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Supplementary Notes 

On our study design 
We considered balanced DE analysis and assumed the cell class information was given a priori from clinical information. If 

some batches do not contain both the conditions to be compared, we have two choices: (1) remove the unbalanced batches or 

(2) just use naïve DE analysis for pooled uncorrected data. If large batch effects are expected and the unbalanced batches take 

a negligible portion, then the first choice would be reasonable. When the cell labels were not given, the cells should be 

clustered in the first step to classify cells where a range of feature selection, BEC and clustering algorithms were considered1. 

Some BEC methods did not yield the corrected expression data; however, they can still serve to identify the cell classes. Once 

the cell labels were obtained, then all the genes available were reincluded in the analysis and the optimal DE workflow was 

sought. In short, cell clustering and DE analysis are in general separate processes, and corresponding methods might be 

selected from respective benchmark studies.  

Known disease genes (GDA score ≥0.5) exclusively detected by lung epithelial cell analyses 

EGFR gene encodes a cell membrane receptor tyrosine kinase. It is involved in multiple signaling transduction 

cascades, known to play an important role in development of tumor malignancy through cell cycle progression, 

apoptosis inhibition, induction of angiogenesis through several downstream pathways including RAS/RAF/MAPK 

pathway.2 KRAS is well known member of RAS gene family as an oncogene involved in RAS/RAF/MAPK 

signaling pathway. In general, KRAS is activated in response to signaling from upstream Receptor Tyrosine 

Kinases including EGFR.3 CTNNB1 is a key regulator of Wnt signaling pathway and maintains cell-cell adhesion.4 

Increased CTNNB1 expression can promote tumor invasion and metastasis by loss of epithelial structural integrity.5 

Lastly, ERBB2 encodes another receptor tyrosine kinase and belong to same Erbb family where EGFR is included. 

Increased expression of ERBB2 is known to trigger multiple signaling pathways such as RAS/RAF/MAPK 

signaling pathway, which plays an important role in regulating cell proliferation, migration, and differentiation.2  

Implementation of benchmark methods 

Here we described how each benchmark method was implemented. For all scRNA-seq data, we removed the genes 

with the zero expression values > 95% and the cells with high mitochondrial genes. All our codes are available at 

Github: https://github.com/noobCoding/Benchmarking-integration-of-scRNAseq-differential-analysis.  

- Combat6 (sva R package ver. 3.38.0): Each library of the raw count data was scaled to the median library size, 

and then log-scaled using log1p R function. The resulting normalized data and batch information were fed to 

Combat function. We used the default options as follows: ref.batch=NULL indicating Combat will determine the 

reference batch for the adjustment; par.prior=TRUE indicating parametric adjustments will be used; 



mean.only=FALSE indicating Combat will correct all values in batches with the median-library adjustment. 

Combat outputs the corrected data in their log-scale. 

- MNNCorrect7 (batchelor R package ver. 1.6.3): Raw count data were log-scaled using LogNormalize function 

of Seurat R package. The log-normalized count data were used as input for MNNCorrect. MNNCorrect uses the 

first batch as the coordinating system to integrate other batches; thus, the selection of the first batch is a critical 

step. MNNCorrect also provides the option auto.merge to search for the optimal order for merging batches to 

increase the stability of the correction. We used auto.merge=TRUE and other default parameters including the 

cosine normalization for input datasets. 

- scMerge8 (R package ver. 1.6.0): scMerge requires a list of highly variable genes (HVGs) as an input; thus, we 

identified the HVGs of the log-normalized data. We have generated Seurat object of log-scaled raw count data, 

using LogNormalize function, and selected 1000 highly variable genes using the function FindVariableFeatures. 

We then used the function SingleCellExperiment to create an object of raw count data. Then, we have run 

logNormCounts function from scuttle R package to provide log-scaled input for scMerge function. Besides, 

scMerge asks for a set of ‘negative control genes’ 8 (e.g., stably expressed genes-SEGs) for its processing. We 

used the built-in function SEGIndex to select stably expressed genes with zero rate less than 80% (default). This 

threshold caused an error when analyzing very sparse data. To prevent this error, we have changed the cutoff 80% 

to 90% (named as SEGIndex90). Throughout our study, we found that the “stability threshold” of 0.5 was suitable. 

