A, George TI, Radhakrishnan J, Singh RP, George K. Epidemiology and prevention of measles in rural south India. Indian Journal of Medical Research. 1980;72(August):153-8.	IND	1977	1	0	9
Kalita J, Mani VE, Bhoi SK, Misra UK. Spectrum and outcome of acute infectious encephalitis/encephalopathy in an intensive care unit from India. QJM: An International Journal of Medicine. 2017 Mar 1;110(3):141-8.	IND	2013	0	2	85

Lakhanpal U, Rathore MS. Epidemiology of measles in rural area of Punjab. Journal of communicable diseases. 1986;18(3):185-8.	IND	1983	1	0	14
Lobo J, Reddaiah VP, Kapoor SK, Nath LM. Epidemiology of measles in a rural community. The Indian Journal of Pediatrics. 1987 Mar;54(2):261-5.	IND	1984	1	0	9
Mangal N, Shah K, Sitaraman S. Epidemiological study of measles in urban (slum) area of Jaipur. Indian pediatrics. 1990;27(11):1216-7.	IND	1985	1	0	9
Mishra A, Mishra S, Jain P, Bhadoriya RS, Mishra R, Lahariya C. Measles related complications and the role of vitamin A supplementation.	IND	2004	1	0	18
The Indian Journal of Pediatrics. 2008 Sep;75(9):887-90. Murhekar MV, Ahmad M, Shukla H, Abhishek K, Perry RT, Bose AS, Shimpi R, Kumar A, Kaliaperumal K, Sethi R, Selvaraj V. Measles case	IND	2011	1	0	99
fatality rate in Bihar, India, 2011–12. Plos one. 2014 May 13;9(5):e96668.					
Murhekar MV, Hutin YJ, Ramakrishnan R, Ramachandran V, Biswas	IND	2004	1	0	14
AK, Das PK, Gupta SN, Maji D, Martolia HC, Mohan A, Gupte MD.	IND	2005	1	0	14
The heterogeneity of measles epidemiology in India: implications for improving control measures. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S421-6.	IND	2006	1	0	14
NARAIN JP, KHARE S, Rana SR, Banerjee KB. Epidemic measles in an	IND	1986	0	0	99
isolated unvaccinated population, India. International journal of epidemiology. 1989 Dec 1;18(4):952-8.	IND	1986	1	0	99
Phaneendra Rao RS, Kumari J, RAO K, Narasimham VL. Measles in a rural Community. Journal of communicable diseases. 1988;20(2):131-5.	IND	1983	1	0	5
Raoot A, Dewan DK, Dubey AP, Batra RK, Seth S. Measles outbreak in high risk areas of Delhi: epidemiological investigation and laboratory confirmation. The Indian Journal of Pediatrics. 2016 Mar;83(3):200-8.	IND	2014	1	0	99
Ratho RK, Mishra B, Singh T, Rao P, Kumar R. Measles outbreak in a migrant population. Indian J Pediatr. 2005;72(10):893-4.	IND	2003	1	1	25
Ray SK, Mallik S, Munsi AK, Mitra SP, Baur B, Kumar S. Epidemiological study of measles in slum areas of Kolkata. The Indian Journal of Pediatrics. 2004 Jul;71(7):583-6.	IND	1999	1	0	17
Risbud AR, Prasad SR, Mehendale SM, Mawar N, Shaikh N, Umrani	IND	1991	1	0	10
UB, Bedekar SS, Banerjee K. Measles outbreak in a tribal population of Thane district, Maharashtra. Indian pediatrics. 1994 May 1;31(5):543-51.	IND	1992	1	0	10
Satpathy SK, Chakraborty AK. Epidemiological study of measles in Singur, West Bengal. The Journal of Communicable Diseases. 1990 Mar 1;22(1):23-6.	IND	1986	1	0	99
Sharma MK, Bhatia V, Swami H. Outbreak of measles amongst vaccinated children in a slum of Chandigarh. Indian Journal of Medical Sciences. 2004;58(2):47.	IND	2003	1	0	14
Sharma RS. An epidemiological study of measles epidemic in district Bhilwara, Rajasthan. Journal of communicable diseases. 1988;20(4):301- 11.	IND	1984	1	0	13
Sharma RS, Kaushic VK, Johri SP, Ray SN. An epidemiological investigation of measles outbreak in Alwar-Rajasthan. Journal of	IND	1982	1	0	5
communicable diseases. 1984;16(4):299-303. Singh J, Kumar A, Rai RN, Khare S, Jain DC, Bhatia R, Datta KK. Widespread outbreaks of measles in rural Uttar Pradesh, India, 1996:	IND	1996	1	0	99
high risk areas and groups. Indian pediatrics. 1999 Mar 1;36(3):249-56.					
Singh J, Sharma RS, Verghese T. Measles mortality in India: a review of	IND	1980	1	0	99
community based studies. The Journal of Communicable Diseases. 1994	IND	1985	1	0	99
Dec 1;26(4):203-14.	IND	1992	1	0	14
Swami SS, Chandra S, Dudani IU, Sharma R, Mathur MM. Epidemiology of measles in Western Rajasthan. Journal of communicable diseases. 1987;19(4):370-2.	IND	1980	1	0	14
Thakur JS, Ratho RK, Botia SD, Grover R, Issaivanan M, Ahmed B, Parmar V, Swami HM. Measles outbreak in a Periurban area of Chandigarh: need for improving vaccine coverage and strengthening surveillance. The Indian Journal of Pediatrics. 2002 Jan;69(1):33-7.	IND	1998	1	0	99
Vasudev JP, Nandan D, Chandra R, Srivastava BC. Post measles complications in a rural population. Journal of communicable diseases. 1983;15(4):249-52.	IND	1980	1	0	17
Janghorbani M, Parizi MH, Ghorbani K. Measles epidemics in Kerman city, Iran. Public Health. 1993 Mar 1;107(2):79-87.	IRN	1990	1	0.4167	35
Tollefson JE, Hospedales CJ, White FM. Epidemiological indicators and the epidemiology of measles in the English-speaking Caribbean and Suriname. The West Indian Medical Journal. 1992 Mar 1;41(1):2-7.	JAM	1989	1	0	99

World Health Organization. Measles surveillance: Measles in the	JAM	1989	1	0	99
Caribbean prior to the elimination campaign. Weekly Epidemiological	JAIVI	1969	1	0	22
Record= Relevé épidémiologique hebdomadaire. 1991;66(40):291-4.					
Alwar AJ. The effect of protein energy malnutrition on morbidity and	KEN	1983	0	0.0385	20
mortality due to measles at Kenyatta National Hospital, Nairobi (Kenya).					
East African medical journal. 1992 Aug 1;69(8):415-8.					
Borus PK, Cumberland P, Sonoiya S, Kombich J, Tukei PM, Cutts FT.	KEN	1998	0	0	99
Measles trends and vaccine effectiveness in Nairobi, Kenya. East African					
medical journal. 2003;80(7):361-4.					
Burström B, Abby P, Mutie DM. Validity of measles mortality data using	KEN	1986	0	0	17
hospital registers and community surveys. International journal of	KEN	1986	1	0	17
epidemiology. 1995 Jun 1;24(3):625-9.	KEN	1988	0	0	17
	KEN	1988	1	0	17
Burström B, Aaby P, Mutie DM. Child mortality impact of a measles outbreak in a partially vaccinated rural African community. Scandinavian journal of infectious diseases. 1993 Jan 1;25(6):763-9.	KEN	1987	1	0	99
Burström B, Aaby P, Mutie DM, Kimani G, Bjerregaard P. Severe measles outbreak in western Kenya. East African medical journal. 1992 Aug 1;69(8):419-23.	KEN	1985	1	0	17
Kisangau N, Sergon K, Ibrahim Y, Yonga F, Langat D, Nzunza R, Borus P, Galgalo T, Lowther SA. Progress towards elimination of measles in	KEN	2009	1	0	99
Kenya, 2003-2016. Pan African Medical Journal. 2018 Sep 28;31(1). Mahamud A, Burton A, Hassan M, Ahmed JA, Wagacha JB, Spiegel P,	KEN	2011	0	0	99
Malandu A, Burton A, Hassan M, Annee JA, Wagacha JB, Spieger F, Haskew C, Eidex RB, Shetty S, Cookson S, Navarro-Colorado C. Risk factors for measles mortality among hospitalized Somali refugees displaced by famine, Kenya, 2011. Clinical Infectious Diseases. 2013 Oct 15;57(8):e160-6.	KEN	2011	0	0	"
Menge I, Esamai F, Van Reken D, Anabwani G. Paediatric morbidity and	KEN	1993	0	0	17
mortality at the Eldoret District Hospital, Kenya. East African medical					
journal. 1995;72(3):165-9.					
Muller AS, Voorhoeve AM, T'mannetje W, Schulpen TW. The impact of	KEN	1975	1	0	14
measles in a rural area of Kenya. East African medical journal.	KEN	1976	1	0	14
1977;54(7):364-72.					
Navarro-Colorado C, Mahamud A, Burton A, Haskew C, Maina GK,	KEN	2011	0	0	99
Wagacha JB, Ahmed JA, Shetty S, Cookson S, Goodson JL, Schilperoord M. Measles outbreak response among adolescent and adult Somali refugees displaced by famine in Kenya and Ethiopia, 2011. The Journal of infectious diseases. 2014 Dec 15;210(12):1863-70.					
Centers for Disease Control and Prevention (CDC. Accelerated measles	KHM	1999	1	0	99
controlCambodia, 1999-2002. MMWR. Morbidity and mortality weekly report. 2003 Jan 10;52(1):4-6.			-		
Oum S, Chandramohan D, Cairncross S. Community-based surveillance: a pilot study from rural Cambodia. Tropical medicine & international health. 2005 Jul;10(7):689-97.	КНМ	2001	1	0	14
Kuroiwa C, Vongphrachanh P, Xayyavong P, Southalack K, Hashizume	LAO	1994	1	0	99
M, Nakamura S. Measles epidemiology and outbreak investigation using	LAO	1995	1	0	99
IgM test in Laos. Journal of Epidemiology. 2001;11(6):255-62.	LAO	1996	1	0	99
	LAO	1997	1	0	99
	LAO	1998	1	0	99
	LAO	1999	1	0	99
	LAO	2000	1	0	99
Nagbe T, Williams GS, Rude JM, Flomo S, Yeabah T, Fallah M, Skrip L, Agbo C, Mahmoud N, Okeibunor JC, Yealue K. Lessons learned from detecting and responding to recurrent measles outbreak in Liberia post Ebola-Epidemic 2016-2017. The Pan African Medical Journal. 2019;33(Suppl 2).	LBR	2016	1	0	99
Lamabadusuriya SP, Jayantha UK. An outbreak of measles in the Southern Province. The Ceylon Medical Journal. 1992 Jun 1;37(2):46-8.	LKA	1989	0	0	17
Premaratna R, Luke N, Perera H, Gunathilake M, Amarasena P, Chandrasena TG. Sporadic cases of adult measles: a research article. BMC research notes. 2017 Dec;10(1):1-6.	LKA	2015	0	18	99
Puvimanasinghe JP, Arambepola CK, Abeysinghe NM, Rajapaksa LC,	LKA	1999	1	0	99
Kulatilaka TA. Measles outbreak in Sri Lanka, 1999–2000. Journal of Infectious Diseases. 2003 May 15;187(Supplement 1):S241-5.					
World Health Organization (WHO). Expanded programme on immunization. Public health importance of measles: Sri Lanka. Wkly Epidemiol Rec. 1985;60(13): 95-7.	LKA	1983	1	0	99

