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Reviewers' Comments: 

Reviewer #1: 
Remarks to the Author: 
The manuscript by Xu-Wen Wang and his colleagues describes a community effort to benchmark 24 
representative network-based PPI prediction methods across multiple model organisms, Homo sapiens 
and a synthetic network. The work focuses on predicting co-complex binary interaction data. The 
initial networks used in the benchmark were derived from an experimental (Y2H) data with varied 
proteome coverage and network structure.The methods were benchmarked using 10-fold cross-
validation. The authors singled out 7 best performing methods based various statistics including 
AUROC, AUPRC, True Positive Rate in top 500 interaction and few others. Subsequently the authors 
created a combined set of top-500 prediction from each of the 7 methods resulting in 3.276 PPIs from 
633 human proteins. This combined set was experimentally validated using Y2H method yielding a 
relatively high level (1,177 or around 35%) of positively validated pairs. 

My first question relates to the difference seen between AUROC and AUPRC statistics. I cannot think of 
a curve with almost perfect (~0.9) AUROC and almost non-existent AUPRC (~0.01) for the same set 
of predictions and the same benchmark. If the recall is bad, which is common with large positive sets 
(such as full PPI network) the AUROC should be quite close to 0.5 even if there is a meaningful 
performance on the top end of the predictions. This is due to the fact that we do not expect high-recall 
for such a large search-space. However this is not what we see as high AUROC implies high recall at 
the top end. By contrast low AUPRC must indicate low precision, but then it should be visible in high 
False Positive Rate lowering the overall AUROC. Something does not add up here. Overall it would be 
much easier to evaluate the methods if the authors would provide all the data available predictions for 
all the methods rather than the combined set and the simple statistical summary. 

According to the authors the negative set consists of “all the non-existing links not in the training set”. 
This would amount in the HuRI dataset to around ~32.000.000 (fully connected graph of 8.000 
proteins) negative pairs. Given AUROC of 0.9 on such an unbalanced benchmark (50.000+ positive 
pairs) would suggests an almost perfectly solved human PPI network which leads me to believe it is 
not how any of this was calculated. The authors should clearly provide information how to derive that 
data and, again, provide all the underlaying predictions for all the methods, together with the 
benchmark status, so that anyone can draw the ROC and PR curve for each of the methods. 

HuRI dataset which authors use for the positive set was made with 3 different version of Y2H in 
triplicates. The authors used the same method, just without the replicates. Given the inherent bias of 
Y2H towards certain kind of interactions, I’m not 100% this is the best spent effort for what would 
amounts to another (arguably targeted) replicate. There should be at least one additional validation 
using any other available PPI data from other resources and methods such as IntACT or BioGrid. 

Considering so much effort was spend on experimentally validating the results it is surprising the 
authors do not elaborate about the predicted interactions. The only dataset that was provided is the 
combined top 500 prediction form the 7 best performing methods (in total 3.276 pairs) and their 
experimental validation status. What is striking is that around 750 of pairs (or around 25%) relates to 
Keratin or Keratin-associated protein or Late Cornfield Envelope proteins, all of them associated with 
epidermis and potentially form a functional cluster. More than half of thee pairs are solely between 
these 3 types of proteins, most of which are positive (this amounts to 25% of all positive pairs). In my 
opinion this could indicate a bias in the prediction(s) method (as they share interaction partners and 
thus the network signal) and possibly in Y2H assay. I would like the authors to elaborate what would 
be the reason for finding so many epidermis associated proteins. 

As one could reasonably argue this could be correct, therefore I’ve looked at what is there apart from 
the these 3 types of proteins. Alphabetically first protein, with more than one interaction in the 3276 
protein pairs set is ABCE1. According to the predictions It interacts with CSNK1E, CYB5D2, OTOS, 
PLP2. As far as I can find there is nothing that links these proteins. Not physically or functionally. 



Second prediction is for ABI1 which interacts with ARL13B, C3orf33, CRY2, FBXL3, KCNS2, NFATC2IP, 
PLP2, PSMD7, TEKT4, TMEM50A. From this set FBXL3 and CRY2 form a complex with each other, so 
there is something to it, but I do not see API1 forming a complex with any of the proteins. As for the 
validated subset: first protein (alphabetically) that has several experimentally validated interaction is 
APOL2, which interacts with validated targets ELOVL4, ERGIC3, FAM210B, SLC35C2, TIMMDC1. There 
is no process that I can see that links these protein. Even disregarding if they form a complex with 
APOL2 or not, one would expect some functional relatedness between the interaction partners of 
APOL2. 

Given that I am somewhat suspicious about both the predictions and the validation regime of the 
manuscript. I’m sympathetic to the premise of the manuscript, which is the need for systematic 
evaluation of the network prediction methods. The author admit as much as “predictability of 
interactomes is in general weak”, however rather than offering insight why that would be case or 
exploring pitfalls of using these method we see an effort in trying to convince the audience that these 
method have merit. I don’t see it, neither on a conceptual level nor in the presented data. I could be 
wrong of course. 

I suggest that the manuscript should be substantially revised. Primarily a) All the predictions should 
be made available, b) additional benchmarking on orthogonal datasets should be done and c) 
discussion and insight in the predictions and the methods's potential biases, if it’s not random, and 
seems to be barely functional (sans the keratin), what signal do they actually capture? 

Reviewer #2: 
Remarks to the Author: 
In this manuscript, the authors evaluated 24 network-based PPI prediction methods on four 
interactomes from A. thaliana, C. elegans, S. cerevisiae, and H. sapiens, respectively, and one 
synthetic interactome using 10-fold cross validation. Based on cross validation results from the human 
interactome, the top-seven methods were selected, and the top-500 unmapped human PPIs predicted 
by each of these methods were experimentally validated using three orthogonal Y2H assays. In both 
cross validation and experimental validation, three methods, Maximum similarity and Preference 
attachment Score MPS(T), Maximum similarity, Preference attachment and sequence Score 
(MPS(B&T)), and Root Noise Model (RNM) showed the best performance. 

The analysis is reasonable, and the results confirm the reports from Reference #69 and Reference 
#36. Although this study includes more methods in the benchmarking compared with the published 
studies, methodological and conceptual innovation is limited. One potentially interesting observation is 
that some deep learning based method performed ok in cross validation but failed badly in 
experimental validation, but there is very limited investigation on this observation. I also have some 
other comments: 

1. P@500 is very arbitrary, AP@K would be a more robust metric. 
2. Figure S1, a-c, pearson’s correlation is very misleading, spearman should be used. 
3. Figure 3a, it would be nice to leave a gap between different method groups. Also separate 
traditional similarity based methods from advanced similarity based methods as this is the major 
conclusion from the paper. 
4. The main text in Page 5 mentioned Fig.3a-e, but there are only two panels in Figure 3 
5. Figure S2, the H. Sapiens network showed the lowest predictability but it is associated with the best 
performance in Figure 3, this needs to be explained. 
6. It would be nice to have a figure simultaneously visualizing average rankings of the 24 methods on 
the five networks and ranking variability 
7. The section “there are four consistently high-performing methods”, why cGAN is excluded? It looks 
good in Figure 3b. 
8. It seems that degree plays a major role in many algorithms. To investigate degree-driven 



prediction, it would be interesting to apply the prediction methods to networks generated by degree-
preserving rewiring and check for their prediction performance. 
9. Figure S8, it is strange to perform functional analysis of the predicted PPIs without putting them in 
the context of the known PPIs used for the prediction. 
10. In experimental validation, is there a trend that predicted PPIs involving high-degree proteins are 
more likely to be validated? 