The supervised analysis of scMerge that incorporated the known cell group labels (cell_type parameter) was used.  

- limma9 (R package ver. 3.46.0): The raw count data were log-scaled using LogNormalize function of Seurat to 

be used for limma. Because of the wide range of applications of limma, we tested limma in three different ways: 

(1) Generation of BEC data (limma_bec), (2) DE analysis using limmatrend or limmavoom with or without batch 

covariate, and (3) DE analysis using limmatrend for BEC data obtained from Combat, MNNCorrect, or scMerge. 

For limma_bec, the function removeBatchEffect provides BEC data in their log-scale, which can be used as input 

for Wilcoxon test or limmatrend. The limma-based DE analysis can be performed by running lmFit and eBayes 

functions. lmFit function takes the design matrix and log-scaled count data as input, and eBayes function accepts 

the output of  lmFit to finally provide DE p-values and logFC values for all genes. The first approach is limma 

with voom transformation which takes raw count data. Library sizes were multiplied by the normalization factors 

obtained using calcNormFactors function of edgeR and fed to the parameter lib.size of voom. Output of voom (log-

scaled data and precision weight) is then passed to lmFit function. For limmatrend approach, the raw count data 

were log-scaled using cpm function of edgeR package with the option log=T. Limmatrend was implemented by 

setting the parameter trend=TRUE of the function eBayes. Lastly, we applied limmatrend to BEC data. Because 



all the BEC data were in their log-scale, they were directly used for lmFit function. Additionally, batch covariate 

was incorporated in the model by altering the design matrix of lmFit. 

- Seurat10 (R package ver. 4.0.2): We normalized each batch using function SCTransform incorporating the ‘batch’ 

information using batch_var  parameter. The raw count data were log-scaled using run LogNormalize function 

and corresponding Seurat object was used as input for SCTransform. We have set the parameters 

variable.features.n and ncells to the numbers of total genes and cells, respectively. Additionally, the option 

return.only.var.genes = F was set to obtain the normalized data with the same numbers of gene and cell as those 

of original data. The normalized data are stored in the data slot of SCT assay.We can obtain the batch-effects 

corrected values from the transformed data that are used for both sign preservation tests (Seurat_BEC) and DE 

test (Seurat_Wilcox). 

- Wilcoxson (ranksum) test11 : This test is used to compare distributions of two sample groups based on the ranks 

rather than the expression values. This test was implemented using FindMarkers function in Seurat package with 

the following parameters: logfc.threshold=0, min.cells.feature=0, min.cells.group=0, min.pct=0, 

only.pos=FALSE to obtain the full list of ranked genes (whether significant or not). FindMarkers function was 

applied to Seurat object. When Wilcoxson test is applied to BEC data, we have generated Seurat object of batch 

corrected data in their log-scale and run FindMarkers function directly. In case of Raw_Wilcox, we have generated 

Seurat object of raw count data and run LogNormalize function followed by scale function before running 

FindMarkers function. 

- MAST 12 (R package ver. 1.16.0): This test is implemented using FindMarkers function in Seurat package like 

Wilcoxson test. We used the option test.use='MAST' to run MAST, other parameters set as follows: 

logfc.threshold=0, min.cells.feature=0, min.cells.group=0, min.pct=0, only.pos=FALSE to obtain the full list of 

ranked genes (whether significant or not). The raw count was taken into Seurat object and log-scaled using 

LogNormalize function before running FindMarkers function. We used the default settings for all datasets except 

incorporating the batch covariate using latent.vars parameter of FindMarkers.  