Nimpa MM, Andrianirinarison JC, Sodjinou VD, Douba A, Masembe YV, Randriatsarafara F, Ramamonjisoa CB, Rafalimanantsoa AS, Razafindratsimandresy R, Ndiaye CF, Rakotonirina J. Measles outbreak in 2018-2019, Madagascar: epidemiology and public health implications. The Pan African Medical Journal. 2020;35.	MDG	2018	1	0	99
Hyde TB, Dayan GH, Langidrik JR, Nandy R, Edwards R, Briand K, Konelios M, Marin M, Nguyen HQ, Khalifah AP, O'leary MJ. Measles outbreak in the Republic of the Marshall Islands, 2003. International journal of epidemiology. 2006 Apr 1;35(2):299-306.	MHL	2003	1	0	49
McIntyre RC, Preblud SR, Polloi AN, Korean MA. Measles and measles vaccine efficacy in a remote island population. Bulletin of the World Health Organization. 1982;60(5):767.	MHL	1977	1	0	30
World Health Organization. Measles mortality reduction in West Africa, 1996-2002. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire. 2003;78(45):390-2.	MLI	2002	1	0	99
Chin J, Thaung UM. The unchanging epidemiology and toll of measles in	MMR	1983	0	0	9
Burma. Bulletin of the World Health Organization. 1985;63(3):551.	MMR	1983	1	0	9
Khin M, Win S, Aye SS. The impact of national measles immunization	MMR	1985	0	0	12
programme on measles admissions to the major children's hospital in Yangon. Tropical doctor. 1994 Jul;24(3):141-3.	MMR	1989	0	0	12
Lee CT, Hagan JE, Jantsansengee B, Tumurbaatar OE, Altanchimeg S,	MNG	2015	1	0	0.9999
Yadamsuren B, Demberelsuren S, Tserendorj C, Munkhtogoo O, Badarch D, Gunregjav N. Increase in infant measles deaths during a nationwide measles outbreak—Mongolia, 2015–2016. The Journal of infectious diseases. 2019 Oct 22;220(11):1771-9.	MNG	2015	1	0	99
Orsoo O, Saw YM, Sereenen E, Yadamsuren B, Byambaa A, Kariya T, Yamamoto E, Hamajima N. Epidemiological characteristics and trends of a Nationwide measles outbreak in Mongolia, 2015–2016. BMC Public Health. 2019 Dec;19(1):1-0.	MNG	2015	1	0	99
Cliff J, Simango A, Augusto O, Van der Paal L, Biellik R. Failure of	MOZ	1993	1	0	99
targeted urban supplemental measles vaccination campaigns (1997–1999) to prevent measles epidemics in Mozambique (1998–2001). Journal of Infectious Diseases. 2003 May 15;187(Supplement_1):S51-7.	MOZ	1998	1	0	99
Mandomando I, Naniche D, Pasetti MF, Cuberos L, Sanz S, Vallès X, Sigauque B, Macete E, Nhalungo D, Kotloff KL, Levine MM. Assessment of the epidemiology and burden of measles in Southern Mozambique. The American journal of tropical medicine and hygiene. 2011 Jul 7;85(1):146.	MOZ	2002	0	0	18
Boushab BM, Savadogo M, Sow MS, Dao S. Epidemiological, clinical, and prognostic study of the measles in the Aioun regional hospital in Mauritania. Médecine et Santé Tropicales. 2015 Apr 1;25(2):180-3.	MRT	2011	0	1	33
Minetti A, Kagoli M, Katsulukuta A, Huerga H, Featherstone A, Chiotcha H, Noel D, Bopp C, Sury L, Fricke R, Iscla M. Lessons and challenges for measles control from unexpected large outbreak, Malawi. Emerging infectious diseases. 2013 Feb;19(2):202.	MWI	2010	1	0	99
Courtright P, Fine D, Broadhead RL, Misoya L, Vagh M. Abnormal vitamin A cytology and mortality in infants aged 9 months and less with measles. Annals of tropical paediatrics. 2002 Sep 1;22(3):239-43.	MWI	1992	0	0.25	0.8333
Yamaguchi S, Dunga A, Broadhead RL, Brabin BJ. Epidemiology of measles in Blantyre, Malawi: analyses of passive surveillance data from 1996 to 1998. Epidemiology & Infection. 2002 Oct;129(2):361-9.	MWI	1997	1	0	99
Grais RF, Dubray C, Gerstl S, Guthmann JP, Djibo A, Nargaye KD, Coker J, Alberti KP, Cochet A, Ihekweazu C, Nathan N. Unacceptably high mortality related to measles epidemics in Niger, Nigeria, and Chad. PLoS medicine. 2007 Jan;4(1):e16.	NER	2003	1	0	99
Kaninda AV, Legros D, Jataou IM, Malfait P, Maisonneuve M, Paquet C, Moren A. Measles vaccine effectiveness in standard and early immunization strategies, Niger, 1995. The Pediatric infectious disease journal. 1998 Nov 1;17(11):1034-9.	NER	1995	1	0	4
Malfait P, Jataou IM, Jollet MC, Margot A, DE BENOIST AC, Moren A. Measles epidemic in the urban community of Niamey: transmission patterns, vaccine efficacy and immunization strategies, Niger, 1990 to 1991. The Pediatric infectious disease journal. 1994 Jan 1;13(1):38-44.	NER	1990	0	0.5	4.9167
Nandy R, Handzel T, Zaneidou M, Biey J, Coddy RZ, Perry R, Strebel P, Cairns L. Case-fatality rate during a measles outbreak in eastern Niger in 2003. Clinical infectious diseases. 2006 Feb 1;42(3):322-8.	NER	2003	1	0	99
World Health Organization. Expanded Programme on Immunization: High measles case-fatality rates during an outbreak in a rural area. Weekly Epidemiological Record. 1993;68(20):142-5.	NER	1991	1	0	99

Adedoyin MA. The pattern of measles in Ilorin. West African Journal of	NGA	1982	0	0	5
Medicine. 1990 Apr 1;9(2):103-7.	NGA	1983	0	0	5
	NGA	1984	0	0	5
Ahmed PA, Babaniyi IB, Otuneye AT. Review of childhood measles admissions at the National Hospital, Abuja. Nigerian Journal of Clinical Practice. 2010;13(4).	NGA	2003	0	0.5833	10
Babalola OJ, Ibrahim IN, Kusfa IU, Gidado S, Nguku P, Olayinka A, Abubakar A. Measles outbreak investigation in an urban slum of Kaduna Metropolis, Kaduna State, Nigeria, March 2015. Pan African Medical Journal. 2019 Mar 28;32(1).	NGA	2015	1	0	99
Bamgboye EA, Familusi JB. Mortality pattern at a children's emergency ward, University College Hospital, Ibadan, Nigeria. African journal of medicine and medical sciences. 1990 Jun 1;19(2):127-32.	NGA	1982	0	0	17
Byass P, Adedeji MD, Mongdem JG, Zwandor AC, Brew-Graves SH, Clements CJ. Assessment and possible control of endemic measles in urban Nigeria. Journal of Public Health. 1995 Jun 1;17(2):140-5.	NGA	1992	1	0	4
Ekanem EE, Ochigbo SO, Kwagtsule JU. Unprecedented decline in neasles morbidity and mortality in Calabar, south-eastern Nigeria. Fropical doctor. 2000 Oct;30(4):207-9.	NGA	1994	0	0	11
Fagbule D, Orifunmishe F. Measles and childhood mortality in semi- urban Nigeria. African journal of medicine and medical sciences. 1988 Sep 1;17(3):181-5.	NGA	1984	0	0.25	7
Faruk AS, Adebowale AS, Balogun MS, Taiwo L, Adeoye O, Mamuda S, Waziri NE. Temporal trend of measles cases and impact of vaccination on mortality in Jigawa State, Nigeria, 2013-2017: a secondary data analysis. The Pan African Medical Journal. 2020;35(Suppl 1).	NGA	2015	1	0	99
Fatiregun AA, Adebowale AS, Fagbamigbe AF. Epidemiology of measles in Southwest Nigeria: an analysis of measles case-based surveillance data from 2007 to 2012. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2014 Mar 1;108(3):133-40.	NGA	2009	1	0	99
Fatiregun AA, Olowookere SA, Abubakar O, Aderibigbe A. Small-scale outbreak of measles in the Irewole local government area of Osun State in Nigeria. Asian Pacific Journal of Tropical Medicine. 2009;2(6):33-6.	NGA	2008	1	0.6667	14
Fetuga MB, Njakanna OF, Ongunfowora OB. A ten-year study of measles admissions in a Nigerian teaching hospital. Nigerian Journal of Clinical Practice. 2007 Sep 14;10(1):41-6.	NGA	1999	0	0.3333	12
Grais RF, Dubray C, Gerstl S, Guthmann JP, Djibo A, Nargaye KD, Coker J, Alberti KP, Cochet A, Ihekweazu C, Nathan N. Unacceptably high mortality related to measles epidemics in Niger, Nigeria, and Chad. PLoS medicine. 2007 Jan;4(1):e16.	NGA	2004	1	0	99
Ibia EO, Asindi AA. Measles in Nigerian children in Calabar during the era of expanded programme on immunization. Tropical and geographical medicine. 1990 Jul 1;42(3):226-32.	NGA	1985	0	0.375	11
brahim BS, Usman R, Mohammed Y, Datti Z, Okunromade O,	NGA	2012	1	0	99
Abubakar AA, Nguku PM. Burden of measles in Nigeria: a five-year	NGA	2013	1	0	99
eview of casebased surveillance data, 2012-2016. The Pan African	NGA	2014	1	0	99
Iedical Journal. 2019;32(Suppl 1).	NGA	2015	1	0	99
	NGA	2016	1	0	99
Lagunju IA, Orimadegun AE, Oyedemi DG. Measles in Ibadan: a ontinuous scourge. African journal of medicine and medical sciences. 2005 Dec 1;34(4):383-7.	NGA	2002	0	0.3333	10
Dlugbade OT, Adeyemi AS, Adeoti AH, Ilesanmi OS, Gidado SO, Waziri NE, Aworh MK. Measles outbreaks and Supplemental mmunization Activities (SIAs): the Gwagwalada experience, Abuja 2015. The Pan African Medical Journal. 2019;32(Suppl 1).	NGA	2015	1	0	33
Weldegebriel GG, Gasasira A, Harvey P, Masresha B, Goodson JL, Pate AA, Abanida E, Chevez A. Measles resurgence following a nationwide neasles vaccination campaign in Nigeria, 2005–2008. The Journal of nfectious diseases. 2011 Jul 1;204(suppl 1):S226-31.	NGA	2008	1	0	99
oshi AB, Luman ET, Nandy R, Subedi BK, Liyanage JB, Wierzba TF. Measles deaths in Nepal: estimating the national case-fatality ratio. Bulletin of the World Health Organization. 2009;87:456-65.	NPL	2004	1	0	99
Sitaula S, Awasthi GR, Thapa JB, Ramaiya A. Measles outbreak among unvaccinated children in Bajura. Journal of Nepal Medical Association. 2010 Oct 1;50(180).	NPL	2010	1	0.75	25
Aurangzeb B, Fatmee A, Waris R, Haider N, Berjees A, Raza SH. Risk factors for mortality among admitted children with complications of	PAK	2015	0	0.75	18