Reviewer #3: 
Remarks to the Author: 
Summary. 

Protein interactomes, that are often modeled as protein-protein interaction (PPI) networks, provide 
important insights into the functioning of the cell, which is key for understanding the molecular bases 
of biological processes and diseases. However, due to cost of experimentally capturing PPIs, 
interactomes remain largely unmapped. To overcome this limitation, many PPI prediction methods 
have been proposed in the literature. 

In this paper, the authors present a systematic evaluation of the performances of network-based PPI 
prediction approaches, and also incorporate large-scale confirmatory experimentation (wet-lab). 

- On real and synthetic interactomes, they evaluate the prediction performances of 24 state of the art 
methods. A key result is that the predictability of interactome is low, which may be due to the 
incompleteness of the PPI data. The authors also highlight four methods that consistently perform 
well, namely RNM, MPS(T), MPS(B&T), and SEAL. 

- Then, the authors focus on the seven best performing approaches and further validate their top-500 
PPI predictions on the human interactome using wet-lab experiments (using Y2H assay). From the 
corresponding 3,276 unique predictions, they validated 1,177 PPI between 633 proteins. 

Assessment. 

Overall, the paper is well written, and the proposed methodology to compare different PPI prediction 
methods is sound (it properly uses cross-fold validation and 4 different performance metrics), and the 
large scale wet-lab validation of the top predicted PPI is impressive. However, there are some issues. 

First, unlike claimed, this is not the first time that a large scale experimental validation is conducted to 
confirm the computational predictions of network based PPI prediction methods (e.g., see [1]). 
However, the scale of the wet-lab validation is impressive. 

Second, and more importantly, the computational comparative analysis is plagued by a poor choice of 
PPI data on which it is performed. As a consequence, the presented results and conclusions may not 
‘generalize’ to the current wealth of PPI data available (more species, larger sizes, and larger variety 
of capturing technologies). 

In particular, to avoid biases, the authors decided to cheery pick high quality PPI datasets. This leads 
to the following issues: 

1- The computational comparison is based on only five (four real and one synthetic) interactomes, 
which is underwhelming and surprising given that the authors compared a large number of methods 
(24) and did a large scale wet-lab validation of the top-ranked PPI predictions. With only four real 
interactomes, the dataset is not representative of the large variety of available PPI data; e.g., there 
are far more interactome data available in databases such as BioGRID [2] or STRING [3]. For 
instance, in [1], the performance of L3-based PPI prediction method is evaluated on 16 interactomes 



from 7 species. 

2- Also, the selected interactomes are very small / very incomplete, and may not represent the 
completeness of available PPI data (e.g., the human PPI data used in the study has 52K interactions 
between 8K proteins, while current human experimental PPI network from BioGRID database has 
521K interactions between 19K proteins). 

3- Despite the claimed objective of reducing biases in the data, three out of the four real interactomes 
(C. elegans, yeast, and human) are captured using the same technology (Y2H), so a strong 
technological bias remains. 

To overcome these limitations, the authors should include more interactomes, captured with a larger 
variety of bio-technologies, and with varying amount of experimental validation. 

As a minor comment, I don’t see the benefit of using only one synthetic interactome. Often, random 
model network generators are used to generate ‘controlled’ datasets to study the effect of a given 
parameter (e.g., the number of nodes, the number of interaction edges, the amount of noise, or of the 
underlying network models), e.g., in the context of network comparison [4]. But with only one 
network, none of this is possible. For instance, the authors could have used synthetic networks 
generated with varying edge densities to further support their claim that more complete interactomes 
(i.e., with larger edge densities) are more predictable. 

[1] Kovács et al. (2019). Network-based prediction of protein interactions. Nature communications, 
10(1), 1-8. 

[2] BioGRID database statistic: https://wiki.thebiogrid.org/doku.php/statistics 

[3] STRING database statistics: https://string-
db.org/cgi/about?sessionId=b9wz9kS1gbKk&footer_active_subpage=statistics 

[4] Yaveroglu et al. (2015), Proper evaluation of alignment-free network comparison methods, 
Bioinformatics, 31(16):2697-2704. 
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Responses to Reviewer #1 
 
Point 1.0: The manuscript by Xu-Wen Wang and his colleagues describes a community effort to 
benchmark 24 representative network-based PPI prediction methods across multiple model 
organisms, Homo sapiens and a synthetic network. The work focuses on predicting co-complex 
binary interaction data. The initial networks used in the benchmark were derived from an 
experimental (Y2H) data with varied proteome coverage and network structure. The methods 
were benchmarked using 10-fold cross-validation. The authors singled out 7 best performing 
methods based various statistics including AUROC, AUPRC, True Positive Rate in top 500 
interaction and few others. Subsequently the authors created a combined set of top-500 prediction 
from each of the 7 methods resulting in 3.276 PPIs from 633 human proteins. This combined set 
was experimentally validated using Y2H method yielding a relatively high level (1,177 or around 
35%) of positively validated pairs. 
 
Response: We thank Reviewer #1 for reviewing our manuscript. Next, we address each of the 
reviewer’s comments in order. 
 
 
Point 1.1: My first question relates to the difference seen between AUROC and AUPRC statistics. 
I cannot think of a curve with almost perfect (~0.9) AUROC and almost non-existent AUPRC 
(~0.01) for the same set of predictions and the same benchmark. If the recall is bad, which is 
common with large positive sets (such as full PPI network) the AUROC should be quite close to 
0.5 even if there is a meaningful performance on the top end of the predictions. This is due to the 
fact that we do not expect high-recall for such a large search-space. However this is not what we 
see as high AUROC implies high recall at the top end. By contrast low AUPRC must indicate low 
precision, but then it should be visible in high False Positive Rate lowering the overall AUROC. 
Something does not add up here.  
 
Response: We thank Reviewer #1 for this critical comment. The big difference between the high 
AUROC value and the low AUPRC value is due to the fact that the PPI network is highly 
imbalanced, i.e., the number of negative links (35 million for HuRI) is significantly higher than the 
number of positive ones (52,548 for HuRI). In the context of link prediction, AUROC corresponds 
to the probability that prediction scores from a randomly selected pair of positive and negative 
links are correctly ordered, while AUPRC reflects the ability of using the prediction scores to 
identify the positive links. For highly imbalanced dataset, AUROC will still be good enough even 
if the link prediction method misclassified most (or all) of the minority group (i.e., the group of 
positive links in the PPI network); while AUPRC will generally be much lower than AUROC 
because identifying few positive links from a huge search space is intrinsically challenging.  
 