- DESeq2 13 (R package ver. 1.30.1): We added pseudocount 1 to all data entries to prevent the situation that each 

gene includes at least one 0, which leads to an unsolvable problem for the function. Or, alternately, using the raw 

count with sfType=’poscount’ can also do the trick. However, we found that the first option usually gave the better 

performance. Count matrix with the pseudocount, the cell labels and the contrasting design formula are then fed 

as input for the function DESeqDataSetFromMatrix to create so-called DESeq2 object which was used for the 

input of DESeq2 function. The output is passed to the function lfcShrink for estimating the shrinkage of effect 

size. As suggested by the authors of this method, we specified to use the apeglm method for effect size shrinkage 
14, which often improved the performance. By customizing the design formula, we can incorporate the batch 

covariate information. When involved with ZINB-WaVE method, DESeq2 takes observationalWeights in addition 



to the same design formula and raw count data with pseudocount 1. Detailed description is in ZINB-WaVE section. 

When used for meta-analysis, DESeq2 was run on each batch/dataset separately and the individual outputs for 

each batch/dataset were combined. 

- edgeR15 (R package ver. 3.32.1): The raw count data were fed to DGEList object along with the corresponding 

group information as meta data. The edgeR’s built-in normalization was applied via the function calcNormFactors 

tha implemented trimmed mean of M-values (TMM) normalization by default. Then, we estimated the dispersion 

parameter for the negative binomial model by feeding the normalized data and the modeled design to the function 

glmQLFit, which provided DE analysis results such as p-values and logFC values as output. Beside testing the 

batch covariate, we also tested edgeR_DetRate 16 version which used the fraction of detected genes per cell as 

another covariate. When involved with ZINB-WaVE, edgeR takes observationalWeights in addition to the same 

design formula and raw count data. Detailed description is in the ZINB-WaVE section. When used for meta-

analysis, edgeR was run on each batch/dataset separately and the individual outputs for each batch/dataset were 

combined. 

- ZINB-WaVE17 (R package ver. 1.12.0): We used the function SingleCellExperiment to create an object from the 

raw counts data and the corresponding meta information. The zinbwave function is applied to the object to provide 

the low-dimensional representation of the data from the perspective of ZINB-WaVE.  

(https://bioconductor.org/packages/release/bioc/vignettes/zinbwave/inst/doc/intro.html#differential-expression). 

There are two ways for DE analysis using ZINB-WaVE output  

• To obtain the BEC data, the parameter normalizedValues should be set as “TRUE” to let the function 

return the corrected data, denoted as ZW_BEC data. These corrected data were used for Wilcoxson test. 

• To use the observation weights, the parameter observationalWeights of the function zinbwave is required 

to be “TRUE”. These weights are used as input in addition to the raw count data for DESeq2 or edgeR. 

For edgeR, the assay of zinbwave output is converted to DGEList object using DGEList function. The 

functions glmFit and glmWeightedF are then used in order. For DESeq2, DESeqDataSet is used to create 

an object from the output of the function zinbwave. Then, the functions DESeq and lfcShrink are used in 

order on the output to obtain the DE analysis results. The options, sfType="poscounts", useT=TRUE, 

minmu=1e-6 were used for DESeq2 function as described in zinbwave vignettes page. We found that the 



performance of DESeq2 tended to improve when the pseudocounts of one were added to the ‘counts’ 

field of the zinbwave output before creating the object using the function DESeqDataSet. 

- Pseudobulk18 DE approach: Raw read counts for each gene are aggregated across the cells of a given group within 

each batch/dataset. Each collapsed sample will be treated like a single bulk sample for that group. Any DE method 

designed for bulk RNA-seq data can be applied to the pseudobulk data for identifying DE genes. 

- LogN: DE workflows including “LogN” used the “LogNormalize” function in Seurat to log-scale the raw count 

data. 

- Meta-analysis (FEM/REM)19: FEM and REM combine effect size of each gene from multiple batches. Both 

approaches are implemented using get.FEM2 and get.REM2 functions of MetaDE R package20 (ver.1.0.5) as. 

get.ES function calculates the variances and effect sizes for each gene and batch for those two functions. We have 

manually set functions not to run additional filtering and imputation steps. This function was included in our github 

page. We have run ind.cal.ES.core function on log-normalized count data. When DESeq2 was used for each batch, 

“log2FoldChange” output in each batch was used as effect size, and “lfcSE” was converted to variance for 

FEM/REM meta-analysis. The output of FEM/REM include the meta-analysis p-values and average effect sizes 

for all genes. 