measles in Pakistan-an observational. Journal of the Pakistan Medical					
Association. 2020 Nov 3:1-4.					
Aurangzeb B, Nisar YB, Hazir T, Burki F, Hassan M. Clinical outcome in children hospitalized with complicated measles. J Coll Physicians Surg Pak. 2005 Sep 1;15(9):547-1.	PAK	2003	0	0.5	12
Murray M, Rasmussen Z. Measles outbreak in a northern Pakistani village: epidemiology and vaccine effectiveness. American journal of epidemiology. 2000 Apr 15;151(8):811-9.	PAK	1990	1	0	13
Anis-ur-Rehman ST, Idris M. Clinical outcome in measles patients hospitalized with complications. J Ayub Med Coll Abbottabad. 2008;20(2):14-6.	PAK	2004	0	0.5	12
Rehman IU, Bukhsh A, Khan TM. Measles in Pakistan: time to make steps towards eradication. Travel medicine and infectious disease. 2017 Jul 1;18:67-9.	PAK PAK	2012 2013	1	0	18 18
Saeed A, Butt ZA, Malik T. Investigation of measles outbreak in a district of Balochistan province, Pakistan. Journal of Ayub Medical College Abbottabad. 2015 Dec 15;27(4):900-3.	PAK	2014	1	0	11
Sniadack DH, Moscoso B, Aguilar R, Heath J, Bellini W, Chiu MC. Measles epidemiology and outbreak response immunization in a rural community in Peru. Bulletin of the World Health Organization. 1999;77(7):545.	PER	1993	1	0	40
Almoradie-Javonillo I, Javonillo T. Profile of a measles epidemic in a remote Philippine barrio. Journal of the Philippine Medical Association. 1984 Apr 30;60(3).	PHL	1983	1	0	14
Bronzwaer SL, De Groot CJ. Risk factors for a complicated disease course in children with measles admitted to a Philippine university hospital. Nederlands Tijdschrift Voor Geneeskunde. 1997 Dec 1;141(51):2492-5.	PHL	1994	0	0	15
Benjamin AL, Dramoi V. Outbreak of measles in the National Capital District, Papua New Guinea in 2001. Papua and New Guinea Medical Journal. 2002 Sep 1;45(3-4):178-84.	PNG	2001	0	0	17
Coakley KJ, Coakley CA, Spooner V, Smith TA, Javati A, Kajoi M. A review of measles admissions and deaths in the paediatric ward of Goroka Base Hospital during 1989. Papua and New Guinea Medical Journal. 1991 Mar 1;34(1):6-12.	PNG	1989	0	0	17
Mgone JM, Mgone CS, Duke TR, Frank DA, Yeka WI. Control measures and the outcome of the measles epidemic of 1999 in the Eastern Highlands Province. Papua and New Guinea medical journal. 2000 Mar 1;43(1-2):91-7.	PNG	1999	0	0	13
Centers for Disease Control and Prevention (CDC. Emergency measles control activities–Darfur, Sudan, 2004. MMWR. Morbidity and mortality weekly report. 2004 Oct 1;53(38):897-9.	SDN	2004	1	0	99
Coronado F, Musa N, Ahmed El Tayeb ES, Haithami S, Dabbagh A, Mahoney F, Nandy R, Cairns L. Retrospective measles outbreak investigation: Sudan, 2004. Journal of tropical pediatrics. 2006 Oct 1;52(5):329-34.	SDN	2003	1	0	99
El Karim O, Salih MA. Morbidity and mortality from measles in an urban community of the Sudan. Annals of Tropical Medicine & Parasitology. 1981 Apr 1;75(2):227-30.	SDN	1975	0	0	18
Ibrahim SA, Mustafa O, Mukhtar MM, Saleh EA, El Mubarak HS, Abdallah A, El-Hassan AM, Osterhaus AD, Groen J, De Swart RL, Zijlstra EE. Measles in suburban Khartoum: an epidemiological and clinical study. Tropical Medicine & International Health. 2002 May;7(5):442-9.	SDN	1998	1	0.4167	14
Sulaiman AA, Elmadhoun WM, Noor SK, Almobarak AO, Bushara SO, Osman MM, Awadalla H, Ahmed MH. An outbreak of measles in gold miners in River Nile State, Sudan, 2011. Eastern Mediterranean Health Journal. 2020 Feb 1;26(2).	SDN	2011	1	0	99
Aaby P, Whittle H, Cisse B, Samb B, Jensen H, Simondon F. The frailty	SEN	1984	1	0	99
hypothesis revisited: mainly weak children die of measles. Vaccine. 2001	SEN	1988	1	0	99
Dec 12;20(5-6):949-53.	SEN	1992	1	0	99
Aaby P. Influence of cross-sex transmission on measles mortality in rural Senegal. The Lancet. 1992 Aug 15;340(8816):388-91.	SEN	1984	1	0	18
Cisse B, Aaby P, Simondon F, Samb B, Soumare M, Whittle H. Role of schools in the transmission of measles in rural Senegal: implications for measles control in developing countries. American journal of epidemiology. 1999 Feb 15;149(4):295-301.	SEN	1994	1	0.4167	30

Pison G, Bonneuil N. Increased risk of measles mortality for children with siblings among the Fula Bande, Senegal. Clinical Infectious Diseases. 1988 Mar 1;10(2):468-70.	SEN	1985	1	0	11
Pison G. Dynamique d'une population traditionelle: les Peul Bande (Senegal oriental). Institut national d'etudes demographiques. Cahier no. 99. Paris: Presses Universitaires de France, 1982. 1982.	SEN	1977	1	0	19
Samb B, Aaby P, Whittle H, Seck AM, Simondon F. Decline in measles	SEN	1984	1	0	99
case fatality ratio after the introduction of measles immunization in rural	SEN	1988	1	0	99
Senegal. American journal of epidemiology. 1997 Jan 1;145(1):51-7.				-	
Sesay T, Denisiuk O, Zachariah R. Paediatric morbidity and mortality in	SLE	2013	0	0	5
Sierra Leone. Have things changed after the 2014/2015 Ebola outbreak?.	SLE	2014	0	0	5
F1000Research. 2019;8.	SLE	2016	0	0	5
Sugerman DE, Fall A, Guigui MT, N'dolie M, Balogun T, Wurie A, Goodson JL. Preplanned national measles vaccination campaign at the beginning of a measles outbreak—Sierra Leone, 2009–2010. The Journal of infectious diseases. 2011 Jul 1;204(suppl_1):S260-9.	SLE	2009	1	0	99
World Health Organization (WHO). Expanded Programme on Immunization: Epidemiology of Measles in a Rural Community. Wkly Epidemiol Rec. 1980;55(12): 85-7.	SOM	1978	1	0	99
Grais RF, Dubray C, Gerstl S, Guthmann JP, Djibo A, Nargaye KD, Coker J, Alberti KP, Cochet A, Ihekweazu C, Nathan N. Unacceptably high mortality related to measles epidemics in Niger, Nigeria, and Chad. PLoS medicine. 2007 Jan;4(1):e16.	TCD	2003	1	0	99
Ndikuyeze A, Cook A, Cutts FT, Bennett S. Priorities in global measles control: report of an outbreak in N'Djamena, Chad. Epidemiology & Infection. 1995 Oct;115(2):309-14.	TCD	1990	1	0	5
World Health Organization. Measles mortality reduction in West Africa, 1996-2002. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire. 2003;78(45):390-2.	TGO	2002	1	0	99
Ariyasriwatana C, Kalayanarooj S. Severity of measles: a study at the Queen Sirikit National Institute of Child Health. Journal of the Medical Association of Thailand. 2004 Jun 1;87(6):581.	THA	2000	0	0	14
World Health Organization (WHO). Expanded programme on immunization. Measles outbreak among the hill tribes. Wkly Epidemiol Rec. 1985; 60(11): 79.	THA	1984	1	0.5833	25
Burgess W, Mduma B, Josephson GV. Measles in Mbeya, Tanzania- 1981-1983. Journal of tropical pediatrics. 1986;32(4):148-53.	TZA	1982	0	0	99
Mafigiri R, Nsubuga F, Ario AR. Risk factors for measles death: Kyegegwa District, western Uganda, February–September, 2015. BMC Infectious Diseases. 2017 Dec;17(1):1-7.	UGA	2015	1	0.3	36
Weeks RM, Barenzi JF, Wayira JR. A low-cost, community-based measles outbreak investigation with follow-up action. Bulletin of the World Health Organization. 1992;70(3):317.	UGA	1990	1	0.4167	12
Espinosa L, Mirinaviciute G. Health crisis in Venezuela: status of	VEN	2017	1	0	99
communicable diseases and implications for the European Union and European Economic Area, May 2019. Eurosurveillance. 2019 May 30;24(22):1900308.	VEN	2018	1	0	99
Pan American Health Organization / World Health Organization. Epidemiological Update: Measles. 18 January 2019, Washington, D.C.: PAHO/WHO; 2019	VEN	2017	1	0	99
Karim SA, Karim QA, Dilraj A, Chamane M. Unsustainability of a	ZAF	1989	0	0	99
neasles immunisation campaign-rise in measles incidence within 2 years	ZAF	1990	0	0	99
of the campaign. South African Medical Journal. 1993;83(5).	ZAF	1991	0	0	99
Coetzee S, Morrow BM, Argent AC. Measles in a S outh A frican paediatric intensive care unit: Again!. Journal of Paediatrics and Child Health. 2014 May;50(5):379-85.	ZAF	2010	0	0.42	0.75
Dramowski A, Aucamp M, Bekker A, Mehtar S. Infectious disease exposures and outbreaks at a South African neonatal unit with review of neonatal outbreak epidemiology in Africa. International Journal of Infectious Diseases. 2017 Apr 1;57:79-85.	ZAF	2010	0	0	0.9999
Gibson, IHN, Carmichael, TR & Kustner HG. Measles notifications-the first year. South African Medical Journal. 1982 Jan 1;61(3):84-8.	ZAF	1979	1	0	99
Hussey GD, Klein M. Routine high-dose vitamin A therapy for children nospitalized with measles. Journal of tropical pediatrics. 1993 Dec 1;39(6):342-5.	ZAF	1985	0	0	18
Jeena PM, Wesley AG, Coovadia HM. Infectious diseases at the	ZAF	1985	0	0	18
paediatric isolation units of Clairwood and King Edward VIII hospitals,	ZAF	1986	0	0	18
Durban. South African Medical Journal. 1998;88(7).	ZAF	1987	0	0	18

	ZAF	1988	0	0	18
	ZAF	1989	0	0	18
	ZAF	1990	0	0	18
	ZAF	1991	0	0	18
	ZAF	1992	0	0	18
	ZAF	1993	0	0	18
	ZAF	1994	0	0	18
	ZAF	1995	0	0	18
	ZAF	1996	0	0	18
Le Roux DM, Le Roux SM, Nuttall JJ, Eley BS. South African measles outbreak 2009-2010 as experienced by a paediatric hospital. South African Medical Journal. 2012;102(9):760-4.	ZAF	2009	0	0	18
Loening WE, Coovadia HM. Age-specific occurrence rates of measles in urban, peri-urban, and rural environments: implications for time of vaccination. The Lancet. 1983 Aug 6;322(8345):324-6.	ZAF	1980	0	0	17
McMorrow ML, Gebremedhin G, Van den Heever J, Kezaala R, Harris	ZAF	2004	1	0	99
BN, Nandy R. Measles outbreak in South Africa, 2003-2005. South African Medical Journal. 2009;99(5).	ZAF	2005	1	0	99
Uzicanin A, Eggers R, Webb E, Harris B, Durrheim D, Ogunbanjo G, Isaacs V, Hawkridge A, Biellik R, Strebel P. Impact of the 1996–1997 supplementary measles vaccination campaigns in South Africa. International journal of epidemiology. 2002 Oct 1;31(5):968-76.	ZAF	1989	1	0	99
Centers for Disease Control and Prevention (CDC. Measles incidence	ZMB	1996	0	0	99
before and after supplementary vaccination activitiesLusaka, Zambia,	ZMB	1997	0	0	99
1996-2000. MMWR. Morbidity and mortality weekly report. 2001 Jun	ZMB	1998	0	0	99
22;50(24):513-6.	ZMB	1999	0	0	99
Moss WJ, Monze M, Ryon JJ, Quinn TC, Griffin DE, Cutts F. Prospective Study of Measles in Hospitalized, Human Immunodeficiency Virus (HIV)—Infected and HIV—Uninfected Children in Zambia. Clinical infectious diseases. 2002 Jul 15;35(2):189-96.	ZMB	1999	0	0	18
Oshitani H, Mpabalwani M, Kasolo F, Mizuta K, Luo NP, Bhat GJ, Suzuki H, Numazaki Y. Measles infection in hospitalized children in Lusaka, Zambia. Annals of tropical paediatrics. 1995 Jun 1;15(2):167-72.	ZMB	1992	0	0	15
Rolfe M. Measles immunization in the Zambian Copperbelt: cause for concern. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1982 Jan 1;76(4):529-30.	ZMB	1980	1	0	4
Kambarami RA, Nathoo KJ, Nkrumah FK, Pirie DJ. Measles epidemic in Harare, Zimbabwe, despite high measles immunization coverage rates. Bulletin of the World Health Organization. 1991;69(2):213.	ZWE	1988	1	0.1154	30
Marufu T, Siziya S, Tshimanga M, Murugasampillay S, Mason E, Manyume B. Factors associated with measles complications in Gweru, Zimbabwe. East African medical journal. 2001;78(3):135-8.	ZWE	1984	1	0	99
Nsungu M. Measles vaccination status, delay in recognizing measles outbreaks and outbreak outcome. The Central African journal of nedicine. 1995 Nov 1;41(11):336-9.	ZWE	1994	0	0	24
Uyirwoth GP. Measles in Mashonaland Central Province: Zimbabwe.	ZWE	1987	0	0	99
East African medical journal. 1993 Jul 1;70(7):455-9.	ZWE	1988	0	0	99
•	ZWE	1989	0	0	99

Supplementary Table 5. Proxy covariate sets used for analysis.

