Epigenetic state determines the *in vivo* efficacy of STING agonist therapy

Rana Falahat¹, Anders Berglund², Patricio Perez-Villarroel¹, Ryan M. Putney², Imene Hamaidi¹, Sungjune Kim^{1,3}, Shari Pilon-Thomas^{1,4}, Glen N. Barber⁵, and James J. Mulé^{1,3,4*}

Department of Immunology, Moffitt Cancer Center; Tampa, FL 33612 Department of Biostatistics and Bioinformatics, Moffitt Cancer Center; Tampa, FL 33612 Radiation Oncology Program, Moffitt Cancer Center; Tampa, FL 33612 Cutaneous Oncology Program, Moffitt Cancer Center; Tampa, FL 33612 Department of Cell Biology, University of Miami Miller School of Medicine; Miami, FL 33136

*Corresponding Author: James J. Mulé, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612. Phone: 813-745-1536; Fax: 813-745-6188; E-mail: James.Mule@moffitt.org

Supplementary Figure 1. Melanoma-intrinsic STING activation results in delayed tumor growth and increased tumor-infiltrating CD8⁺ T cells in the low tumor burden state.

Schematic of the STING agonist treatment schedule. Groups of STING^{gt/gt} mice were injected subcutaneously with 1 x 10⁵ B16-ISG or B16-ISG-STING^{KO} or 1.5 x 10⁵ B16-F10 or Yumm1.7 on day 0. After tumor injection, tumor-bearing mice were intratumorally treated with either PBS or ADU-S100 (50 μ g) on days 5, 8, 10, and 13 (a). Average tumor volume of B16-ISG and B16-ISG-STING^{kO}–bearing STING^{gt/gt} mice treated with PBS control or ADU-S100 as indicated in (a). Data are shown as mean ± SEM. Data are representative of three independent experiments, B16-ISG (n = 11 and 14 mice for Control and ADU-S100 groups, respectively), B16-ISG-STING^{KO} ($n = 5$ and 6 mice for Control and ADU-S100 groups, respectively) **(b)**. Frequency (left), total number (middle), and representative flow cytometry plots (right) of CD8⁺ cells within the CD45⁺ population in B16-ISG (n = 12 and 9 mice for Control and ADU-S100 groups, respectively) and B16-ISG-STING^{KO} ($n = 6$ and 7 mice for Control and ADU-S100 groups, respectively) tumors treated with PBS control or ADU-S100. Data are shown as mean ± SD **(c-d)**. B16-F10 and Yumm1.7 tumor growth in STING^{gt/gt} mice treated with PBS control or ADU-S100 as indicated in (a). Data are shown as mean \pm SEM. Data are representative of two independent experiments, B16-F10 (n = 7 mice per group), Yumm1.7 (n = 6 mice per group) (**e**). Statistical significance was determined by Unpaired Student's t-test (b-e) (ns, not significant).

Supplementary Figure 2. 5AZADC-induced upregulation of MHC I depends on type I IFN signaling.

B16-F10 and Yumm1.7 cells were treated with 5AZADC in the presence or absence of an IFNAR blocking antibody. Representative histograms of MHC I (H2-Kb) expression **(a)**, quantitative RT-PCR analysis of *H2 k1* mRNA expression **(b)**, immunoblot analysis of LMP2 **(c)**, and *Tap1* mRNA expression **(d)** on indicated cells. Data are shown as mean ± SD of three biological replicates and are representative of two independent experiments.

B16-ISG

 $\boldsymbol{\mathsf{b}}$

 $\mathbf c$

Supplementary Figure 3. DNA demethylation-induced increased IFN-β production and upregulation of MHC I in response to agonist stimulation in melanoma cells is STING mediated.

Experimental setup for 5AZADC treatment of B16-ISG and B16-ISG-STINGKO cell lines **(a)**. Following 5AZADC treatment, melanoma cells were stimulated with the STING agonist ADU-S100 for 24 h. Induction of IFN-β in cell culture supernatants measured using ELISA **(b)**. Mean fluorescence intensity (MFI) **(c)** and representative histograms of MHC I (H2-Kb) expression **(d)** on indicated cell lines. Statistical significance was determined by one-way ANOVA (b and c) (ns, not significant). Data are shown as mean \pm SD of three biological replicates and are representative of two independent experiments.