- Meta-analysis (Fisher/wFisher)21,22: We used the function wFisher from metapro R package. For each gene, DE 

p-values and its signs from each batch are used as input for “p” and “eff.sign” parameters, respectively. Additional 

input is the vector of expressed cell counts in each batch, which is passed to “weight” parameter. The output 

consists of meta-analysis p-value and DE direction (+/-) for each gene. We converted “+” and “-” DE direction to 

+1 and -1, respectively and used them as the sign of each gene. We used wFisher for three DE methods: DESeq2, 

edgeR and limmatrend. While DESeq2 and edgeR are applied to raw count data, limmatrend is applied to log-

normalized count data. For prognostic gene selection by integrating the five survival analysis results, we used the 

number of samples from each microarray dataset as “weight” and sign of log Hazard ratio as “eff.sign”. 

- scVI 23 (via Python library scvi-tools version 0.17.3): Single-cell variational inference is a part of packaged Python 

library scvi-tools which provide the probabilistic representation and analysis of scRNA-seq data. This method uses 

deep neural networks with stochastic optimization to aggregate information across similar cells and genes to 

approximate the distributions that underlie the observed expression values, while accounting for batch effects and 

limited sensitivity23. For this methods, we used the Python pipeline Scanpy (version 1.9.1) to preprocess the data. 

The function pp.normalize_total is used to normalize the library size for each cell (sum 10,000) and the function 

pp.log1p is used to perform log-transformation. The top 2000 highly variable genes are extracted for reference 

during the training process. We use the function model.SCVI to build a scVI model with a network structure 

including: input layer, three hidden 1024-node layers for encoding, one latent space with 128 nodes, another three 



hidden 1024-node layers for decoding and final output layer (default: single hidden layers). The corrected data is 

obtained via the function get_normalized_expression of the trained model.  

- scGen24 (Python library version 2.1.0): This transfer learning method combines variational auto-encoders (VAEs) 

and latent space vector arithmetic to model and predict missing values of single-cell expression data24. A deep 

neural network model is trained on the observed data using VAEs, and then is used to predict the distribution of 

the query dataset. The pipeline Scanpy functions pp.normalize_total and pp.log1p are used to normalize and log-

scale the count data before training a scGen network in 3,000 epochs with the batch size of 32 samples (cells) 

without an early stopping option to exhaustively explore the latent space. Finally, we obtain the BEC expression 

matrix from the function batch_removal of the trained model. 

- Scanorama25 (Python library version 1.7.2): The basic concept of this approach is to consider each batch as a 

perspective of the future corrected data. Then, the batches are integrated in the order of restoring the panorama 

view of the corrected data. An approximate nearest neighbor search is used to identify mutually linked cells across 

batches with the expression in the reduced dimension using approximate singular value decomposition (SVD) in 

a pair-by-pair manner. The order of matching is determined by the ratio of matching cells between batches. The 

pipeline Scanpy functions pp.normalize_total and pp.log1p are used to normalize and log-scale the count data. 

Scanorama works seamlessly with the Scanpy pipeline since the normalized and log-transformed data obtained 

using Scanpy is fed directly to the function scanorama.correct_scanpy. Then, we have the output of the corrected 

data. Note that the order of genes and cells may be shuffled after the correction. 

- RISC26 (R package ver. 1.5.0): RISC integrates scRNA-seq datasets using principal components (PCs) via 

principal component regression (PCR) model. It takes advantage of the natural compatibility of eigenvectors 

between PCR model and dimension reduction for accurate integration of scRNA-seq datasets26. Before running 

RISC data integration, each batch/dataset should be preprocessed using scFilter, scNormalize and scDisperse 

function from the RISC package. We used is.Filter=F parameter for scFilter function to obtain the integrated data 

of the same size with the original raw count data. Then, we have merged preprocessed data into a list and run 

InPlot function to check how the PCs explain the variance for data integration. We have used nPC=40 and 

minPC=16. The Std.cut parameter is recommended to be 0.85 ~ 0.9 for small-scale data (total cells < 10,000) and 

0.9 ~ 0.98 for large-scale data (total cells > 10,000). We have used 𝑆𝑡𝑑. 𝑐𝑢𝑡 = 0.85 + 0.025 ∗