To clearly demonstrate this point, in Figure R1, we showed two examples, one represents a 
highly imbalanced dataset (with 50 positive instances and 100,000 negative instances), while the 
other represents a balanced dataset (with 50 positive instances and 50 negative instances). In 
both cases, scores of positive instances were generated from a normal distribution with mean 
0.15 and standard deviation 0.1; while scores of negative instances were generated from a normal 
distribution with mean 0 and standard deviation 0.1. As shown in Fig.R1, for the first example, we 
have AUROC= 0.86 and AUPRC=0.008; while for the second example, we have AUROC=0.89 
and AUPRC=0.91. Raw code and data used in this demonstration have been posted on our 
GitHub webpage: https://github.com/spxuw/PPI-Prediction-Project.  
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Point 1.2: Overall it would be much easier to evaluate the methods if the authors would provide 
all the data available predictions for all the methods rather than the combined set and the simple 
statistical summary. 
 
Response: We thank Reviewer #1 for this very critical comment. The reason why we did not 
provide the intermediate results (i.e., prediction scores) is due to the large storage space 
requirement. For example, the BioGRID interactome has 19,665 nodes, so the three-column 
prediction list file has 193,346,280 × 3 numbers, where the first and second columns represent 
the source and target nodes, respectively, and the third column is the prediction score. For each 
interactome, we performed 10-fold validation using 26 prediction methods. This will lead to a huge 
storage challenge (more than 3.5T) just for this interactome.  
 
To ensure all readers can easily reproduce our results, we have made the code of all the methods 
publicly available through our GitHub webpage: https://github.com/spxuw/PPI-Prediction-Project. 
To further ensure reproducibility (but without causing a serious storage issue), we also posted the 
link of three-column prediction list file from applying one of the best methods, RNM, to a human 
interactome (HuRI), with one particular training/test split, on our GitHub webpage.  
 
  
Point 1.3: According to the authors the negative set consists of “all the non-existing links not in 
the training set”. This would amount in the HuRI dataset to around ~32.000.000 (fully connected 
graph of 8.000 proteins) negative pairs. Given AUROC of 0.9 on such an unbalanced benchmark 
(50.000+ positive pairs) would suggests an almost perfectly solved human PPI network which 
leads me to believe it is not how any of this was calculated. The authors should clearly provide 
information how to derive that data and, again, provide all the underlaying predictions for all the 
methods, together with the benchmark status, so that anyone can draw the ROC and PR curve 
for each of the methods. 
 
Response: We thank Reviewer #1 for this comment. As we mentioned in the main text “This very 
high AUROC might lead us to mistakenly conclude that SEAL is an almost perfect prediction 
method since the maximum value of AUROC is 1”. Again, this is due to the imbalance issue of 
link prediction for PPI networks, which has been explained in our response to Point 1.1 and 
demonstrated in Figure R1.  
 
 
Point 1.4: HuRI dataset which authors use for the positive set was made with 3 different version 
of Y2H in triplicates. The authors used the same method, just without the replicates. Given the 
inherent bias of Y2H towards certain kind of interactions, I’m not 100% this is the best spent effort 
for what would amounts to another (arguably targeted) replicate. There should be at least one 
additional validation using any other available PPI data from other resources and methods such 
as IntACT or BioGrid. 
 
Response: We thank Reviewer #1 for this very constructive comment. In the revised manuscript, 
we have evaluated those methods on two additional human PPI databases: BioGRID and 
STRING (see Figure R2). We found that our previous conclusions (i.e., predictability of 
interactomes is weak, most methods vary considerably across different interactomes, traditional 
similarity-based methods do not perform well, etc.) still hold. 
 
 
Point 1.5: Considering so much effort was spend on experimentally validating the results it is 
surprising the authors do not elaborate about the predicted interactions. The only dataset that 
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was provided is the combined top 500 prediction form the 7 best performing methods (in total 
3.276 pairs) and their experimental validation status. What is striking is that around 750 of pairs 
(or around 25%) relates to Keratin or Keratin-associated protein or Late Cornfield Envelope 
proteins, all of them associated with epidermis and potentially form a functional cluster. More than 
half of thee pairs are solely between these 3 types of proteins, most of which are positive (this 
amounts to 25% of all positive pairs). In my opinion this could indicate a bias in the prediction(s) 
method (as they share interaction partners and thus the network signal) and possibly in Y2H 
assay. I would like the authors to elaborate what would be the reason for finding so many 
epidermis associated proteins. 
 
Response: We thank Reviewer #1 for this very insightful comment. To examine the predicted 
interactions, we first analyzed the functions associated with the proteins involved in the top-500 
PPIs predicted by the two top methods MPS(T) and MPS(B&T). The results (in terms of the 
number of proteins associated with each GO) are shown in Figure R3a,b. We did find three 
keratin-related GOs, i.e., keratinization, keratin filament and cornification.   
 
We suspect that those specific function clusters might be simply due to the fact that we focused 
on proteins involved in the top-500 predicted PPIs and those highly confident PPIs form a dense 
cluster (see main text, Figure 6). When we analyzed the functions associated with the proteins in 
top-5000 PPIs predicted by MPS(B&T) and MPS(T), we did find some new function clusters, e.g., 
the one associated with extracellular exosome (colored in blue, Figure R3c,d).  
 
In the revised manuscript, we have included Fig.R3 as Fig.S13, and added the following 
sentences to the main text (see page 10, lines 393-400): 

“Specifically, we found that the proteins involved in those top-500 predicted PPIs are 
involved in epidermis, e.g., cornification, keratin filament and keratinization and this is 
also valid for experimentally validated positive PPIs (see Fig.S13 a-c). For instance, new 
PPIs associated with keratinization process from two dense clusters (see Fig.S13d). Of 
course, more function clusters will emerge if we focus on proteins involved in the top-5000 
predicted PPIs. For example, when we analyzed the functions associated with the proteins 
in top-5000 PPIs predicted by MPS(B&T) and MPS(T), we found new function clusters, 
e.g., the one associated with extracellular exosome (see Fig.S13).” 

 
 
Point 1.6: As one could reasonably argue this could be correct, therefore I’ve looked at what is 
there apart from the these 3 types of proteins. Alphabetically first protein, with more than one 
interaction in the 3276 protein pairs set is ABCE1. According to the predictions It interacts with 
CSNK1E, CYB5D2, OTOS, PLP2. As far as I can find there is nothing that links these proteins. 
Not physically or functionally.  
 
Response: We thank Reviewer #1 for this comment. Those 3,276 pairs were predicted by 7 
different methods and each method highlights different structure in the PPIs. Moreover, some of 
the predicted pairs have been shown to be negative using the Y2H assay. For example, protein 
ABCE1 (ENSG00000164163) was predicted to interact with CSNK1E (ENSG00000213923), 
CYB5D2 (ENSG00000167740), OTOS (ENSG00000178602), and PLP2 (ENSG00000102007). 
However, those four pairs have been shown to be negative through our experimental validation. 
 
 
Point 1.7: Second prediction is for ABI1 which interacts with ARL13B, C3orf33, CRY2, FBXL3, 
KCNS2, NFATC2IP, PLP2, PSMD7, TEKT4, TMEM50A. From this set FBXL3 and CRY2 form a 
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complex with each other, so there is something to it, but I do not see API1 forming a complex with 
any of the proteins.  
 