Original covariate	Proxy covariate used
Level of health care available	Gross domestic product per capita
Educational attainment	Maternal educations
Mean household size	Proportion living in urban setting
	Total fertility rate
Surrounding conflict	Mortality rate due to war and terrorism

ISO3	Vitamin A deficiency prevalence	Mortality rate due to war and terrorism	HIV prevalence	Maternal education	Total fertility rate	GDP per capita	Under-5 mortality rate	MCV1 coverage	Proportion living in urban setting	Wasting prevalence	Measles incidence
AFG	0.1404	0.0006	0.0003	3.1116	4.3210	9992.3903	60.1000	0.6400	0.2575	0.0638	0.0018
AGO	0.1336	0.0000	0.0133	6.4430	5.4420	2612.3470	74.2000	0.5100	0.6618	0.0528	0.0002
ALB	0.1462	0.0000	0.0000	10.5183	1.5970	4543.3865	9.7000	0.9500	0.6123	0.0391	0.0008
ARM	0.0042	0.0000	0.0004	12.3754	1.7580	4758.5575	11.5000	0.9500	0.6322	0.0337	0.0011
AZE	0.0598	0.0000	0.0002	11.6242	1.8100	4758.5575	20.4000	0.9500	0.5603	0.0498	0.0000
BDI	0.1587	0.0000	0.0077	4.1233	5.3210	278.2026	56.6000	0.9200	0.1337	0.0553	0.0107
BEN	0.2289	0.0000	0.0061	3.9160	4.7670	1201.5614	88.4000	0.6800	0.4786	0.0739	0.0043
BFA	0.2216	0.0000	0.0045	1.9187	5.1090	738.2189	87.8000	0.8800	0.2998	0.1257	0.0012
BGD	0.0824	0.0000	0.0002	6.5529	2.0110	1581.5675	30.7000	0.9700	0.3741	0.1159	0.0012
BIH	0.1323	0.0000	0.0000	11.4522	1.2540	4758.5575	5.9000	0.9500	0.4863	0.0244	0.0021
BLR	0.0092	0.0000	0.0017	13.3724	1.3820	4758.5575	3.1000	0.9500	0.7904	0.0139	0.0008
BLZ	0.0366	0.0000	0.0045	9.0432	2.2740	4712.8401	12.3000	0.9600	0.4587	0.0321	0.0009
BOL	0.0469	0.0000	0.0023	9.3314	2.6880	3317.3709	26.3000	0.7900	0.6977	0.0155	0.0017
BTN	0.1027	0.0000	0.0023	3.9344	1.9540	3238.0605	28.6000	0.9700	0.4161	0.0395	0.0009
CAF	0.2080	0.0001	0.0244	4.2122	4.6450	418.7217	106.6000	0.4100	0.4177	0.0958	0.0286
CHN	0.0501	0.0000	0.0004	10.3300	1.6960	10155.4929	7.9000	0.9900	0.6031	0.0164	0.0002
CIV	0.1888	0.0000	0.0194	4.4157	4.5930	2327.7454	80.3000	0.7300	0.5124	0.0606	0.0006
CMR	0.2070	0.0000	0.0230	7.8759	4.5060	1449.2775	74.7000	0.6000	0.5697	0.0485	0.0068
COD	0.2071	0.0000	0.0046	8.0764	5.8190	512.5863	83.8000	0.6500	0.4505	0.0850	0.0549
COG	0.2218	0.0000	0.0197	9.7790	4.3740	1793.0281	52.5000	0.7300	0.6737	0.0581	0.0026
COL	0.0449	0.0000	0.0028	9.6068	1.7890	6384.5358	13.6000	0.9500	0.8110	0.0102	0.0001
СОМ	0.1889	0.0000	0.0000	7.4271	4.1380	1284.3523	63.5000	0.9000	0.2916	0.0928	0.0044
CPV	0.0069	0.0000	0.0057	6.6588	2.2420	3482.4485	14.9000	0.9800	0.6620	0.0197	0.0021
CUB	0.0205	0.0000	0.0021	11.8680	1.6020	8031.0354	5.2000	0.9900	0.7711	0.0141	0.0004
DJI	0.0541	0.0000	0.0125	4.9588	2.6760	1898.1839	57.8000	0.8300	0.7792	0.1899	0.0006
DZA	0.0428	0.0000	0.0007	8.9292	2.9880	4115.3955	23.3000	0.8000	0.7319	0.0446	0.0004
ECU	0.0802	0.0000	0.0023	10.7738	2.4030	5853.8131	13.4000	0.8300	0.6399	0.0196	0.0000
EGY	0.0344	0.0000	0.0001	11.3261	3.2800	3964.9871	20.1000	0.9500	0.4273	0.0477	0.0001
ERI	0.1807	0.0000	0.0039	4.8723	3.9970	1898.1839	40.6000	0.7580	0.4473	0.1201	0.0008
ETH	0.2584	0.0000	0.0069	3.7181	4.1460	799.7951	50.8000	0.5800	0.2123	0.0968	0.0177
FJI	0.0773	0.0000	0.0005	11.6860	2.7540	5869.0211	26.9000	0.9600	0.5675	0.0470	0.0010
FSM	0.1739	0.0000	0.0011	9.6625	3.0100	2921.1456	25.4000	0.7800	0.2281	0.0452	0.0055
GEO	0.0614	0.0000	0.0012	13.2363	2.0550	4773.4233	9.5000	0.9500	0.5904	0.0091	0.0013
GHA	0.2136	0.0000	0.0119	8.6681	3.8160	2053.5867	46.4000	0.9200	0.5671	0.0649	0.0028
	1							1			

Supplementary Table 6. Covariate set values by country in 2019.

GIN	0.1931	0.0000	0.0093	3.3759	4.6250	945.5074	98.0000	0.4700	0.3650	0.0873	0.0016
GMB	0.2132	0.0000	0.0134	5.1083	5.1540	714.5421	51.2000	0.8500	0.6193	0.0806	0.0001
GNB	0.2644	0.0000	0.0217	3.6300	4.4020	650.0694	79.6000	0.7900	0.4378	0.0628	0.0002
GTM	0.0625	0.0000	0.0009	6.3516	2.8220	4254.0352	24.5000	0.9000	0.5144	0.0105	0.0005
GUY	0.0576	0.0000	0.0075	10.6060	2.4400	6478.2877	29.3000	0.9800	0.2669	0.0595	0.0004
HND	0.0527	0.0000	0.0004	6.8878	2.4270	2499.4928	16.8000	0.8900	0.5773	0.0128	0.0003
HTI	0.1300	0.0000	0.0164	6.3011	2.8870	1373.8831	62.2000	0.6500	0.5619	0.0598	0.0000
IDN	0.1468	0.0000	0.0004	9.8638	2.2880	3877.4246	23.8000	0.8800	0.5599	0.1031	0.0014
IND	0.1941	0.0000	0.0014	7.5065	2.2020	1965.5393	34.4000	0.9500	0.3447	0.1679	0.0026
IRN	0.0233	0.0000	0.0002	10.0437	2.1460	5308.9199	13.4000	0.9900	0.7539	0.0359	0.0001
IRQ	0.0777	0.0000	0.0000	10.1375	3.5970	5132.7011	26.1000	0.8200	0.7068	0.0477	0.0004
JAM	0.0320	0.0000	0.0044	12.1379	1.9650	5065.3749	13.7000	0.9400	0.5599	0.0264	0.0002
JOR	0.0838	0.0000	0.0000	13.1249	2.6910	4133.5498	15.5000	0.8700	0.9120	0.0213	0.0001
KEN	0.2275	0.0000	0.0322	8.8740	3.4230	1602.7884	43.0000	0.8900	0.2751	0.0404	0.0003
KGZ	0.0682	0.0000	0.0009	12.2232	3.3000	1226.8245	18.3000	0.9500	0.3659	0.0244	0.0006
KHM	0.0858	0.0000	0.0045	5.5688	2.4780	5300.9050	26.6000	0.8400	0.2381	0.0830	0.0052
KIR	0.1922	0.0000	0.0001	10.1285	3.5300	1505.1552	51.2000	0.9400	0.5484	0.0360	0.0063
LAO	0.1423	0.0000	0.0015	5.5657	2.6260	2579.2537	45.7000	0.8300	0.3565	0.0681	0.0003
LBR	0.1736	0.0000	0.0088	6.3476	4.2470	1898.1839	80.4000	0.7580	0.5162	0.0478	0.0041
LKA	0.0873	0.0000	0.0001	10.8837	2.1880	4228.1492	7.2000	0.9900	0.1859	0.1363	0.0007
LSO	0.2039	0.0000	0.1844	9.1413	3.1080	1126.8438	90.9000	0.9000	0.2859	0.0317	0.0019
MAR	0.1116	0.0000	0.0010	5.9305	2.3820	3044.9063	19.5000	0.9900	0.6299	0.0282	0.0012
MDA	0.0139	0.0000	0.0019	13.6890	1.2690	4758.5575	14.8000	0.9500	0.4273	0.0217	0.0009
MDG	0.1778	0.0000	0.0019	7.7934	4.0260	488.9137	51.9000	0.5500	0.3786	0.1056	0.0014
MHL	0.1666	0.0000	0.0011	9.6251	2.6453	3612.6023	31.6000	0.8500	0.7742	0.0013	0.0014
MKD	0.1158	0.0000	0.0000	11.9490	1.3400	4758.5575	6.8000	0.9500	0.5821	0.0299	0.0013
MLI	0.2093	0.0001	0.0062	2.4365	5.7850	815.3791	94.2000	0.7000	0.4314	0.0949	0.0026
MMR	0.0891	0.0000	0.0041	6.7895	2.1380	1548.4566	45.2000	0.8400	0.3085	0.0597	0.0016
MNG	0.1118	0.0000	0.0001	9.9933	2.8670	4394.9881	16.0000	0.9800	0.6854	0.0122	0.0001
MOZ	0.1973	0.0000	0.0691	4.6535	4.7830	598.8137	72.9000	0.8700	0.3653	0.0419	0.0001
MRT	0.1653	0.0000	0.0001	6.8802	4.5030	1620.9967	73.0000	0.7500	0.5451	0.1034	0.0001
MWI	0.1935	0.0000	0.0623	7.2392	4.1270	401.3927	40.6000	0.9200	0.1717	0.0412	0.0001
NAM	0.0746	0.0000	0.0850	9.3781	3.3440	4504.6174	41.9000	0.7580	0.5104	0.0636	0.0011
NER	0.2241	0.0000	0.0016	1.5164	6.8240	523.8842	80.3000	0.7900	0.1652	0.1421	0.0167
NGA	0.1805	0.0000	0.0102	7.6417	5.3170	2502.6523	116.9000	0.5700	0.5116	0.1068	0.0110
NIC	0.0282	0.0000	0.0010	7.6677	2.3770	1982.6286	16.6000	0.9900	0.5876	0.0125	0.0007
NPL	0.1110	0.0000	0.0017	5.1189	1.8760	1069.7891	29.3000	0.9200	0.2015	0.0820	0.0035
РАК	0.1313	0.0000	0.0012	5.6196	3.4540	1497.9868	67.3000	0.8100	0.3691	0.1305	0.0115
PER	0.0722	0.0000	0.0020	9.9372	2.2330	6613.8764	13.3000	0.8500	0.7810	0.0050	0.0005