𝑙𝑜𝑔!"(𝑡𝑜𝑡𝑎𝑙	𝑐𝑒𝑙𝑙𝑠)/100)  for small-scale data (total cells < 10,000) and 𝑆𝑡𝑑. 𝑐𝑢𝑡 = 0.9 + 0.04 ∗

𝑙𝑜𝑔!"(𝑡𝑜𝑡𝑎𝑙	𝑐𝑒𝑙𝑙𝑠)/10000) for large-scale data (total cells > 10,000). The InPlot function provides three different 

scores for each batch, “Cluster Num”, “Stv by PCs” and “Kolmogorov-Smirnov”. The batch with the largest score, 

weighted in the order of Cluster Num, Stv by PCs and Kolmogorov-Smirnov was manually selected as the 

reference batch for integration. We have rearranged the reference dataset to the first element of the merged list and 

passed it as input for the scMultiIntegrate function. The corrected data are stored in logcount slot of 

scMultiIntegrate output.  



Supplementary Figures 

A motivation for using pAUPR and 𝐅𝟎.𝟓-scores 

In the precision-recall results for the MCA T-cell data (Supplementary Fig. 3h), edgeR showed a lower precision 

compared to LogN_FEM and MAST in the area of recall < 0.5; however, the precision of edgeR was much higher 

for recall > 0.5 (Supplementary Fig. 1a). As a result, the AUPR of edgeR which used the whole recall area was 

higher than those of LogN and MAST. This pattern was even clearer when we analyzed MCA B-cells 

(Supplementary Fig. 1b, c). We assumed LogN_FEM and MAST in these results performed better than edgeR 

because it is of particular important to identify a small number of DE genes (or markers) in the analysis of  noisy 

and sparse scRNA-seq data. For a similar reason, we used F".&-scores. 

 
 

Figure S1. Model-free simulation results for MCA T-cells and B-cells. a Areas under the precision-recall (AUPRs) of 

selected differential expression (DE) workflows for T-cells. AUPRs of selected workflows for b B-cells and c partial AUPR 

(pAUPR) results for all DE workflows. The precision-recall pairs that correspond to q-value = 0.05 in each DE workflow are 

circled.  

  



 
  



Figure S2. Model-based simulation results for moderate depths, seven batches and high sparsity (zero rate > 80%). 

Scatter plots (tSNE) of seven batches for a small and b large batch effects. Principal component variance analysis results 

representing c small and d large batch effects. F0.5-scores for 46 differential expression workflows for e small and f large 

batch effects. Results for six cell proportion scenarios (12 instances in total: six for upregulated genes and six for 

downregulated genes) are represented as boxplots; the lower, center and upper bars represent the 25th , 50th and 75th percentiles, 

respectively, and the whiskers represent ± 1.5 × interquartile range. The vertical dotted lines (black) indicate the median F0.5-

score of Wilcoxon test (Raw_Wilcox). Precision-recall curves for g small and f large batch effects. The partial areas under 

the curve for recall rate < 0.5 (pAUPRs) are computed and sorted in descending order in the legends. The vertical dotted lines 

(black) indicate the recall rate of 0.5. The precision-recall pairs that correspond to q-value = 0.05 in each differential 

expression (DE) workflow are circled. Here, we used slightly reduced effect sizes of DE genes compared to the two-batch 

case to appropriately compare the relative performance of benchmark methods. n=2400 cells were used for each test case.  

  



 
  



Figure S3. Model-free simulation results. Scatter plots for a pancreatic alpha-cell and b MCA T-cell data. Principal 

component variance analysis results for c pancreatic alpha-cell and d MCA T-cell data, representing small and large batch 

effects, respectively. The F!.#-scores for e pancreatic alpha-cell and f MCA T-cell data. Results for six cell proportion 

scenarios (12 instances in total: six for upregulated genes and six for downregulated genes) are represented as boxplots; the 

lower, center and upper bars represent the 25th , 50th and 75th percentiles, respectively, and the whiskers represent 

± 1.5 × interquartile range. The vertical dotted lines (black) indicate the median F0.5-score of Wilcoxon test (Raw_Wilcox). 

