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1. SEM image of AgNW network. 

 

Fig. S1 SEM image of dropcasted AgNW network on silicon wafer.  

 

 

  



 

 

 

2. Thermal and mechanical measurement of PDMS and PDMS/CB. 

The inset figure in Fig. S2A  shows the experimental setup for measuring the thermal conductivity 

of PDMS/CB.  The same AgNW/PDMS heater is attached on top of two cuboid test samples (a 

PDMS sample and a PDMS/CB sample with identical size and shape). A copper heat sink is 

connected to the bottom of the samples. According to the equation of thermal conductivity :  

𝑘 =
𝑞𝑡

𝐴∆𝑇
                                                                              (S-1) 

where ΔT is the temperature difference along the heat flux direction, t and A are the thickness and 

cross section area of the sample, q is the heat transfer in the sample.  

With the same input power  for joule heating, identical shape and size, and with the heat dissipation 

to ambient air neglected,  we assume the same heat transfer in the PDMS and PDMS/CB samples. 

Basing on equation (1): 

𝑘𝑃𝐷𝑀𝑆/𝐶𝐵 =
𝛥𝑇𝑃𝐷𝑀𝑆

𝛥𝑇𝑃𝐷𝑀𝑆/𝐶𝐵
𝑘𝑃𝐷𝑀𝑆                                              (S-2) 

where kPDMS= 0.16 W/mK (from the data sheet of Dow Inc). Based on the temperature difference 

captured in the IR images, the thermal conductivity kPDMS/CB= 0.21 W/mK. 

 

Fig. S2 Thermal and mechanical effect of doping CB in PDMS. (A) Thermal conductivity test 

of PDMS and PDMS/CB (with weight ratio of 4:1). (B) Stress strain curve of PDMS and 

PDMS/CB (with weight ratio of 4:1).   



 

 

 

3. Temperature gradient of the AgNW/PDMS/CB actuator 

The IR images on the top and bottom of the actuator reveal an average temperature difference of 

0.3 °C in the steady state of the joule heating (after 3 s). We also estimated the temperature 

difference theoretically based on the experimentally measured parameters.  

According to the equation of thermal conduction of a two-layer composite, temperature difference 

between the top PDMS/CB layer and bottom LCE layer is given by, 

∆𝑇 =
𝑞

𝐴
(
𝑡𝑃𝐷𝑀𝑆/𝐶𝐵

𝑘𝑃𝐷𝑀𝑆/𝐶𝐵
+

𝑡𝐿𝐶𝐸

𝑘𝐿𝐶𝐸
)                                                      (S-3) 

where q is the heat transfer experimentally measured using the same AgNW/PDMS/CB heater on 

a short cuboid of PDMS/CB (q=0.032 W) (using the setup shown in the inset of Fig. S2), tPDMS/CB, 

tLCE  and  kPDMS/CB, kLCE  are the thickness and thermal conductivity of the two layers, respectively 

(tPDMS/CB=0.06 mm,  tLCE=0.251 mm,  kPDMS/CB=0.21 W/mK, kLCE=0.22 W/mK (59) ), and A is the 

cross section area of the heat flux (for both layers A=1.6 cm2). Based on all these parameters, the 

estimated temperature difference ΔT=0.287 °C, very close to experimental result using the IR 

images. 

 

Fig. S3 IR images of the top and bottom surface of the actuator. The comparison shows an 

average temperature difference of 0.3 °C (sampled from 15 points in the heating area).  

 



 

 

 

4. Stress-strain curve of LCE 

 

Fig. S4 Stress-strain curve of the LCE ribbon.  

  



 

 

 

5. Strain-temperature relationship of LCE 

 

Fig. S5 Strain-temperature relationship of the fabricated LCE ribbon. The inset figures 

show the LCE sample in an oven at different temperatures. 

  



 

 

 

6. Profile control of the crawling motion 

 

Fig. S6 The crawling robot body profile control. The body profile contour and corresponding 

polynomial fit of the crawling motion with 5V and 8V applied. 

 

 

 

 

 

  



 

 

 

7. Summary of the soft robots based on electrothermal actuation 

 

Table S1 Summary of the soft robots based on electrothermal actuation 

 

Thermal 

responsive 

materials 

Heater 
Distributed 

heater 

Heater 

programmability 
Locomotion performance 

(41) LCE/PI Ni-Cr wires × × Crawling (1-directional) 

(39) LCE/PI Cr-Au mesh √ √ Crawling (2-directional) 

(60) LCE/PDMS AgNWs × × No crawling demonstrated 

(61) LCE/Silicone Liquid metal × × No crawling demonstrated 

(14) LCE Cu wires √ √ Walking (multi-gait) 

(62) GO 
Conductive 

fabric 
× × Crawling (1-directional) 

(63) LCE CNT × × 
Crawling (1-directional) & 

jumping 

(64) Nylon/CNT CNT × × Crawling (1-directional) 

(65) SMA SMA × × Crawling (1-directional) 

Our work LCE/PDMS AgNWs √ √ 
Crawling (2-directional & 

bioinspired body profile control) 

 

 

  



 

 

 

8. Estimate of the energy efficiency  

 

Here we present a first-order estimate of the energy efficiency of our soft robot. The energy 

efficiency depends on the actuation mechanism and materials involved, so here we only conduct 

a preliminary analysis of our soft robot and limit the comparison to a specific study reporting 

bidirectional locomotion with the same actuation mechanism (electrothermal) and the same 

material (LCE) (39).  

In our work, the input power are 0.109 W and 0.174 W for each locomotion (0.5 mm/s for 

forward locomotion and 0.72 mm/s for reverse locomotion), under the current of 30 mA. Cost of 

transport CoT=E/(mgd), as defined in literature (66), is used to characterize the energy 

efficiency, where the E is the input energy, m is the mass, g is gravitational constant, and d is 

moved distance. In our work, the mass m is 0.46 g, so CoT=4.88×104 for forward locomotion 

and CoT=5.36×104 for reverse motion.  

In (39), the power is 0.069 W for each locomotion (0.032 mm/s for forward locomotion and 

0.021 mm/s for reverse locomotion) and the mass m is 0.29 g. CoT=7.36×105 for forward 

locomotion and CoT=1.07×106 for reverse motion. 

It can be seen that CoT in our work is approximately 0.05 and 0.07 times of the soft robot in (39) 

in forward and reverse locomotion, respectively, therefore the energy efficiency of our crawling 

robot is much higher for the same actuation mechanism and material.    



 

 

 

Other Supplementary Materials: 

 

Movie S1 

Forward mode locomotion of the crawling robot. 

Movie S2 

Reverse mode locomotion of the crawling robot. 

Movie S3  

The crawling robot passing through a confined tunnel and passing back to return to the initial 

location. 
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