PNG0.00290.00000.00593.93303.52002816.718845.3000.07300.13250.11730.00PRK0.08680.00000.000011.5171.89605300.90517.30000.98000.62130.03730.03PRK0.13330.0000.00101.51621.89605774.16219.5000.87000.61880.01130.02560.00SN0.03840.00000.00105.5623.9900885.638141.9000.90000.17310.02560.00SN0.08540.00000.00007.37074.3370184.30700.87000.87000.47480.0640.00SLE0.18140.0000.00005.8424.361022.952892.00000.81000.42480.06440.00SLE0.18140.0000.00017.37882.0103993.29113.3000.43500.42580.01750.048SN0.02280.00010.00017.37882.0103993.29113.3000.43000.42350.01670.007SN0.02480.00000.00017.37884.2670498.52311.30000.46000.42850.01670.007SN0.02580.00000.00007.6834.27109.992.61322.2000.65000.43250.04620.007SN0.02740.00000.00007.6834.27109.692.61322.0000.50500.43250.0163 <th< th=""><th>PHL</th><th>0.1621</th><th>0.0000</th><th>0.0024</th><th>11.4090</th><th>2.5260</th><th>3664.7907</th><th>27.1000</th><th>0.7500</th><th>0.4715</th><th>0.0702</th><th>0.0050</th></th<>	PHL	0.1621	0.0000	0.0024	11.4090	2.5260	3664.7907	27.1000	0.7500	0.4715	0.0702	0.0050
PKR0.00880.00000.00001.1.1711.8.9053.00.90017.3000.9.8000.6.2110.0.0710.0.01PKY0.1.3860.00000.000110.0012.40057.4166219.5000.87000.87000.0.1880.0.0180.0.01RWA0.1.390.00000.00007.55203.900885.6814.10000.90000.01310.0.2540.0.00SN0.00000.00007.5623.9004.856.814.10000.90000.91000.01240.000SK0.00000.00007.5844.30102.2895.2932.00000.81000.24210.00750.0015SL0.11810.0000.00007.5884.3102.2895.2931.30000.81000.24250.01450.001SK0.11810.0000.00017.5882.0103.935.911.30000.5800.42630.01570.0145SK0.11810.0000.00017.3882.1603.935.911.30000.50000.75000.01450.0167SK0.11810.0000.00017.3822.8671.833891.50000.50500.75000.01450.0167SK0.11810.0000.00011.34821.8901.83391.50000.51000.75000.01450.0167SK0.11810.0000.00011.34821.8901.83311.50000.51000.51020.0167SK0.1181												
PR0.13880.00000.00110.06712.4690574.1629.19000.87000.61880.01180.0018NW0.13390.00000.01015.5203.900385.38141.9000.96000.17310.02560.00SIN0.08540.00000.00007.5764.370199.12015.84000.98000.03440.12900.00640.00SIN0.02620.00000.00003.7864.350138.43903.00000.81000.01800.04240.06640.00SIN0.01420.00000.00005.8424.3602.952802.00000.81000.02580.42480.06640.00SIN0.01240.00000.00007.8782.0213.930913.3000.82000.72550.13610.005SIN0.02280.00000.00011.34231.8694755.575.7000.45300.42550.0180.007SIN0.10210.00000.00017.8334.267183.13917.0000.45000.45250.13610.007SIN0.10230.00000.00017.8334.267183.13917.0000.45000.45250.13610.007SIN0.12240.00000.00007.8334.257183.3300.10100.10100.02250.13610.001SIN0.12340.00000.00001.33521.5716.520812.20000.51000.5160.												0.0003
RWa0.01390.00000.01905.5203.90088.538141.9000.96000.17310.02560.000SDN0.00540.00000.00007.9764.370199.12058.4000.90000.34940.12900.005SLE0.0080.00000.00073.7074.550138.43973.70000.81000.02580.00640.00750.00640.00750.00640.00750.00640.00750.00640.00750.00640.00750.00640.00750.00640.00750.00640.00750.00750.00140.00750.00140.00750.00140.00750.00140.00750.00140.00750.00140.00750.00140.00750.00140.00750.00140.00750.00140.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.00750.01450.01750.01450.01750.01750.01450.01750							5300.9050					0.0004
NN0.08540.00000.00027.9074.34701969.12058.4000.90000.34940.12900.000SEN0.02620.00000.00013.70674.5501384.397039.70000.80900.47650.06640.00SLB0.101810.00000.00015.84824.36102289.528920.00000.81000.24210.07750.0664SLV0.09420.00000.00017.9782.02103993.52113.3000.40000.42650.02450.0064SLW0.09420.00000.00017.37816.97801888.18311.8000.46000.42650.02750.01640.00SNB0.01420.00000.001113.4821.6864475.5755.7000.95000.57300.01520.01670.00SVR0.01640.00000.00017.6834.26701898.18317.0000.95000.57300.01530.0167SVR0.01330.00000.00017.6834.27701989.18317.0000.95000.55280.01630.0163SVR0.02640.00000.00072.39175.469656.07911.30000.41000.02320.01630.007SVR0.02670.00000.00051.51375.5275.50017.3000.95000.55030.51330.000SVR0.01680.00000.00051.51535.51071.614073.30000.95000.50	PRY	0.1386	0.0000	0.0011	10.0671	2.4050	5774.1662	19.5000	0.8700	0.6188	0.0118	0.0001
Network SLA0.00000.00000.370074.55601384.39700.970000.89000.47850.06640.000SLB0.01080.00000.00005.84824.61002289.529020.00000.81000.24210.07750.00SLE0.18140.00000.00007.97880.20100.49763111.0000.75800.42480.06440.00SLW0.09420.00000.00107.97882.02103993.52113.3000.52000.72750.01450.00SMB0.10220.00010.00011.34831.62001.889.1839118.3000.45000.02500.01570.0167SMB0.10240.00000.00011.34831.67001.889.18391.70000.95000.56260.01270.00SWB0.11380.00000.00011.34831.67002.57813.5000.51000.51000.13880.0000.00130.000SWB0.00570.0000.00051.33830.71009.66009113.0000.51000.42250.01630.000SWT0.00570.00000.00185.51276.429660.099113.0000.41000.42250.41580.000TKM0.01370.00000.00051.51272.4290660.099113.0000.40200.42150.001TKM0.01630.00000.00051.51272.4290660.0900.50000.62050.6163 <th< th=""><th>RWA</th><th>0.1339</th><th>0.0000</th><th>0.0197</th><th>5.5620</th><th>3.9900</th><th>885.6381</th><th>41.9000</th><th>0.9600</th><th>0.1731</th><th>0.0256</th><th>0.0157</th></th<>	RWA	0.1339	0.0000	0.0197	5.5620	3.9900	885.6381	41.9000	0.9600	0.1731	0.0256	0.0157
NB0.00080.00005.8424.3602289.528920.0000.0100.24210.07730.00SLE0.18140.00000.00084.31624.169649.7603111.9000.75800.42480.0.0440.0.014SLV0.09420.00010.00017.97882.021393.52113.3000.8000.42480.0.41550.0.1670.0.014SM0.22890.00010.00013.78165.790189.1839118.3000.4000.45550.1.3670.0.02SR0.14120.00000.000113.4821.8654758.53755.7000.90500.95620.0.2570.0.05SW0.13130.00000.000113.4821.8694758.53755.7000.90500.73600.0.020.0.02SW0.13130.00000.000011.3022.591833.24848.0000.90500.43680.0.320.0.1580.0.02SW0.02270.00000.000011.3022.591630.320.500013.0000.40100.43180.0.00SW0.02070.00000.00072.3915.5174.290650.0913.0000.40100.43280.0.1480.0.00SW0.02070.00000.01035.5174.290650.0913.3000.4000.42020.40430.0.01TH0.02710.00000.000010.01515.174.29065.00013.3000.400	SDN	0.0854	0.0000	0.0026	7.9076	4.3470	1969.1201	58.4000	0.9000	0.3494	0.1290	0.0027
SLE0.18140.00000.00884.31624.1690649.7603111.9000.75800.42480.00680.00SLV0.09420.00000.00107.7882.0210399.329113.3000.82000.72750.01450.00SOM0.22890.00010.00017.7882.0210399.529113.3000.40000.45550.13670.0015STP0.14020.00000.00017.78891.85954.758.55755.70000.95000.73600.04220.00170.0017STP0.21640.00000.00017.68394.2670189.183917.0000.95000.73600.04220.005STP0.13380.0000.00017.68394.2670189.183917.0000.95000.73600.04520.005STP0.13380.0000.00017.68394.2670189.183917.0000.80000.53280.13780.0339STP0.02570.00080.00010.00052.51714.2590630.795564.5000.80100.42280.10580.1058STR0.02670.00090.00051.5140642.2749.0000.02010.02320.0010.0010.001TKM0.01310.0000.00051.514051400512009.0000.02310.04630.001TKM0.01310.0000.00051.514051200513000.90000.02010.02320.0031 <th>SEN</th> <th>0.2062</th> <th>0.0000</th> <th>0.0037</th> <th>3.7067</th> <th>4.5560</th> <th>1384.3970</th> <th>39.7000</th> <th>0.8900</th> <th>0.4765</th> <th>0.0664</th> <th>0.0005</th>	SEN	0.2062	0.0000	0.0037	3.7067	4.5560	1384.3970	39.7000	0.8900	0.4765	0.0664	0.0005
SLV0.00900.00007.97882.0210399.52911.30000.82000.72750.01610.000SOM0.22880.00010.00013.78165.9780198.1839118.30000.46000.45550.13670.000SRE0.14020.00000.00011.34231.86954758.5575.70000.95000.56260.02970.000SNE0.21640.00000.00017.63394.26701898.183917.0000.95000.54820.01670.000SNE0.03680.00000.01001.13382.710969.2132.22000.63000.54820.1070.007SVE0.02670.00000.00072.39175.490660.069113.5000.41000.54820.1080.007SVE0.02670.00000.00072.39175.490660.069113.5000.41000.54220.1080.007TH0.07270.00000.00071.03852.710969.2132.22000.61000.54220.1080.007TH0.07270.00000.00072.39175.490660.099113.5000.41000.42230.54230.007TH0.07270.00000.00071.03052.5174.290660.0901.35000.41000.42230.54230.007TH0.07270.00000.00071.05573.540650.000.57000.5000.5200.23110.0000.	SLB	0.1085	0.0000	0.0010	5.8482	4.3610	2289.5289	20.0000	0.8100	0.2421	0.0775	0.0007
Nome Symbol0.02280.00000.00013.78165.97801898.183118.30000.46000.445550.13760.000SRB0.14020.00000.000113.48231.86954758.5575.70000.95000.55260.02770.00STP0.21640.00000.00007.68392.67001898.18317.0000.95000.73600.04520.00170.000SW20.13380.00000.01001.3382.710969.26132.22000.6000.54820.01670.007SV20.02670.00000.00072.31715.6490660.69911.50000.41000.54820.01610.001TTA0.02700.00000.00072.31715.6490660.69911.50000.41000.42250.05610.0161TTA0.02070.00000.00071.5140660.69911.50000.41000.42250.05610.0161TTA0.01700.00000.00135.5174.5200661.22749.00000.40000.42550.61610.000TTA0.01700.00000.000010.5753.5501174.0173.33000.95000.52050.60090.0001TTA0.01700.00000.000010.7792.7400759.57842.40000.90000.23110.0000.000TTA0.01700.00000.000110.9283.5100.520510.9200.30300.30300.	SLE	0.1814	0.0000	0.0088	4.3162	4.1690	649.7603	111.9000	0.7580	0.4248	0.0684	0.0021