Precision-recall curves for the 46 differential expression (DE) workflows for g pancreatic alpha-cell and h MCA T-cell data. 

The partial areas under the precision-recall curve for recall rate < 0.5 (pAUPR) are computed and sorted in descending order 

in the legends. The vertical dotted lines (black) indicate the recall rate of 0.5. The precision-recall pairs that correspond to q-

value = 0.05 in each DE workflow are circled. n=900 and 3059 cells were used for (e, g) pancreatic alpha-cell and (f, h) MCA 

T-cell data, respectively.  

  





Figure S4. Distortion analysis for differential expression (DE) workflows. a Proportion of DE genes that altered their 

signs by each DE workflow (error ratios) for model-based simulation with a low depth (two batches; large batch effects; 

depth-4). b Error ratios for the model-based simulation for only significantly detected DE genes (q-value < 0.05). The vertical 

dotted lines (black) indicate the median error ratio of Wilcoxon test (Raw_Wilcox). c Error ratios for MCA T-cell (model-

free) simulation data. d Error ratios for the MCA data for only significantly detected DE genes. e A scatterplot of the logFC 

values for the model-based simulation data with a low depth (depth-4) before (logFC_raw) and after (logFC_corrected) 

applying batch-effect correction (BEC) methods: Combat, limma (limma_BEC), MNNCorrect, Seurat_BEC, scMerge, ZINB-

WaVE (ZW_BEC), scVI, scGen, Scanorama and RISC. Pearson correlation, its p-value and the angular cosine distance 

(Angular Dist) of scatter plot are shown for each BEC method. f The distortion levels for the low depth data as measured by 

the angular cosine distance from the logFC scatterplot for six cell proportion scenarios. The lower, center and upper bars of 

each boxplot represent the 25th , 50th and 75th percentiles, respectively, and the whiskers represent ± 1.5 × interquartile range. 

n=1000 cells were used in a, b, e, f, and n=624 cells were used in c and d.  

 

 

  



 
 

Figure S5. Error ratios for differentially expressed genes with or without FC threshold (|𝒍𝒐𝒈𝑭𝑪| > 𝟎. 𝟓). Error ratios 

for model-based simulation a for q-value < 0.05 only and b for both thresholds q-value < 0.05 and |𝑙𝑜𝑔𝐹𝐶| > 0.5. Error ratios 

for pancreatic alpha-cell simulation c for q-value < 0.05 only and d for both thresholds q-value < 0.05 and |𝑙𝑜𝑔𝐹𝐶| > 0.5. 

The lower, center and upper bars of each boxplot represent the 25th , 50th and 75th percentiles, respectively, and the whiskers 

represent ± 1.5 × interquartile range. n=1050 cells were used in a, b and n=900 cells were used in c, d.  

 

  



 
Figure S6. F0.5-scores with or without FC threshold (|𝒍𝒐𝒈𝑭𝑪| > 𝟎. 𝟓). F0.5-scores for model-based simulation a for q-value 

< 0.05 only and b for both thresholds q-value < 0.05 and |𝑙𝑜𝑔𝐹𝐶| > 0.5. F0.5-scores for pancreatic alpha-cell simulation c for 

q-value < 0.05 only and d for both thresholds q-value < 0.05 and |𝑙𝑜𝑔𝐹𝐶| > 0.5. Results for six cell proportion scenarios (12 

instances in total: six for upregulated genes and six for downregulated genes) are represented as boxplots; the lower, center 

and upper bars represent the 25th , 50th and 75th percentiles, respectively, and the whiskers represent ± 1.5 × interquartile range. 

The vertical dotted lines (black) indicate the median F0.5-score of Wilcoxon test (Raw_Wilcox). n=1050 cells were used in a, 

b and n=900 cells were used in c, d.  