Response: We thank Reviewer #1 for this comment. The proteins that were predicted to interact 
with ABl1 (ENSG00000136754) are: ARL13B (ENSG00000169379), C3orf33 
(ENSG00000174928), CRY2 (ENSG00000121671), FBXL3 (ENSG00000005812), KCNS2 
(ENSG00000156486), NFATC2IP (ENSG00000176953), PLP2 (ENSG00000102007), PSMD7 
(ENSG00000103035), TEKT4 (ENSG00000163060) and TMEM50A (ENSG00000183726). 
However, those ten pairs have also been shown to negative through our experimental validation. 
 
 
Point 1.8: As for the validated subset: first protein (alphabetically) that has several experimentally 
validated interaction is APOL2, which interacts with validated targets ELOVL4, ERGIC3, 
FAM210B, SLC35C2, TIMMDC1. There is no process that I can see that links these protein. Even 
disregarding if they form a complex with APOL2 or not, one would expect some functional 
relatedness between the interaction partners of APOL2. 
 
Response: We thank Reviewer #1 for this critical comment. Indeed, the validated subset of 
proteins that interact with protein APOL2 (ENSG00000128335) includes: ELOVL4 
(ENSG00000118402), ERGIC3 (ENSG00000125991), FAM210B (ENSG00000124098), 
SLC35C2 (ENSG00000080189), and TIMMDC1 (ENSG00000113845). We noticed that those six 
proteins are associated with the GO term: organelle membrane. In addition, some genes (e.g., 
APOL2) are poorly studied, so relevant functional annotation could be missing, and the existing 
PPI network patterns seem sufficient to suggest new interactions. 

 
 
Point 1.9: Given that I am somewhat suspicious about both the predictions and the validation 
regime of the manuscript. I’m sympathetic to the premise of the manuscript, which is the need for 
systematic evaluation of the network prediction methods. The author admit as much as 
“predictability of interactomes is in general weak”, however rather than offering insight why that 
would be case or exploring pitfalls of using these method we see an effort in trying to convince 
the audience that these method have merit. I don’t see it, neither on a conceptual level nor in the 
presented data. I could be wrong of course. 
 
Response: We thank Reviewer #1 for this critical comment. The weak predictability of the 
interactomes is due to the possible PPI space is extremely large. For instance, HuRI has more 
than 8,000 proteins, hence the total possible number of links is ~3,2000,000. Identifying true PPIs 
from such a huge space is a challenging task. But this does not mean that we cannot make any 
progress using computational methods. Indeed, our results demonstrated that advanced 
similarity-based methods show superior performance over other general link prediction methods. 
Through experimental validation, we confirmed that the top-ranking methods show promising 
performance externally, often better than computational validation would suggest. For example, 
from the top-500 PPIs predicted by an advanced similarity-based method [MPS(B&T)], 430 were 
successfully tested by Y2H with 376 testing positive, yielding a precision of 87.4%. These results 
suggest that advanced similarity-based methods are powerful tools for the prediction of human 
PPIs. 
 
In the revised main text, we have added the following sentence regarding this point (see page 11. 
lines 419-421): 

“Similarity-based methods are already a promising way to guide protein-protein interaction 
assays, by prioritizing interactions with a high predicted score.” 
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Point 1.10: I suggest that the manuscript should be substantially revised. Primarily a) All the 
predictions should be made available, b) additional benchmarking on orthogonal datasets should 
be done and c) discussion and insight in the predictions and the methods's potential biases, if it’s 
not random, and seems to be barely functional (sans the keratin), what signal do they actually 
capture? 
 
Response: We thank Reviewer #1 again for reviewing our manuscript and her/his very insightful 
comments. We have explained the very high values of AUROC in our response to Point 1.2; 
performed additional benchmarking on two orthogonal PPI datasets: BioGRID and STRING; and 
explained the prediction bias in our response to Point 1.5. We hope our responses have 
addressed those comments in a satisfactory manner.  
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Responses to Reviewer #2 
 
Point 2.0: In this manuscript, the authors evaluated 24 network-based PPI prediction methods on 
four interactomes from A. thaliana, C. elegans, S. cerevisiae, and H. sapiens, respectively, and 
one synthetic interactome using 10-fold cross validation. Based on cross validation results from 
the human interactome, the top-seven methods were selected, and the top-500 unmapped human 
PPIs predicted by each of these methods were experimentally validated using three orthogonal 
Y2H assays. In both cross validation and experimental validation, three methods, Maximum 
similarity and Preference attachment Score MPS(T), Maximum similarity, Preference attachment 
and sequence Score (MPS(B&T)), and Root Noise Model (RNM) showed the best performance. 

The analysis is reasonable, and the results confirm the reports from Reference #69 and 
Reference #36. Although this study includes more methods in the benchmarking compared with 
the published studies, methodological and conceptual innovation is limited. One potentially 
interesting observation is that some deep learning based method performed ok in cross validation 
but failed badly in experimental validation, but there is very limited investigation on this 
observation. I also have some other comments: 
 
Response: We thank Reviewer #2 for reviewing our manuscript. Next, we address each of the 
reviewer’s comments in order.  
 
 
Point 2.1: 1. P@500 is very arbitrary, AP@K would be a more robust metric. 
 
Response: We thank Review #2 for this constructive comment. The reason of choosing P@500 
as a performance metric is that we wanted to be consistent with experimental validation, where 
we also used P@500. To check the difference between P@500 and AP@K, we computed AP@K 
for three top methods: MPS(B&T), MPS(T) and RNM with different K values (K=50, 100, 500, 
2000). We found that the ranking of those three methods using AP@K (for all the K values we 
tested here) is consistent with that of using P@500 (see Figure R4). This result implies that 
P@500 is also a robust metric.  
 
In the revised manuscript, we have included Fig.R4 as Fig.S5 in the SI, and added the following 
sentence in the main text (see page 7, lines 245-246): 

“In particular, we found RNM and MPS(T) also shows high AP@K (average precision at 
K) against different K values (see Fig.S5).”   

 
 
Point 2.2: 2. Figure S1, a-c, pearson’s correlation is very misleading, spearman should be used. 
 
Response: We apologize for this confusion. In Fig.S1a-c, we actually computed the Spearman’s 
correlation, rather than Pearson’s correlation. The “Pearson” correlation in the caption of Figure 
S1 was a typo, which has been fixed in the revised manuscript.   
 
 
Point 2.3: 3. Figure 3a, it would be nice to leave a gap between different method groups. Also 
separate traditional similarity based methods from advanced similarity based methods as this is 
the major conclusion from the paper. 
 
Response: We thank Review #2 for this very constructive comment. We have added the gap 
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between methods and separated the traditional similarity method and advanced similarity 
methods (see Figure R2).  
 
Point 2.4: 4. The main text in Page 5 mentioned Fig.3a-e, but there are only two panels in Figure 
3. 
 
Response: We thank a lot for Review #2 pointing this out. We have revised the cross-reference 
accordingly. 
 