SRB0.14020.000010.000113.48231.8694758.5575.7000.95000.56260.02070.000STP0.21640.00000.00007.68394.2671898.18317.0000.95000.73600.04050.000SWZ0.13380.00000.01002.9500383.24648.0000.81000.23380.01070.000SWR0.02670.00000.000011.3032.710969.26122.2000.65000.51420.10870.0107TCD0.22700.00000.00072.39175.490660.069113.5000.41000.23280.11630.001TKB0.02670.00000.00051.51474.25963.790566.5000.75000.42230.00510.001TKB0.01180.00000.00051.5140612.2749.0000.95000.52050.05550.000TKB0.01330.00000.00051.51402.7400769.278774.4000.90000.02010.0010.000TKB0.01330.00000.00011.02243.350144.08173.30000.90000.30350.01030.000TKB0.01330.00000.00011.02243.5123.5123.5124.24000.90000.90000.20130.000TKB0.01330.00000.00011.02243.5123.5123.5123.612.538611.7000.90000.02310.000 </th <th>SLV</th> <th>0.0942</th> <th>0.0000</th> <th>0.0019</th> <th>7.9788</th> <th>2.0210</th> <th>3993.5291</th> <th>13.3000</th> <th>0.8200</th> <th>0.7275</th> <th>0.0145</th> <th>0.0005</th>	SLV	0.0942	0.0000	0.0019	7.9788	2.0210	3993.5291	13.3000	0.8200	0.7275	0.0145	0.0005
STP0.21640.00000.00017.68394.2671898.183917.0000.95000.73600.04520.005SWZ0.13380.00000.19049.00002.9580383.24848.0000.81000.23980.01570.00SYR0.06880.00050.000011.30382.710969.261322.2000.65000.54820.10870.007TCD0.22700.00000.00052.39175.6490660.0699113.0000.41000.23280.14580.001TCD0.20270.00000.00051.51274.259063.079566.5000.75000.42250.05610.001THA0.07290.00000.00051.51631.51274.259063.0790566.5000.75000.42250.05690.05430.001THA0.01730.00000.00051.51553.5561174.081733.3000.95000.20250.04510.001TKM0.01310.00000.00011.01782.74007692.578742.4000.90000.02050.01350.000TLM0.11630.00000.00011.01923.3102.300.90543.7000.90000.30350.01970.000TLM0.11330.00000.00019.80772.6453530.905043.7000.90000.30250.01380.000TLM0.11330.00000.00019.93772.6453530.90502.27000.9300<	SOM	0.2289	0.0001	0.0021	3.7816	5.9780	1898.1839	118.3000	0.4600	0.4555	0.1367	0.0481
SWZ0.13380.00000.10909.90002.95803833.246848.00000.81000.23980.01570.000SYR0.06880.00050.000011.33382.7710969.261322.20000.65000.54820.10870.007TCD0.222700.00000.00072.39175.6490660.069911.30000.41000.23280.14580.001TCD0.202700.00000.00035.51274.2590630.790566.5000.75000.42250.05690.0542THA0.07290.00000.006910.67051.51406612.22749.00000.96000.05690.05690.05420.05690.0569TKM0.01630.000010.00553.55601174.08173.33000.95000.23210.06090.0609TKM0.01310.00000.00027.1723.9430530.955942.4000.90700.30350.10150.000TKM0.01310.00000.000110.9283.5180452.588611.7000.90000.02110.04630.000TKM0.01330.00000.001210.9283.51802.51702.50000.80000.63210.01320.000TKM0.01330.00000.00119.9772.453530.95052.70000.90000.63210.01320.000TKM0.01330.00000.03327.18804.83201071.5015.50000.80800.	SRB	0.1402	0.0000	0.0001	13.4823	1.8695	4758.5575	5.7000	0.9500	0.5626	0.0297	0.0009
SYR0.06880.00050.000011.30382.7710999.261322.20000.65000.54820.10870.00TCD0.02770.00000.00752.39175.6490660.0699113.50000.41000.23280.01630.00TGO0.02070.00000.01385.51274.2590630.700566.00090.75000.42250.05610.000THA0.07290.00000.006910.67051.51406612.2749.00000.96000.50690.05430.0061TKK0.06130.00000.000510.50553.55601174.081733.30000.95000.52050.04450.00TKK0.06130.00000.000010.7782.74007692.578742.40000.90000.50250.04450.00TLS0.11620.00000.00027.19723.9430530.905043.70000.90070.30950.19660.00TLN0.11310.00000.001210.92483.51804652.588611.70000.90000.63220.02310.04630.00TLN0.11320.00000.00119.98772.64535300.90522.70000.98000.63220.02320.02320.003TLN0.11330.00000.00327.18804.83201071.350150.5000.88000.34500.03430.013TLN0.11330.00000.00339.58102.2500311.159024.200 <th< th=""><th>STP</th><th>0.2164</th><th>0.0000</th><th>0.0001</th><th>7.6839</th><th>4.2670</th><th>1898.1839</th><th>17.0000</th><th>0.9500</th><th>0.7360</th><th>0.0452</th><th>0.0037</th></th<>	STP	0.2164	0.0000	0.0001	7.6839	4.2670	1898.1839	17.0000	0.9500	0.7360	0.0452	0.0037
TCD 0.2270 0.0000 0.0075 2.3917 5.6490 660.0699 113.500 0.4100 0.2328 0.1458 0.00 TGO 0.2067 0.0000 0.0138 5.5127 4.2590 630.7905 66.500 0.7500 0.4225 0.0561 0.000 THA 0.0729 0.0000 0.0069 10.6705 1.5140 6612.2274 9.000 0.9600 0.2331 0.0691 0.001 TKK 0.0118 0.0000 0.0005 1.5140 6612.2774 9.000 0.9500 0.2731 0.0691 0.001 TKK 0.0613 0.0000 0.0002 7.1972 3.930 5300.950 43.300 0.900 0.3025 0.0445 0.00 TKN 0.1027 0.0000 0.0012 10.9248 3.5180 4652.586 11.700 0.9900 0.6322 0.0232 0.002 TVN 0.1023 0.0000 0.0012 9.887 2.1740 4208.062 <th16.900< th=""> 0.9800 0.632</th16.900<>	SWZ	0.1338	0.0000	0.1904	9.0000	2.9580	3833.2468	48.0000	0.8100	0.2398	0.0157	0.0001
TGO0.20670.00000.01385.51274.2590630.790566.5000.75000.42250.05610.001THA0.07290.00000.000910.67051.51406612.22749.00000.96000.50690.05430.001TJK0.11680.00000.000510.5053.55601174.081733.3000.95000.27310.06910.001TKM0.06130.00000.000610.17782.74007692.578742.4000.99070.30950.19680.001TLS0.10790.00000.00207.19723.9430530.905043.7000.90070.30950.19680.001TUN0.10120.00000.001210.92483.51804652.588611.70000.99000.62250.02320.000TUV0.01310.00000.00119.98772.6433530.905022.7000.96000.63220.02840.001TLA0.11730.00000.00327.18804.83201071.350150.50000.88000.34500.03350.000TUV0.10230.00000.00337.6934.8240894.5204453000.87000.66920.04350.03510.000TUX0.11780.00000.00337.18034.8240242.50458.40000.80000.46250.03350.001UCA0.1230.00000.00339.58102.25001311.594024.20000.93000.	SYR	0.0688	0.0005	0.0000	11.3038	2.7710	969.2613	22.2000	0.6500	0.5482	0.1087	0.0006
THA0.07290.00000.006910.67051.51406612.22749.00000.96000.96000.50690.05430.0007TJK0.11680.00000.0000510.50553.55601174.081733.30000.95000.27310.06910.00TKM0.06130.00000.000010.17782.74007692.578742.40000.95000.23050.04450.00TLS0.10790.00000.00007.1723.94305300.905043.7000.90070.30950.19960.0445TUN0.10120.00000.001119.92483.51804652.588611.7000.99000.63220.02320.000TUN0.01310.00000.001019.98772.64535300.905022.7000.96000.63220.02320.0232TUV0.10230.00000.03327.18804.83201071.350150.50000.88000.34500.03450.035URA0.11330.00000.00327.18804.83201071.350150.50000.88000.34500.04110.00URA0.11330.00000.00337.18804.83201071.351150.50000.88000.69430.0110.001URA0.11330.00000.00337.18804.83201311.594024.20000.95000.50430.0110.001URA0.01230.00000.00331.28802.15803161.415414.80000.950	TCD	0.2270	0.0000	0.0075	2.3917	5.6490	660.0699	113.5000	0.4100	0.2328	0.1458	0.0092
TJK 0.01168 0.0000 0.0005 10.5055 3.5560 1174.0817 33.3000 0.9500 0.2731 0.0691 0.0001 TKM 0.0613 0.0000 0.0006 10.1778 2.7400 7692.5787 42.4000 0.9500 0.5205 0.0445 0.00 TLS 0.1079 0.0000 0.0020 7.1972 3.9430 5300.9050 43.7000 0.9007 0.3095 0.1996 0.001 TON 0.1027 0.0000 0.0012 10.9248 3.5180 4652.5886 11.700 0.9900 0.2311 0.0465 0.00 TUN 0.0131 0.0000 0.0011 9.9877 2.6453 5300.9050 22.7000 0.9600 0.6322 0.0284 0.000 TUX 0.1373 0.0000 0.0332 7.1880 4.8320 1071.3501 5.5500 0.8800 0.3450 0.0389 0.000 UKR 0.0129 0.0000 0.0333 2.7850 3161.4154 14.8000 0.9500	TGO	0.2067	0.0000	0.0138	5.5127	4.2590	630.7905	66.5000	0.7500	0.4225	0.0561	0.0004
TKM 0.0613 0.0000 0.0006 10.1778 2.7400 7692.5787 42.4000 0.9500 0.5205 0.0445 0.00 TLS 0.1079 0.0000 0.0020 7.1972 3.9430 5300.9050 43.700 0.9007 0.3095 0.1996 0.00 TON 0.1027 0.0000 0.0012 10.9248 3.5180 4652.5886 11.700 0.9900 0.2311 0.0465 0.00 TUN 0.0131 0.0000 0.0014 9.6807 2.1740 4208.0662 16.9000 0.9800 0.6925 0.0232 0.00 TUV 0.1023 0.0000 0.0011 9.9877 2.6453 5300.9050 22.7000 0.9600 0.6322 0.0234 0.00 TZA 0.1373 0.0000 0.0332 7.1880 4.8320 1071.3501 50.5000 0.8800 0.3450 0.0311 0.00 UGA 0.1485 0.0000 0.0332 7.1880 4.820 3161.1154 14.800	THA	0.0729	0.0000	0.0069	10.6705	1.5140	6612.2274	9.0000	0.9600	0.5069	0.0543	0.0007