 

  



Figure S7. Model-based simulation results for less sparse data (zero rate: 40%) with large batch effects. F0.5-scores for 

46 differential expression (DE) workflows for a moderate and b low (depth-4) depths. Results for six cell proportion scenarios 

(12 instances in total: six for upregulated genes and six for downregulated genes) are represented as boxplots; the lower, 

center and upper bars represent the 25th , 50th and 75th percentiles, respectively, and the whiskers represent ± 1.5 × interquartile 

range. The vertical dotted lines (black) indicate the median F0.5-score of Wilcoxon test (Raw_Wilcox). Precision-recall curves 

for c moderate and d low depths. The partial areas under the curve for recall rate < 0.5 (pAUPRs) are computed and sorted in 

descending order in the legends. The vertical dotted lines (black) indicate the recall rate of 0.5. The precision-recall pairs that 

correspond to q-value = 0.05 in each DE workflow are circled. n=1050 cells were used in all cases a-d. 

 



 
 

Figure S8. Model-based simulation results for less sparse data (zero rate: 40%) with small batch effects. F0.5-scores for 

46 differential expression (DE) workflows for a moderate and b low (depth-4)  depths. Results for six cell proportion scenarios 

(12 instances in total: six for upregulated genes and six for downregulated genes) are represented as boxplots; the lower, 

center and upper bars represent the 25th , 50th and 75th percentiles, respectively, and the whiskers represent ± 1.5 × interquartile 

range. The vertical dotted lines (black) indicate the median F0.5-score of Wilcoxon test (Raw_Wilcox). Precision-recall curves 

for c moderate and d low depths. The partial areas under the curve for recall rate < 0.5 (pAUPRs) are computed and sorted in 

descending order in the legends. The vertical dotted lines (black) indicate the recall rate of 0.5. The precision-recall pairs that 

correspond to q-value = 0.05 in each DE workflow are circled. n=1050 cells were used in all cases a-d. 

 



 
Figure S9. Distribution and batch effects of LUAD scRNA-seq data. a Composition of cell types in normal and tumor 

lung samples. b Principal variance component analysis results for epithelial and myeloid cells. “Patient” represents batch 

effects factor between patients. 

  



 

Figure S10. Partial areas under the curve (pAUC) for standard positive genes detected by differential expression (DE) 

analysis of scRNA-seq, TCGA lung adenocarcinoma, and pseudobulk data (up to top 20% DE genes). a pAUC of 

cumulative disease scores (GDA) from epithelial cell data analysis. b pAUC of cumulative counts of prognostic genes from 

epithelial and myeloid cell data analyses. Black-dashed lines represent pAUCs estimated from the expected numbers of 

standard positive genes for random gene ranks. 

 

 

  



 

Figure S11. Cumulative scores of known disease genes obtained from analyses of lung adenocarcinoma (LUAD) 

epithelial cells and two microarray datasets. Cumulative scores of ten scRNA-seq differential expression (DE) methods, 

four pseudobulk analysis methods, and one bulk sample analysis method (limma) are compared for known disease genes up 

to top 20% DE gene ranks. Two LUAD microarray expression datasets (a GSE31210 and b GSE43458) are analyzed (green 

curves). Black-dashed slopes represent the expected cumulative scores for random gene ranks. 9,144 and 9,297 genes 

commonly found in both scRNA-seq and microarray datasets (GSE31210 and GSE43458) were analyzed, respectively. 

n=7728 epithelial cells were used for scRNA-seq data analysis, and n=241 and 110 samples were used from GSE31210 and 

GSE43458 microarray data analyses, respectively. 

 

  



 

Figure S12. Cumulative scores of known disease genes obtained using scRNA-seq epithelial cells data from individual 

lung adenocarcinoma (LUAD) patients up to top 20% differential expression (DE) gene ranks. Comparison of 

cumulative scores for a known disease genes and b prognostic genes between seven edgeR-based methods, four 

bulk/pseudobulk analysis methods, and edgeR analyses of the data from seven individual patients. Black-dashed slopes 

represent the expected cumulative scores for random gene ranks. 9395 genes commonly found in both scRNA-seq epithelial 

cells (n=7728) and TCGA LUAD RNA-seq datasets (n=585) were analyzed. 