 
Point 2.5: 5. Figure S2, the H. Sapiens network showed the lowest predictability but it is 
associated with the best performance in Figure 3, this needs to be explained. 
 
Response: We thank Review #2 for this constructive comment. Indeed, the human interactome 
HuRI showed the lowest predictability, while various methods demonstrate high link-prediction 
performance (especially in terms of P@500) for this network. This seeming “inconsistency” is due 
to the fact that the predictability is essentially P@10%L, i.e., Precision based on the removal of 
10% of the total links, where L is the number of links in the network. For HuRI, L=52,548, so 
10%L~5,255. For this network, for any computational method P@5,255 will be much lower than 
P@500. To demonstrate this point, we computed P@500, P@2000 and P@5000 for three top 
methods: MPS(B&T), MPS(T), and RNM. The results are shown in Figure R5.  
 
In the revised manuscript, we have included Fig.R5 as Fig.S3 in the SI. To avoid any confusion, 
in the revised main text, we have added the following sentences to explain this “inconsistency” 
(see page 5, lines 196-199):  

“Note that the seeming “inconsistency” between the predictability and P@500 is because 
predictability is essentially P@10%L. For HuRI this is about P@5255, which is much 
lower than P@500 (see Fig.S3).” 

 
 
Point 2.6: 6. It would be nice to have a figure simultaneously visualizing average rankings of the 
24 methods on the five networks and ranking variability 
 
Response: We thank Reviewer #2 for this excellent suggestion. The average ranking and the 
ranking variability were visualized simultaneously in Figure R6. In the revised manuscript, we 
have included this figure as Fig.S4 in the SI. 
 
 
Point 2.7: 7. The section “there are four consistently high-performing methods”, why cGAN is 
excluded? It looks good in Figure 3b. 
 
Response: We thank Reviewer #2 for this comment. In the previous manuscript, we did not 
consider cGAN as a high-performance method because the high rank of cGAN is solely 
determined by one particular performance metric (i.e., NDCG). In terms of other three metrics, 
cGAN didn’t perform well. As the NDCG scores over different methods are quite similar, rendering 
a small standard deviation, the high NDCG of cGAN will lead to a very high Z-score.  
 
In the revised manuscript, we evaluated the updated version of cGAN, as well as two additional 
methods: L3 and CRA. We also updated the performance of RepGSP. We have revised that 
section accordingly. 
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Point 2.8: 8. It seems that degree plays a major role in many algorithms. To investigate degree-
driven prediction, it would be interesting to apply the prediction methods to networks generated 
by degree-preserving rewiring and check for their prediction performance. 
 
Response: We thank Reviewer #2 for this very insightful comment. We have evaluated the 
performance of four methods: RNM, MPS(B&T), MPS(T) and SBM which tend to predict PPIs 
between high-degree proteins. We found that their performance dropped significantly on degree-
preserving randomized interactomes (see Figure R7).  
 
In the revised manuscript, we have included Fig.R7 as Fig.S8 in the SI, and added the following 
sentence in main text (see page 8, lines 300-302): 

“The performance of all those four methods will degrade on degree-preserving randomized 
interactomes (see Fig.S8).” 
 

 
Point 2.9: 9. Figure S8, it is strange to perform functional analysis of the predicted PPIs without 
putting them in the context of the known PPIs used for the prediction. 
 
Response: We thank Reviewer #2 for this comment. In Figure S8, the reason why we did not put 
the predicted PPIs together with known PPIs is that we wanted to examine (in an unsupervised 
manner) whether those predicted PPIs are associated with particular functional cluster.  
 
 
Point 2.10: 10. In experimental validation, is there a trend that predicted PPIs involving high-
degree proteins are more likely to be validated? 
 
Response: We thank Reviewer #2 for this comment. In the revised manuscript, we compared the 
degree of proteins for experimentally validated positive and negative PPIs. We found that those 
proteins involved in positive PPIs tend to have higher degrees than that involved in negative PPIs 
(see Figure R8).  
 
In the revised manuscript, we have included Fig.R8 as Fig.S10 in the SI, and added the following 
sentence in the main text (see page 9, lines 351-352): 

“We also found that those positive PPIs tends to connect high degree proteins (see 
Fig.S10).” 
 

 
 
Finally, we thank Reviewer #2 again for her/his very constructive and insightful comments. We 
hope our responses have addressed those comments in a satisfactory manner.  
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Responses to Reviewer #3 
 
Point 3.0:  Summary. 
 
Protein interactomes, that are often modeled as protein-protein interaction (PPI) networks, 
provide important insights into the functioning of the cell, which is key for understanding the 
molecular bases of biological processes and diseases. However, due to cost of experimentally 
capturing PPIs, interactomes remain largely unmapped. To overcome this limitation, many PPI 
prediction methods have been proposed in the literature. 
 
In this paper, the authors present a systematic evaluation of the performances of network-based 
PPI prediction approaches, and also incorporate large-scale confirmatory experimentation (wet-
lab). 
 
- On real and synthetic interactomes, they evaluate the prediction performances of 24 state of the 
art methods. A key result is that the predictability of interactome is low, which may be due to the 
incompleteness of the PPI data. The authors also highlight four methods that consistently perform 
well, namely RNM, MPS(T), MPS(B&T), and SEAL. 
 
- Then, the authors focus on the seven best performing approaches and further validate their top-
500 PPI predictions on the human interactome using wet-lab experiments (using Y2H assay). 
From the corresponding 3,276 unique predictions, they validated 1,177 PPI between 633 proteins. 
 
Assessment. 
 
Overall, the paper is well written, and the proposed methodology to compare different PPI 
prediction methods is sound (it properly uses cross-fold validation and 4 different performance 
metrics), and the large scale wet-lab validation of the top predicted PPI is impressive. However, 
there are some issues. 
 
Response: We thank Reviewer #3 for reviewing our manuscript and her/his positive assessment 
on our manuscript. Next, we address each of the reviewer comments in order.  
 
 
Point 3.1:  First, unlike claimed, this is not the first time that a large scale experimental validation 
is conducted to confirm the computational predictions of network based PPI prediction methods 
(e.g., see [1]). However, the scale of the wet-lab validation is impressive. 
 
Response: We thank Reviewer #3 for this comment. We have revised that sentence as follows 
(see main text, page 9, lines 304-305):  

“To the best of our knowledge, this is an unprecedentedly large-scale experimental 
validation of network-based PPI prediction methods in a systematical benchmark study.” 
 

 
Point 3.2:  Second, and more importantly, the computational comparative analysis is plagued by 
a poor choice of PPI data on which it is performed. As a consequence, the presented results and 
conclusions may not ‘generalize’ to the current wealth of PPI data available (more species, larger 
sizes, and larger variety of capturing technologies). 
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In particular, to avoid biases, the authors decided to cheery pick high quality PPI datasets. This 
leads to the following issues: 
 
1- The computational comparison is based on only five (four real and one synthetic) interactomes, 
which is underwhelming and surprising given that the authors compared a large number of 
methods (24) and did a large scale wet-lab validation of the top-ranked PPI predictions. With only 
four real interactomes, the dataset is not representative of the large variety of available PPI data; 
e.g., there are far more interactome data available in databases such as BioGRID [2] or STRING 
[3]. For instance, in [1], the performance of L3-based PPI prediction method is evaluated on 16 
interactomes from 7 species. 
 