 40

Supplementary Figure 4. DNMT1 expression does not correlate with STING silencing in melanoma.

Immunoblot analysis of STING and DNMT1 expression in B16-F10 cells transfected with siRNA specific for DNMT1 (siDNMT1) or nontarget siRNA (siControl). β-Actin was used as a loading control (a). Images are representative of three independent experiments. Correlative analysis of *STING* mRNA expression with *DNMT1* in metastatic melanoma samples (n=21) from cBioPortal database **(b)**.

Supplementary Figure 5. Verifying *in vivo* **depletions.**

Confirmation of depletions for CD8⁺ T cells and CD4⁺T cells in splenocytes. To deplete T cells, mice were injected intraperitoneally with 300 µg of anti-CD8 (clone 2.43, Bio X Cell), or anti-CD4 (clone GK1.5, Bio X Cell) 5 days prior to tumor implantation, and every 2-3 days thereafter for the duration of the study. Representative flow cytometry plots indicating expression of CD4 and CD8 in CD45+ CD3+ splenic T cells on day 21.

Supplementary Figure 6. Representative flow cytometry plots for Figure 7.

STING^{gt/gt} mice with Yumm1.7 tumors were treated intratumorally with PBS, 5AZADC, ADU-S100, or 5AZADC+ADU-S100 as indicated in Figure 4a; spleens were harvested on 21 after tumor cell inoculation and analyzed by flow cytometry. Shown are representative flow cytometry plots indicating frequency of splenic CD8⁺ cells within the CD3⁺ population **(a)**, frequency of CD44⁺ CD69⁺ cells within the CD3⁺ CD8⁺ population (b), frequency of Naïve (CD44· CD62L⁺), Effector (CD44· CD62L⁻), Effector Memory (CD44⁺ CD62L⁻), and central memory (T_{CM}, CD44⁺ CD62L⁺) CD8⁺ T cells (c), and frequency of IFN-γ⁺ (d) and TNFα + **(e)** CD8⁺ T cells.

Supplementary Figure 7. CD8⁺ TILs in combination therapy-treated mice indicate memory phenotype.

STING^{gt/gt} mice with Yumm1.7 tumors were treated intratumorally with PBS, 5AZADC, ADU-S100, or 5AZADC+ADU-S100 as indicated in Figure 4a. Shown are representative flow cytometry plots **(a)** and pie charts (b) indicating relative proportions of Naïve (CD44 CD62L⁺), Effector (CD44 CD62L⁻), Effector Memory (EM; CD44+ CD62L) and Central Memory (CM; CD44+ CD62L+) T cell subsets within the CD3+ CD8⁺ population in Yumm1.7 tumors on day 21.

Supplementary Figure 8. CD8⁺ TILs in combination therapy-treated mice indicate higher expression of antigen-experience and activation markers.

STING^{gt/gt} mice with B16-ISG tumors were treated intratumorally with PBS, 5AZADC, ADU-S100, or 5AZADC+ADU-S100 as indicated in Figure 4a. Frequency of CD44⁺ CD69⁺ cells **(a)** and representative histograms of CD69 **(b)** within the CD3⁺ CD8⁺ population in B16-ISG tumors on day 21. n = 3, 3, 3, 4 mice in (b) for Control, 5AZADC, ADU-S100, and 5AZADC+ADU-S100 groups, respectively. Data are shown as mean \pm SD. Statistical significance was determined by one-way ANOVA (ns, not significant). Representative flow cytometry plots for (a) are shown in **(c)**.

Supplementary Figure 9. Example of flow cytometry gating strategy.

Representative gating strategy to analyze CD8⁺ T cells in tumors and spleens (relevant to Fig. 1d-g, Fig. 5b, Supplementary Fig. 1c-d, and Supplementary Fig. 5).

Supplementary Figure 10. Example of flow cytometry gating strategy.

Representative gating strategy to determine frequency, differentiation [Naïve: CD44 CD62L+; Effector: CD44: CD62L; Effector Memory (EM): CD44+ CD62L; Central Memory (CM): CD44+ CD62L+], activation (CD44⁺ CD69 +) and IFN-γ and TNF-α expression of CD8⁺ T cells in spleens and tumors (relevant to Fig. 6a-h, Fig. 7a-g, Fig. 8d-f, Supplementary Fig. 6a-e, Supplementary Fig. 7a-b, and Supplementary Fig. 8ac)