 

  



 



Figure S13. Detection of prognostic genes compared between differential expression (DE) analyses of scRNA-seq, 

TCGA lung adenocarcinoma (LUAD) RNA-seq and pseudobulk data. Cumulative counts of prognostic genes detected 

within top 20% DE gene ranks are shown for three cell types of LUAD: a epithelial cells, b myeloid cells and c T/NK cells. 

X-axis represents the gene ranks in each DE workflow (up to top 20%). Y-axis represents the cumulative counts of prognostic 

genes captured within top-k gene ranks by each DE workflow. The black-dashed slopes represent the expected cumulative 

counts of prognostic genes for random gene ranks. Ten and four methods are selected for DE analyses of scRNA-seq and 

bulk/pseudobulk data, respectively. d p-values of truncated Komogorov-Smirnov (KS) test for DE analyses of scRNA-seq 

and bulk/pseudobulk data are shown for the three cell types. Black and gray dashes represent the two significance cutoffs p-

values = 0.01 and 0.05, respectively. n = 7728, 17348 and 15293 cells were analyzed for epithelial, myeloid and T/NK cells 

data, respectively. 9395, 7735 and 4280 genes commonly found in both scRNA-seq and TCGA LUAD RNA-seq data were 

analyzed for epithelial, myeloid and T/NK cells, respectively. 

  



 
Figure S14. Differential expression (DE) analysis on COVID-19 monocytes scRNA-seq data. Detection of virus defense 
genes in Gene Ontology (GO) is compared between DE analyses of scRNA-seq and pseudobulk data. a Composition of 
cell types in mild and severe COVID-19 patient samples. b Cumulative counts of virus defense genes up to top 20% DE gene 
ranks are shown for monocytes. X-axis represents the gene ranks in each DE analysis. Y-axis represents the cumulative counts 
of virus defense genes captured within top-k gene ranks by each DE method. The black-dashed slope represents the expected 
cumulative number of virus defense genes for random gene ranks. Ten and four DE methods are selected for analyses of 
scRNA-seq and pseudobulk data, respectively. c Partial areas under the curve (pAUCs) and p-values of truncated Komogorov-
Smirnov (KS) test for DE analyses of scRNA-seq data are shown. For pAUC, black-dashed line represents pAUC estimated 
from the expected numbers of standard positive genes (virus defense genes) for random gene ranks. For p-values, black and 
gray dashes represent the two significance cutoffs p-value =  0.01 and 0.05, respectively. 7242 genes and 100361 cells were 
used in COVID-19 monocyte data analysis. 
 



Figure S15. Hierarchical clustering of differential expression (DE) analysis results based on spearman rank 

correlation. a Clustering heatmap of 46 DE workflows for COVID-19 monocyte data. b Dendrograms of hierarchical 

clustering for COVID-19 monocyte and lung adenocarcinoma (LUAD) epithelial cell data. c Baker’s gamma correlation 

between the clustering results for LUAD epithelial cell and COVID-19 monocyte data (Red dash). The density function of 

correlation was estimated from one million permutations of the clustering nodes. Ranks of 7242 and 10278 DE genes from 

COVID-19 monocyte and LUAD epithelial cells data were used for clustering DE workflows, respectively. 

 

  



Supplementary Tables 

Table S1. Main features of simulation data used in this study. The table shows the numbers of cells, genes (filtered) and 

differentially expressed genes (DEGs), as well as average depth, maximum read count and sparsity (zero rate) in each batch. 

Datasets Pancreas T-cell B-cell Splatter 
(depth-77) 

Splatter 
(depth-4) 

Splatter 
(depth-10) 

Batch1-Cells 562 358 184 300 300 300 
Batch2-Cells 378 266 500 750 750 750 
Genes (filtered) 7168 3059 2609 1997 2963 2745 
DEGs 1434 612 522 343 557 539 

 

Batch 1  
Avg. depth 2.66 1.99 1.78 78.04 4.11 10.51 
Max count 2173 168 49 2840 286 562 
Sparsity 0.75 0.83 0.83 0.76 0.72 0.68 
       
Batch 2 

 
Avg. depth 2.76 270.60 282.40 76.60 4.06 10.33 
Max count 2422 58702 68790 1649 184 654 
Sparsity 0.78 0.60 0.78 0.76 0.73 0.68 
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