Response: We thank Reviewer #3 for this very constructive comment. In the revised manuscript, 
we have added the evaluations on two additional PPI datasets: BioGRID and STRING (see 
Figure R2). We found that all our previous conclusions (i.e., predictability of interactomes is weak, 
most methods vary considerably across different interactomes, traditional similarity-based 
methods do not perform well, etc.) still hold.  

 
 
Point 3.3:  2- Also, the selected interactomes are very small / very incomplete, and may not 
represent the completeness of available PPI data (e.g., the human PPI data used in the study has 
52K interactions between 8K proteins, while current human experimental PPI network from 
BioGRID database has 521K interactions between 19K proteins). 
 
Response: We thank Reviewer #3 for this comment. In the revised manuscript, we also evaluated 
the prediction methods on the BioGRID database (see Figure R2). We found that those top-
ranking methods, e.g., RNM, MPS(T), MPS(B&T) still show the superior performance in BioGRID. 
 
 
Point 3.4: 3- Despite the claimed objective of reducing biases in the data, three out of the four 
real interactomes (C. elegans, yeast, and human) are captured using the same technology (Y2H), 
so a strong technological bias remains. 

To overcome these limitations, the authors should include more interactomes, captured 
with a larger variety of bio-technologies, and with varying amount of experimental validation. 
 
Response: We thank Reviewer #3 for this very constructive comment. In the revised manuscript, 
we have added the evaluations on two additional PPI databases: BioGRID and STRING (see 
Figure R2, and Table S1).  
 
 
Point 3.5: As a minor comment, I don’t see the benefit of using only one synthetic interactome. 
Often, random model network generators are used to generate ‘controlled’ datasets to study the 
effect of a given parameter (e.g., the number of nodes, the number of interaction edges, the 
amount of noise, or of the underlying network models), e.g., in the context of network comparison 
[4]. But with only one network, none of this is possible. For instance, the authors could have used 
synthetic networks generated with varying edge densities to further support their claim that more 
complete interactomes (i.e., with larger edge densities) are more predictable. 
 
Response: We thank Reviewer #3 for this very insightful comment. In the revised manuscript, we 
removed the results and corresponding description of synthetic interactome. In addition, 
according to Reviewer #3’s constructive comment, we computed the predictability of synthetic 
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interactomes with different edge densities. We found that dense interactomes are more 
predictable than sparse interactomes (see Figure R9). 
 
In the revised manuscript, we have included Fig.R9 as Fig.S2 in the SI.   
 
 
[1] Kovács et al. (2019). Network-based prediction of protein interactions. Nature communications, 
10(1), 1-8. 
[2] BioGRID database statistic: https://wiki.thebiogrid.org/doku.php/statistics 
[3] STRING database statistics: https://string-
db.org/cgi/about?sessionId=b9wz9kS1gbKk&footer_active_subpage=statistics 
[4] Yaveroglu et al. (2015), Proper evaluation of alignment-free network comparison methods, 
Bioinformatics, 31(16):2697-2704. 
 
 
Finally, we thank Reviewer #3 again for her/his very constructive and insightful comments. We 
hope our responses have addressed those comments in a satisfactory manner.  
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Figure R1: The difference between AUROC and AUPRC is due to data imbalance. (top) A 
highly imbalanced dataset with 100,000 negative instances and 50 positive instances. (bottom) 
A balanced dataset with 50 negative instances and 50 positive instances. Columns 1-3 shows the 
score distributions, the receiver operating characteristic (ROC) curve and the Precision-Recall 
curve (PRC) curve, respectively. Scores of positive instances were generated from a normal 
distribution with mean 0.15 and standard deviation 0.1; while scores of negative instances were 
generated from a normal distribution with mean 0 and standard deviation 0.1.   
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Figure R2: Computational evaluation of the PPI prediction methods. The details of each 
method are summarized in Table 1. a, Heatmap plots show the performance of each method on 
each interactome with the following evaluation metrics: AUROC, AUPRC, P@500, and NDCG. 
The overall performance is calculated from z-scores of three metrics. For each metric, darker 
color represents better performance. b, The ranking of the 26 methods on the six interactomes 
by z-scores. Note that, the performances of ReGSP1, SEAL, cGAN1 and SkipGNN on the 
BioGRID database were not evaluated due to the prohibitive computational cost. We marked their 
rankings as N/A.  
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Figure R3: Functional analysis of proteins involved in the predicted PPIs. We firstly 
extracted the Gene Ontology (GO) terms for those proteins involved in the PPIs predicted by 
MPS(T) and MPS(B&T) using FuncAssociate1. Then, we showed the number of proteins 
associated with each GO term. a-b, Top-20 GO terms associated with proteins involved in the 
top-500 PPIs predicted by MPS(T) (a) and MPS(B&T) (b). c-d, Top-20 GO terms associated with 
proteins involved in the top-5,000 PPIs predicted by MPS(T) (c) and MPS(B&T) (d).  
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Figure R4: AP@K and P@500 of three top methods: MPS(B&T), MPS(T) and RNM. AP@K 
(K=50, 100, 500, 2000) is computed as the average precision P@i, i=1,…,K. Error bar represents 
the standard deviation among ten realizations of HuRI. 
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Figure R5: P@K of three top methods: MPS(B&T), MPS(T) and RNM. Error bar represents the 
standard deviation among ten realizations of HuRI. 
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Figure R6: Ranking and variability of the PPI prediction methods over six interactomes. 
Bar represents the mean ranking of each method over six interactomes, and the error bar 
represents the variability of a method (computed as the standard derivation of rankings over six 
interactomes analyzed in this project). We did not show the variabilities of two methods that were 
not applied to all the six interactomes.  
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Figure R7: Performance of PPI prediction methods on the degree-preserved randomized 
interactome. We randomly rewired the PPIs of HuRI in 10𝑁 trials while preserving the original 
interactome’s degree distribution using the functions rewire and keeping_degreeseq in the igraph2 
package. Four prediction methods RNM, SBM, MPS(T), and MPS(B&T) that tend to predict PPIs 
involving proteins of high degrees were evaluated in the randomized interactome. Error bar 
represents the standard deviation among 10-fold validations. 
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Figure R8: Degree distribution of proteins involved in experimentally validated PPIs. We 
compared the degree of proteins (in original HuRI) involved in experimentally validated positive 
and negative PPIs. P-value was calculated using Wilcoxon test.  
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Figure R9: Predictability of different interactomes. Boxplot shows the predictability over 50 
different realizations. For each realization, we randomly split the links into the training set (90%), 
with the remaining 10% as the test set. To quantify the predictability of each interactome, we 
calculated its structural consistency index 𝜎!  based on the first-order perturbation of the 
interactome’s adjacency matrix, using the Matlab implementation of the Structural Perturbation 
Method (SPM) for link prediction [76]. (Note that here we explicitly considered self-loops in the 
calculations of 𝜎! .) See SI Sec.IA for details on SPM. Boxes indicate the interquartile range 
between the first and third quartiles with the central mark inside each box indicating the median. 
Whiskers extend to the lowest and highest values within 1.5 times the interquartile range. a, 
Predictability of real interactomes. b, Predictability of synthetic interactomes with different edge 
density. Here, we generated synthetic interactomes using duplication-mutation-complementation 
model3. Size of the synthetic interactome is 5,000 with a tuning divergence parameter.   
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Reviewers' Comments: 

Reviewer #1: 
Remarks to the Author: 
The authors have not sufficiently addressed the reviewer’s debuts about the presented results. The 
changes to the manuscript are not sufficient enough to warrant a publication. 