TLS0.0000.00007.19723.94305300.9050443.70000.90070.30950.19960.000TON0.10270.00000.001210.92483.51804652.588611.70000.99000.23110.04650.00TUN0.01310.00000.00049.68072.17404208.066216.90000.98000.69250.02320.0032TUV0.10230.00000.00119.98772.64535300.905022.70000.96000.63220.02320.02840.00TLX0.13730.00000.03327.18804.83201071.350150.50000.88000.34500.03890.00UGA0.14850.00000.005913.93161.22802425.63458.40000.95000.69470.07770.00UZB0.05320.00000.00339.58102.250013111.594024.20000.93000.88240.03410.000VEN0.07020.00000.00117.69423.7440288.1749025.60000.80000.23390.04590.000VUT0.14740.00000.00107.69423.74002881.749025.60000.80000.23390.04590.00VUT0.14240.00040.00139.58102.250033161.415414.80000.95000.36630.05630.000VUT0.14740.00000.00107.69423.74402881.749025.60000.80000.366	TJK	0.1168	0.0000	0.0005	10.5055	3.5560	1174.0817	33.3000	0.9500	0.2731	0.0691	0.0001
TON 0.1027 0.0000 0.0012 10.9248 3.5180 4652.5886 11.7000 0.9900 0.2311 0.0465 0.0001 TUN 0.0131 0.0000 0.0004 9.6807 2.1740 4208.0662 16.900 0.9800 0.6322 0.0232 0.003 TUV 0.1023 0.0000 0.0011 9.9877 2.6453 5300.9050 22.700 0.9600 0.6322 0.0284 0.000 TUA 0.1033 0.0000 0.0332 7.1880 4.8320 1071.3501 55.5000 0.8800 0.3450 0.0349 0.000 UGA 0.1485 0.0000 0.0356 7.6903 4.820 2425.6345 8.400 0.8700 0.6947 0.0717 0.070 UZB 0.0532 0.0000 0.0033 9.5810 2.7500 3161.4154 14.800 0.9500 0.6943 0.0315 0.000 VEN 0.0702 0.0000 0.0033 9.5810 2.2500 3250.5675 21.1000	ТКМ	0.0613	0.0000	0.0006	10.1778	2.7400	7692.5787	42.4000	0.9500	0.5205	0.0445	0.0002
TUN 0.0131 0.0000 0.0004 9.6807 2.1740 4208.0662 16.9000 0.9800 0.6925 0.0232 0.000 TUV 0.1023 0.0000 0.0011 9.9877 2.6453 5300.9050 22.7000 0.9600 0.6322 0.0232 0.0084 0.001 TZA 0.1373 0.0000 0.0332 7.1880 4.8320 1071.3501 50.5000 0.8800 0.3450 0.0389 0.000 UGA 0.1485 0.0000 0.0366 7.6903 4.8240 894.5204 45.3000 0.8700 0.2436 0.0411 0.000 UKR 0.0129 0.0000 0.0366 7.6903 4.8240 894.5204 45.3000 0.8700 0.6947 0.0777 0.000 UKR 0.0129 0.0000 0.0059 13.9316 1.2280 2425.6345 8.4000 0.9500 0.5043 0.0077 0.007 UKR 0.0129 0.0000 0.0033 9.5810 2.2500 1311.5940	TLS	0.1079	0.0000	0.0020	7.1972	3.9430	5300.9050	43.7000	0.9007	0.3095	0.1996	0.0003
TUV 0.1023 0.0000 0.0011 9.9877 2.6453 5300.9050 22.7000 0.9600 0.6322 0.0284 0.000 TZA 0.1373 0.0000 0.0332 7.1880 4.8320 1071.3501 50.5000 0.8800 0.3450 0.0389 0.000 UGA 0.1485 0.0000 0.0366 7.6903 4.8240 894.5204 45.3000 0.8800 0.2436 0.0411 0.000 UKR 0.0129 0.0000 0.0352 13.9316 1.2280 2425.6345 8.4000 0.9500 0.6947 0.0777 0.000 UZB 0.0532 0.0000 0.0053 12.6813 2.7850 3161.4154 14.8000 0.9500 0.5043 0.0315 0.000 VEN 0.0702 0.0000 0.0033 9.5810 2.2500 13111.5940 24.2000 0.9300 0.8824 0.0315 0.000 VEN 0.0702 0.0000 0.0010 7.6942 3.7440 2881.7490 25.6000	TON	0.1027	0.0000	0.0012	10.9248	3.5180	4652.5886	11.7000	0.9900	0.2311	0.0465	0.0011
TZA 0.1373 0.0000 0.0332 7.1880 4.8320 1071.3501 50.5000 0.8800 0.3450 0.0389 0.0000 UGA 0.1485 0.0000 0.0366 7.6903 4.8240 894.5204 45.3000 0.8700 0.2436 0.0411 0.0000 UKR 0.0129 0.0000 0.0366 7.6903 4.8240 2425.6345 8.4000 0.9500 0.6947 0.0777 0.0000 UKR 0.0129 0.0000 0.0059 13.9316 1.2280 2425.6345 8.4000 0.9500 0.6947 0.0777 0.0000 UKB 0.0532 0.0000 0.00053 2.7850 3161.4154 14.8000 0.9500 0.5043 0.0315 0.0000 VEN 0.0702 0.0000 0.00033 9.5810 2.2500 3250.5675 21.1000 0.9300 0.8824 0.0345 0.0000 VUT 0.1474 0.0000 0.0010 7.6942 3.7400 2881.7490 25.6000 0.8000	TUN	0.0131	0.0000	0.0004	9.6807	2.1740	4208.0662	16.9000	0.9800	0.6925	0.0232	0.0002
UGA 0.0000 0.0366 7.6903 4.8240 894.5204 45.3000 0.8700 0.2436 0.0411 0.0000 UKR 0.0129 0.0000 0.0059 13.9316 1.2280 2425.6345 8.4000 0.9500 0.6947 0.0777 0.0077 UZB 0.0532 0.0000 0.0006 12.6813 2.7850 3161.4154 14.8000 0.9500 0.6947 0.0777 0.0070 VEN 0.0702 0.0000 0.0033 9.5810 2.2500 13111.5940 24.2000 0.9500 0.8824 0.0315 0.0070 VEN 0.0708 0.0000 0.0023 10.0258 2.0500 3250.5675 21.1000 0.9500 0.3663 0.0567 0.0070 VUT 0.1147 0.0000 0.0010 7.6942 3.7440 2881.7490 25.6000 0.8000 0.2539 0.0459 0.000 VUT 0.1147 0.0000 0.0010 10.8043 3.8300 4504.9193 17.4000 0.96	TUV	0.1023	0.0000	0.0011	9.9877	2.6453	5300.9050	22.7000	0.9600	0.6322	0.0284	0.0029
UKR0.01290.00000.0005913.93161.22802425.63458.40000.95000.69470.07770.007UZB0.05320.00000.000612.68132.78503161.415414.80000.95000.50430.03150.001VEN0.07020.00000.00339.58102.250013111.594024.20000.93000.88240.03410.001VIT0.07080.00000.00107.69423.74402881.749025.60000.80000.25390.04590.0414VUT0.11190.00000.001010.80433.83004504.919317.40000.67000.37270.15790.000ZAF0.16240.00000.063910.95552.38106125.735333.00000.83000.66860.03330.0000ZAF0.12680.00000.07248.94014.55901348.738464.10000.93000.44070.04510.0451	TZA	0.1373	0.0000	0.0332	7.1880	4.8320	1071.3501	50.5000	0.8800	0.3450	0.0389	0.0001
UZB0.05320.00000.000612.68132.78503161.415414.80000.95000.50430.03150.0000VEN0.07020.00000.00339.58102.250013111.594024.20000.93000.88240.03410.0010VNM0.07080.00000.000310.02582.05003250.567521.10000.95000.36630.05670.000VUT0.14740.00000.00107.69423.74402881.749025.60000.80000.25390.04590.005WSM0.11190.00000.001010.80433.83004504.919317.40000.96000.18060.03120.04140.0000YEM0.16240.00040.0063910.95652.38106125.735333.00000.83000.66860.03330.0000ZAF0.12680.00000.07248.94014.55901348.738464.10000.93000.44070.04510.0051	UGA	0.1485	0.0000	0.0366	7.6903	4.8240	894.5204	45.3000	0.8700	0.2436	0.0411	0.0028
VEN 0.0702 0.0000 0.0033 9.5810 2.2500 13111.5940 24.2000 0.9300 0.8824 0.0341 0.0000 VNM 0.0708 0.0000 0.0023 10.0258 2.0500 3250.5675 21.1000 0.9500 0.3663 0.0567 0.0000 VUT 0.1474 0.0000 0.0010 7.6942 3.7440 2881.7490 25.6000 0.8000 0.2539 0.0459 0.0000 WSM 0.1119 0.0000 0.0010 10.8043 3.8300 4504.9193 17.4000 0.9600 0.1806 0.0414 0.0000 YEM 0.1624 0.0004 0.0006 4.7560 3.7000 9992.3903 61.5000 0.6700 0.3727 0.1579 0.0000 0.0005 2.3810 6125.7353 33.0000 0.8300 0.66666 0.0333 0.0000 ZAF 0.1795 0.0000 0.0724 8.9401 4.5590 1348.7384 64.1000 0.9300 0.4407 0.0451 0.0000	UKR	0.0129	0.0000	0.0059	13.9316	1.2280	2425.6345	8.4000	0.9500	0.6947	0.0777	0.0072
VNM 0.0708 0.0000 0.0023 10.0258 2.0500 3250.5675 21.1000 0.9500 0.3663 0.0567 0.0000 VUT 0.1474 0.0000 0.0010 7.6942 3.7440 2881.7490 25.6000 0.8000 0.2539 0.0459 0.0000 WSM 0.1119 0.0000 0.0010 11.8043 3.8300 4504.9193 17.4000 0.9600 0.1806 0.0414 0.0000 WSM 0.1119 0.0000 0.0010 10.8043 3.8300 4504.9193 17.4000 0.9600 0.1806 0.0414 0.0000 WSM 0.1624 0.0004 0.0006 4.7560 3.7000 9992.3903 61.5000 0.6700 0.3727 0.1579 0.0000 0.0000 0.0639 0.0055 2.3810 6125.7353 33.0000 0.8300 0.6686 0.0333 0.0000 ZAF 0.1795 0.0000 0.0724 8.9401 4.5590 1348.7384 64.1000 0.9300 0.4407	UZB	0.0532	0.0000	0.0006	12.6813	2.7850	3161.4154	14.8000	0.9500	0.5043	0.0315	0.0003
VUT 0.1474 0.0000 0.0010 7.6942 3.7440 2881.7490 25.6000 0.8000 0.2539 0.0459 0.0010 WSM 0.1119 0.0000 0.0010 10.8043 3.8300 4504.9193 17.4000 0.9600 0.1806 0.0414 0.0010 WSM 0.1624 0.0004 0.0010 10.8043 3.8300 4504.9193 17.4000 0.9600 0.1806 0.0414 0.0010 YEM 0.1624 0.0004 0.0006 4.7560 3.7000 9992.3903 61.5000 0.6700 0.3727 0.1579 0.000 ZAF 0.1268 0.0000 0.0724 8.9401 4.5590 1348.7384 64.1000 0.9300 0.4407 0.0451 0.0010	VEN	0.0702	0.0000	0.0033	9.5810	2.2500	13111.5940	24.2000	0.9300	0.8824	0.0341	0.0001
WSM 0.1119 0.0000 0.0010 10.8043 3.8300 4504.9193 17.4000 0.9600 0.1806 0.0414 0.0010 YEM 0.1624 0.0004 0.0006 4.7560 3.7000 9992.3903 61.5000 0.6700 0.3727 0.1579 0.000 ZAF 0.1268 0.0000 0.0724 8.9401 4.5590 1348.7384 64.1000 0.9300 0.4407 0.0451 0.004	VNM	0.0708	0.0000	0.0023	10.0258	2.0500	3250.5675	21.1000	0.9500	0.3663	0.0567	0.0007
YEM 0.1624 0.0000 0.0639 10.9565 2.3810 6125.7353 33.000 0.8300 0.6686 0.0333 0.0000 ZAF 0.1795 0.0000 0.0724 8.9401 4.5590 1348.7384 64.1000 0.9300 0.4407 0.0451 0.0000	VUT	0.1474	0.0000	0.0010	7.6942	3.7440	2881.7490	25.6000	0.8000	0.2539	0.0459	0.0003
ZAF 0.1268 0.0000 0.0639 10.9565 2.3810 6125.7353 33.0000 0.8300 0.6686 0.0333 0.0000 ZMB 0.1795 0.0000 0.0724 8.9401 4.5590 1348.7384 64.1000 0.9300 0.4407 0.0451 0.0000	WSM	0.1119	0.0000	0.0010	10.8043	3.8300	4504.9193	17.4000	0.9600	0.1806	0.0414	0.0043
ZMB 0.1795 0.0000 0.0724 8.9401 4.5590 1348.7384 64.1000 0.9300 0.4407 0.0451 0.0051	YEM	0.1624	0.0004	0.0006	4.7560	3.7000	9992.3903	61.5000	0.6700	0.3727	0.1579	0.0008
	ZAF	0.1268	0.0000	0.0639	10.9565	2.3810	6125.7353	33.0000	0.8300	0.6686	0.0333	0.0000
ZWE 0.1480 0.0000 0.0876 9.7120 3.5310 1414.8291 54.2000 0.8500 0.3221 0.0356 0.0	ZMB	0.1795	0.0000	0.0724	8.9401	4.5590	1348.7384	64.1000	0.9300	0.4407	0.0451	0.0001
ZWE 0.1489 0.0000 0.0870 9.7120 5.5510 1414.8251 54.2000 0.8500 0.5221 0.0550 0.0	ZWE	0.1489	0.0000	0.0876	9.7120	3.5310	1414.8291	54.2000	0.8500	0.3221	0.0356	0.0001

