Supplementary Material

Table 1: Summary of participant demographics in iSTAGING consortium. Age is described in format: mean \pm std [min, max]. F and M in gender represent female and male separately. Field indicates the magnetic strength of the MRI scanners.

Study	Subject	Age	Gender (F/M)	Field
BLSA-1.5T	157	$69.1 \pm 8.5 \ [48.0, 85.0]$	66 / 91	1.5T
BLSA-3T	960	$65.0 \pm 14.7 \ [22.0, \ 93.0]$	525 / 435	3T
UKBB	2202	$62.8 \pm 7.3 \ [45.0, \ 79.0]$	1189 / 1013	3T
SHIP	2739	$52.6 \pm 13.7 \ [21.2, \ 90.4]$	$1491 \ / \ 1248$	1.5T

Table 2: Summary of participant demographics in ADNI dataset. Age is described in format: mean \pm std [min, max]. F and M in gender represent female and male separately. Field indicates the magnetic strength of the MRI scanners.

Study	Subject	$_{\rm CN}$	AD	Age	Gender (F/M)	Field
ADNI-1 ADNI-2/GO	422 441			$\begin{array}{c} 75.5 \pm 6.2 \; [55.0, \; 90.9] \\ 73.4 \pm 6.8 \; [55.4, \; 90.3] \end{array}$	201 / 221 221 / 220	1.5T 3T

Table 3: Multi-layer perceptron (MLP) network implementation details. The network is used for age regression and AD classification tasks. The output size k of the final layer is depends on the task.

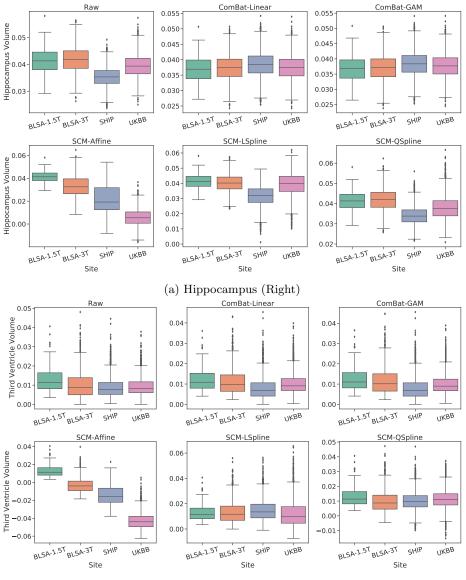
Layer	Input Size	LeakyReLU α	Output Size
Linear + LeakyReLU	145	0.1	72
Linear + LeakyReLU	72	0.1	36
Linear	36	-	k

Table 4: Flow-based SCM implementation details. We directly learn the binary probability of sex s and categorical probability of site t. p_{θ}^{S} and p_{θ}^{T} are the learnable mass functions of the categorical distribution for variables sex s and site t, and K is the number of site t. The modules indicated with θ are parameterized using neural networks. We constrain age a variable with lower bound (exponential transform) and rescale it with fixed affine transform for normalization. Spline_{θ} transformation refers to the linear neural spline flows [?]. The ConditionalTransform_{θ}(·) can be conditional affine or conditional spline transform, which reparameterizes the noise distribution into another Gaussian distribution. We use linear [?] and quadratic [?] autoregressive neural spline flows for the conditional spline transform, which are more expressive compared to the affine flows. The transformation parameters of the ConditionalTransform_{θ}(·) are predicted by a context neural network taking · as input. The context networks are implemented as fully-connected networks for affine and spline flows.

Observations	Exogenous noise
$s := \epsilon_S$	$\epsilon_S \sim \operatorname{Ber}(p_{\theta}^S)$
$a := f_A(\epsilon_A) = (\operatorname{Spline}_{\theta} \circ \operatorname{Affine} \circ \operatorname{Exp})(\epsilon_A)$	$\epsilon_A \sim \mathcal{N}(0, 1)$
$t := \epsilon_T$	$\epsilon_T \sim \operatorname{Cat}(K, p_{\theta}^T) \\ \epsilon_X \sim \mathcal{N}(0, 1)$
$x := f_X(\epsilon_X; s, a, t) = (\text{Conditional Transform}_{\theta}([s, a, t]))(\epsilon_X)$	$\epsilon_X \sim \mathcal{N}(0,1)$

Table 5: Comparison of associative abilities of different type of flows on iSTAG-ING consortium and ADNI dataset. We observe that spline flows achieved higher log-likelihood compared to that of affine flow for both datasets. This indicates that a flow with higher expressive power helps for density estimation.

Study	Model	Log-likelihood
iSTAGING	Affine Linear Spline Quadratic Spline	$\begin{array}{c} 1.8817 \\ 17.2204 \\ 17.2397 \end{array}$
ADNI	Affine Linear Spline Quadratic Spline	$\begin{array}{c} 1.8963 \\ 15.2715 \\ 15.2055 \end{array}$



(b) Third Ventricle (Right)

Fig. 1: Comparison of normalized feature distributions cross-site in iSTAGING consortium before and after apply the ComBat methods (ComBat-Linear and ComBat-GAM) and the proposed methods (SCM-Affine, SCM-LSpline, and SCM-QSpline). The distributions of the features harmonized by ComBat methods are aligned cross-site, whereas those harmonized by our proposed method (Q-Spline) are unchanged compared to the raw features. We preserve the unknown cofounders (subject-specific information due to biological variability, such as race, gene, and pathology AD/CN) instead of removing them as site-effects, which is beneficial for downstream analysis, such as AD diagnosis.



(b) Thalamus Proper (Right)

Fig. 2: Continued comparison of normalized feature distributions cross-site in iSTAGING consortium before and after apply the ComBat methods (ComBat-Linear and ComBat-GAM) and the proposed methods (SCM-Affine, SCM-LSpline, and SCM-QSpline). The distributions of the features harmonized by ComBat methods are aligned cross-site, whereas those harmonized by our proposed method (Q-Spline) are unchanged compared to the raw features. We preserve the unknown cofounders (subject-specific information due to biological variability, such as race, gene, and pathology AD/CN) instead of removing them as site-effects, which is beneficial for downstream analysis, such as AD diagnosis.