Specifically. Using an unbalanced set, as the authors do, is correct. We expect there is no interaction 
between the two random proteins in the full interactome. This means that AUROC is directly 
interpretable and we should expect not that distantly dissimilar performance for the presented method 
outside the benchmark. That AUROC of 0.9 on the balanced set could be very misleading on the real-
life performance of the method, but on the unbalanced is closer to the real-world expectation. This 
leads to two possible interpretations of the given results: 1) The authors have a very biased 
benchmark 2) the authors almost completely solved the human interactome. 

I do believe that the former statement explains the seen results which means that I do not believe 
that the following statements from the abstract hold: 
Statement 1) “Our results indicate that advanced similarity-based methods, which leverage the 
underlying network characteristics of PPIs, show superior performance over other general link 
prediction methods.” 
Statement 2) “[…] finding 1,177 new 61 human PPIs (involving 633 proteins).” 
Statement 3) “These results establish advanced similarity-based methods as powerful tools for the 
prediction of human PPIs.” 

Specifically: 

Point 1.5: 
The way the authors present the functional association (Fig. R3, Fig S13) is meaningless, as there is 
no testing involved. The authors just list the frequency of the GO terms. The term “binding” which is 
the first one is also associated with more than half of annotated human proteins. My guess is that is 
not statistically significant. Even more problematic is Fig. S12, which lists root terms of the respective 
Gene Ontology branches as being associated with the found clusters (“Molecular Function” and 
“Cellular Component”)… to best of my knowledge these terms are associated with almost all proteins. 

Point 1.6 and Point 1.7: 
To my remark regarding the fact that top-scoring associations do not make much sense the authors 
respond, that yes, but they were not experimentally validated, so that’s not a problem. But the 
authors’ Statment 3) does not specify that you have to experimentally validate the “powerful tools to 
predict human PPI”. 

Point 1.8. 
This statement that proteins share a GO term (organelle membrane) is not a statistical test. In fact, 
I’ve tested it, and no it’s not a statistically significant term (as they are no statistically enriched terms 
for the set of proteins interacting with APOL2), so these proteins really do not have anything in 
common. 

The authors do not prove that any of the newly discovered and validated human interactions is not 
just noise. With the exception of the set of keratins, but that is trivial and could result from the bias of 
the methods used. The performance testing is suboptimal, and small biases in the method can lead to 
misinterpretation of the AUC measures. 

Reviewer #2: 
Remarks to the Author: 



The authors have adequately addressed my comments. 

Reviewer #3: 
Remarks to the Author: 
My concerns were mostly addressed. The only remaining one is concerning the set of considered PPI 
networks. In the previous paper it was only 4 small PPI networks, and now it is 5 small and 1 large ppi 
networks. It would be good if this could be improved further. 
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Responses to Reviewer #1 
 
Point 1.0: The authors have not sufficiently addressed the reviewer’s debuts about the presented 
results. The changes to the manuscript are not sufficient enough to warrant a publication. 
 
Response: We thank Reviewer #1 for reviewing our manuscript again. We apologize for not fully 
addressing her/his concerns on the presented results. Next, we address each of her/his remaining 
comments in order. 
 
 
Point 1.1: Specifically. Using an unbalanced set, as the authors do, is correct. We expect there 
is no interaction between the two random proteins in the full interactome. This means that AUROC 
is directly interpretable and we should expect not that distantly dissimilar performance for the 
presented method outside the benchmark. That AUROC of 0.9 on the balanced set could be very 
misleading on the real-life performance of the method, but on the unbalanced is closer to the real-
world expectation. This leads to two possible interpretations of the given results: 1) The authors 
have a very biased benchmark 2) the authors almost completely solved the human interactome. 
 
Response: We thank Reviewer #1 for this critical comment.  
 
The high AUROC values are due to the fact that the distribution of links is highly imbalanced in 
the PPI prediction problem. Evaluating PPI prediction methods using AUROC will overestimate 
their performance. We have described this point in our previous manuscript (please see Page 4, 
Lines 153-158):    

“Considering that the distribution of links is highly imbalanced in the PPI prediction 
problem due to the sparsity of interactome maps across organisms24,,25, AUROC may 
overestimate the performance of a link prediction method, while AUPRC can provide more 
pertinent evaluation26,27. Indeed, by systematically comparing the performance metrics of 
various PPI prediction methods, we found clear evidence that AUROC largely 
overestimates the performance of any particular method.” 

 
The reason why we still presented the results on AUROC in our manuscript is simply because 
AUROC has been widely used in the link prediction literature [1-5], and we wanted to demonstrate 
clear evidence that it is not a good performance metric for the PPI prediction problem.  
 
We emphasize that in this work AUROC was not included in the performance interpretation, 
comparison and ranking of different PPI prediction methods. Hence, it doesn’t affect our 
assessment of different methods.  
 
 
 
Point 1.2: I do believe that the former statement explains the seen results which means that I do 
not believe that the following statements from the abstract hold: 
 
Statement 1) “Our results indicate that advanced similarity-based methods, which leverage the 
underlying network characteristics of PPIs, show superior performance over other general link 
prediction methods.” 
 
Response: We thank Reviewer #1 for this critical comment. We apologize for not being 
sufficiently clear about the motivation of including results on AUROC. As mentioned in our 



 2 

response to Point 1.1, AUROC will overestimate the performance of link prediction methods if the 
distribution of links is highly imbalanced. In this work, AUROC was not included in the 
performance interpretation, comparison and ranking of different prediction methods.  
 
In the revised manuscript, to emphasize this point, we have revised the following sentence (see 
Page 5, Lines 175-176): 

“Hereafter, we will, therefore, exclude AUROC in calculating the combined z-score as well 
as interpretation of the performance for each method.”   

and added the following sentence to the caption of Figure 3 (see Page 27, Lines 974-975): 
“Note that AUROC was excluded in calculating the combined z-score and ranking for each 
method” 

 
 
Point 1.3: Statement 2) “[…] finding 1,177 new 61 human PPIs (involving 633 proteins).” 
 
Response: We thank Reviewer #1 for this comment. Those 1,177 new human PPIs have been 
validated by the well-established yeast two-hybrid (Y2H) assays.  
 
 
Point 1.4: Statement 3) “These results establish advanced similarity-based methods as powerful 
tools for the prediction of human PPIs.” 
 