Supplementary Table 7.	Second step model fitted	meta-regression coefficients.

Variable	Coefficient values	p-values
Intercept	-2.1084	< 0.0001
Community indicator	-1.4597	< 0.0001
Incidence	0.2513	< 0.0001
Mortality rate due to war and terrorism	0	1.0
Maternal education	-0.6915	< 0.0001
GDP per capita	0	1.0
HIV prevalence	0	1.0
MCV1 coverage	-0.1581	< 0.0001
Total fertility	0	1.0
Under 5 mortality rate	0.1140	< 0.0001
Proportion living in urban setting	0.4161	< 0.0001
Vitamin A deficiency prevalence	0.0652	< 0.0001
Wasting prevalence	0	1.0

Supplementary Table 8. In-sample validation metrics from first stage decomposition analysis.

IS	Model 0	Model 1.A	Model 1.B	Model 1.C
Correlation	0.29	0.2785	0.2776	0.3415
RMSE	0.0616	0.0629	0.0631	0.0598
Mean Error	0.0104	0.0218	0.0202	0.0075
Mean Abs. Error	0.0356	0.0354	0.0358	0.0354

Supplementary Table 9. Out-of-sample validation metrics from first stage decomposition analysis.

008	Model 0	Model 1.A	Model 1.B	Model 1.C
Correlation	0.2897	0.2783	0.2775	0.3376
RMSE	0.0624	0.0635	0.0641	0.0608
Mean Error	0.0100	0.0200	0.0182	0.0052
Mean Abs. Error	0.0357	0.0357	0.0362	0.0364

Supplementary Table 10. In-sample validation metrics from second stage decomposition analysis.

IS	Model 0	Model 1	Model 2
Correlation	0.29	0.3415	0.3929
RMSE	0.0616	0.0598	0.0591
Mean Error	0.0104	0.0075	-0.0010
Mean Abs. Error	0.0356	0.0354	0.0349

Supplementary Table 11. Out-of-sample validation metrics from first and second stage decomposition analysis.

OOS	Model 0	Model 1	Model 2
Correlation	0.2897	0.3376	0.3833
RMSE	0.0624	0.0608	0.0616
Mean Error	0.0100	0.0052	-0.0022
Mean Abs. Error	0.0357	0.0364	0.0362

Supplementary Table 12. In-sample (IS) and out-of-sample (OOS) validation metrics from final model using age split input data for comparison.

	IS	OOS
Correlation	0.5002	0.4517
RMSE	0.0451	0.0270
Mean Error	0.0035	0.0011
Mean Abs. Error	0.0175	0.0110

Supplementary Table 13. In-sample (IS) and out-of-sample (OOS) validation metrics from final model using original (pre-age split) data for comparison.

	IS	OOS
Correlation	0.4667	0.2754
RMSE	0.0934	0.0820
Mean Error	0.0156	0.0027
Mean Abs. Error	0.0343	0.0325

Region	Age Group	Setting	CFR	Lower 95% UI	Upper 95% UI
Central Europe, Eastern Europe, and Central Asia	under 1-year-olds	Hospital	3.06%	2.71%	3.41%
		Community	0.72%	0.65%	0.79%
	1- to 4-year-olds	Hospital	1.51%	1.34%	1.68%
		Community	0.35%	0.32%	0.39%
	5- to 9-year-olds	Hospital	1.18%	1.04%	1.32%
		Community	0.27%	0.25%	0.30%
	10- to 14-year-	Hospital	0.97%	0.86%	1.09%
	olds	Community	0.22%	0.20%	0.25%
	15-year-olds and	Hospital	0.39%	0.33%	0.46%
	older	Community	0.09%	0.08%	0.10%
Latin America	under 1-year-olds	Hospital	6.35%	5.72%	7.01%
and Caribbean		Community	1.54%	1.40%	1.67%
	1- to 4-year-olds	Hospital	3.46%	3.11%	3.80%
		Community	0.82%	0.75%	0.89%
	5- to 9-year-olds	Hospital	2.49%	2.25%	2.74%
	-	Community	0.58%	0.53%	0.63%
	10- to 14-year- olds	Hospital	1.95%	1.75%	2.15%
		Community	0.46%	0.41%	0.50%
	15-year-olds and	Hospital	0.99%	0.85%	1.13%
	older	Community	0.23%	0.20%	0.26%
North Africa	under 1-year-olds	Hospital	9.76%	9.00%	10.55%
and Middle		Community	2.45%	2.27%	2.61%
East	1- to 4-year-olds	Hospital	4.84%	4.53%	5.19%
		Community	1.17%	1.10%	1.23%
	5- to 9-year-olds	Hospital	2.75%	2.55%	2.95%
		Community	0.65%	0.62%	0.68%
	10- to 14-year- olds	Hospital	2.12%	1.97%	2.29%
		Community	0.50%	0.47%	0.52%
	15-year-olds and older	Hospital	1.10%	0.97%	1.24%
		Community	0.26%	0.23%	0.29%
South Asia	under 1-year-olds	Hospital	7.20%	6.67%	7.81%
		Community	1.77%	1.66%	1.88%
	1- to 4-year-olds	Hospital	3.91%	3.67%	4.19%
		Community	0.93%	0.88%	0.97%
	5- to 9-year-olds	Hospital	3.01%	2.82%	3.22%
		Community	0.71%	0.68%	0.75%

Supplementary Table 14. Age-specific CFR by region in 2019.

	10- to 14-year- olds	Hospital	2.57%	2.39%	2.76%
		Community	0.60%	0.57%	0.64%
	15-year-olds and older	Hospital	2.05%	1.86%	2.25%
		Community	0.48%	0.44%	0.52%
Southeast Asia, East Asia, and Oceania	under 1-year-olds	Hospital	4.22%	3.87%	4.61%
		Community	1.01%	0.93%	1.08%
	1- to 4-year-olds	Hospital	2.41%	2.23%	2.60%
		Community	0.57%	0.53%	0.60%
	5- to 9-year-olds	Hospital	1.78%	1.66%	1.92%
		Community	0.42%	0.39%	0.44%
	10- to 14-year- olds	Hospital	1.49%	1.38%	1.60%
		Community	0.35%	0.33%	0.37%
	15-year-olds and older	Hospital	0.70%	0.63%	0.79%
		Community	0.16%	0.15%	0.18%
Sub-Saharan Africa	under 1-year-olds	Hospital	13.91%	13.06%	14.72%
		Community	3.65%	3.49%	3.81%
	1- to 4-year-olds	Hospital	8.18%	7.79%	8.62%
		Community	2.03%	1.97%	2.10%
	5- to 9-year-olds	Hospital	5.30%	5.04%	5.59%
		Community	1.28%	1.23%	1.33%
	10- to 14-year- olds	Hospital	3.82%	3.58%	4.06%
		Community	0.91%	0.87%	0.95%
	15-year-olds and older	Hospital	2.88%	2.65%	3.12%
		Community	0.68%	0.63%	0.73%

Section 7. Supplementary Figures

Supplementary Figure 2. Recent data available by country. For countries with data available, year of most recent data available by country shown in map.

Supplementary Figure 3. Relative age pattern from first-stage model with 4 knots (with 2 internal).

Supplementary Figure 4. Relative age pattern from first-stage model with 5 knots (with 3 internal).

Supplementary Figure 5. Relationship between age of input data and standardized measles incidence from country-year input data was collected.

Grey lines represent a smooth loess curve, and black lines represent a loess curve weighted on standard error of each input data.

Supplementary Figure 6. Relationship between age of input data and standardized first-dose measlescontaining vaccine (MCV1) coverage from country-year input data was collected. Grey lines represent a smooth loess curve, and black lines represent a loess curve weighted on standard error of each input data.

Supplementary Figure 7. Mean age of measles cases by country and year.

Grey lines represent the mean age of cases by year for each country included in analysis, and the red line is a smoothed LOESS curve through individual country lines.

Supplementary Figure 8. Standardized and unstandardized estimates of case-weighted measles CFR across all countries from 1990 to 2019.

Case-weighted mean CFR across LMICs is presented in yellow, by year. Using the UN standard population from 2019, we age-standardized case-weighted mean CFR estimates for LMICs (shown in red). In blue, we additionally age-standardized case-weighted mean CFR estimates using the age distribution across cases in LMICs in 1990 as our "standard population".

Supplementary Figure 9a-d. Age-specific, community-based, case-weighted case fatality ratio (CFR) estimates among 0–14-year-olds for low- and middle-income countries – for single years 1990, 2000, 2010, and 2019.

Supplementary Figure 10a-d. Age-specific, community-based, case-weighted case fatality ratio (CFR) (CFR) estimates among 0–14-year-olds, by region – for single years 1990, 2000, 2010, and 2019.

Supplementary Figure 11. Heat maps of age- and year-specific CFR by community- and hospital-based settings by country.

Supplementary Figure 12. Distribution of CFR values for studies providing information on laboratory confirmation of cases (1) versus not providing information on laboratory confirmation of cases (0).

Supplementary Figure 13. Distribution measles incidence values used for covariates of country-years for studies providing information on laboratory confirmation of cases (1) versus not providing information on laboratory confirmation of cases (0).

Supplementary Figure 14. Distribution MCV1 coverage values used for covariates of country-years for studies providing information on laboratory confirmation of cases (1) versus not providing information on laboratory confirmation of cases (0).

Supplementary Figure 15. CFR estimates from framework using all studies versus only studies providing information on laboratory confirmation of cases, for select years.

Supplementary Figure 16. CFR estimates from framework using all studies versus only studies providing definition of death attributable to measles, for select years.

References

1. Zheng P, Barber R, Sorensen RJ, Murray CJ. Trimmed constrained mixed effects models: formulations and algorithms. *Journal of Computational and Graphical Statistics* 2021; **30**(3): 1-13.

2. Sbarra AN, Jit M, Mosser JF, et al. Population-level risk factors related to measles case fatality: a conceptual framework and systematic review of evidence. *medRxiv* 2022.

3. cyipopt. 2022. <u>https://cyipopt.readthedocs.io/en/stable/</u>.

4. Portnoy A, Jit M, Ferrari M, Hanson M, Brenzel L, Verguet S. Estimates of case-fatality ratios of measles in low-income and middle-income countries: a systematic review and modelling analysis. *Lancet Glob Health* 2019; **7**(4): E472-E81.