Response: We thank Reviewer #1 for this comment, and we apologize for not interpreting our 
results clearly. This statement does not rely on AUROC results. We have added some 
descriptions in the revised manuscript to avoid potentially misleading readers (please see our 
responses to Points 1.1 and 1.2). 
 
 
Point 1.5: Specifically: 
The way the authors present the functional association (Fig. R3, Fig S13) is meaningless, as there 
is no testing involved. The authors just list the frequency of the GO terms. The term “binding” 
which is the first one is also associated with more than half of annotated human proteins. My 
guess is that is not statistically significant.  
 
Response: We thank Reviewer #1 for this critical comment. Those GO terms presented in Fig.R3 
of our previous response letter (corresponding to Fig.S13 in the SI) were derived from the 
functional enrichment analysis tool --- FuncAssociate 3.0: The Gene Set Functionator [6], which 
has a default adjusted p-value threshold 0.05 (as other tools do). Hence, those GO terms are 
statistically significant. In Table R1, we listed all the 27 GOs (and their associated p-values) for 
proteins involved in those the top-5000 PPIs predicted by MPS(T). It is clear that the GO term 
“binding” and other GOs all have adjusted p-value < 0.05, and hence are statistically significant. 
 
To further confirm the results shown in Table R1, we performed the functional enrichment analysis 
using another popular tool: g:Profiler [7] (which has been cited 2,479 times to date since its 
publication in 2019). The results are shown in Table R2. We found in total 123 GO terms 
(molecular function: 15; cellular component: 75; biological process: 33) that are statistically 
significant (with adjusted p-value < 0.05). Interestingly, 20 of the 27 GOs shown in Table R1 
(highlighted in red) also appear in Table R2. These include the term: GO:0005488 (binding).   
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Table R1: Results of enriched GO terms for proteins evolved in the top-5000 PPIs 
predicted by MPS(T). The analysis was performed by using FuncAssociate3.0. The 20 GOs 
colored in red also appear in Table R2.  

 
 
 
 
 
 
 
 
 
 

N X LOD P P_adj attrib ID attrib name 

8 12 1.35492479 4.69E-07 0.004 GO:0005833 hemoglobin complex 

8 14 1.19517645 2.47E-06 0.01 GO:0005344 oxygen transporter activity 

64 122 1.13608048 8.40E-39 <0.001 GO:0045095 keratin filament 

8 15 1.13300479 4.94E-06 0.018 GO:0015671 oxygen transport 

113 220 1.13082364 1.44E-66 <0.001 GO:0031424 keratinization 

10 19 1.12263506 3.59E-07 0.004 GO:0015669 gas transport 

99 230 0.98130066 2.40E-49 <0.001 GO:0005882 intermediate filament 

51 125 0.92912119 1.20E-24 <0.001 GO:0070268 cornification 

13 42 0.74006178 1.02E-05 0.035 GO:0045104 intermediate filament cytoskeleton organization 

13 43 0.72556017 1.36E-05 0.041 GO:0045103 intermediate filament-based process 

15 54 0.67361837 9.54E-06 0.032 GO:0070936 protein K48-linked ubiquitination 

78 609 0.25578491 6.86E-06 0.02 GO:0005198 structural molecule activity 

138 1113 0.2459277 1.48E-08 0.001 GO:0005615 extracellular space 

174 1493 0.21772705 1.72E-08 0.001 GO:0044430 cytoskeletal part 

1065 11770 0.20722112 1.09E-17 <0.001 GO:0005515 protein binding 

344 3249 0.18571551 9.10E-11 <0.001 GO:0044707 single-multicellular organism process 

348 3308 0.18249248 1.51E-10 <0.001 GO:0032501 multicellular organismal process 

390 3847 0.16586632 1.00E-09 <0.001 GO:0044421 extracellular region part 

296 2935 0.15251379 3.44E-07 0.004 GO:0070062 extracellular exosome 

296 2936 0.15232154 3.55E-07 0.004 GO:0065010 extracellular membrane-bounded organelle 

296 2954 0.14887126 6.17E-07 0.005 GO:1903561 extracellular vesicle 

296 2955 0.14868015 6.36E-07 0.005 GO:0043230 extracellular organelle 

330 3347 0.14301666 5.48E-07 0.005 GO:0031988 membrane-bounded vesicle 

346 3536 0.1402022 5.60E-07 0.005 GO:0031982 vesicle 

429 4563 0.12433034 1.42E-06 0.008 GO:0044767 single-organism developmental process 

1216 14846 0.11728911 1.28E-05 0.038 GO:0005488 binding 

455 4965 0.11070852 1.03E-05 0.035 GO:0032502 developmental process 
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Table R2: Results of enriched GO terms for proteins evolved in the top-5000 PPIs 
predicted by MPS(T). The analysis was performed by using g:Profiler. The 20 GOs colored in 
red also appear in Table R1.  
 

source term_name term_id adjusted_p_value term_size 

GO:MF protein binding GO:0005515 3.78E-179 14832 

GO:MF binding GO:0005488 1.10E-53 18303 

GO:MF structural constituent of skin epidermis GO:0030280 2.31E-17 37 

GO:MF identical protein binding GO:0042802 4.4942E-06 2121 

GO:MF haptoglobin binding GO:0031720 1.9346E-05 10 

GO:MF signaling receptor regulator activity GO:0030545 0.00073118 543 

GO:MF oxygen carrier activity GO:0005344 0.00196675 15 

GO:MF signaling receptor activator activity GO:0030546 0.00202526 508 

GO:MF receptor ligand activity GO:0048018 0.00232018 500 

GO:MF ubiquitin-like protein conjugating enzyme activity GO:0061650 0.00478199 37 

GO:MF ubiquitin conjugating enzyme activity GO:0061631 0.01157567 34 

GO:MF molecular carrier activity GO:0140104 0.01445746 82 

GO:MF growth factor activity GO:0008083 0.01860679 165 

GO:MF signaling receptor binding GO:0005102 0.02797529 1555 

GO:MF cAMP-dependent protein kinase regulator activity GO:0008603 0.02949999 11 

GO:BP keratinization GO:0031424 1.75E-28 83 

GO:BP intermediate filament organization GO:0045109 2.50E-28 68 

GO:BP intermediate filament cytoskeleton organization GO:0045104 5.22E-27 88 

GO:BP intermediate filament-based process GO:0045103 9.91E-27 89 

GO:BP keratinocyte differentiation GO:0030216 6.20E-18 169 

GO:BP skin development GO:0043588 5.78E-14 305 

GO:BP epithelial cell differentiation GO:0030855 8.83E-14 711 

GO:BP epidermal cell differentiation GO:0009913 1.48E-13 239 

GO:BP epithelium development GO:0060429 2.54E-12 1208 

GO:BP epidermis development GO:0008544 5.40E-12 368 

GO:BP tissue development GO:0009888 5.84E-12 1973 

GO:BP regulation of cellular process GO:0050794 1.82E-11 11130 

GO:BP cellular developmental process GO:0048869 1.41E-10 4280 

GO:BP cell differentiation GO:0030154 1.59E-10 4256 

GO:BP developmental process GO:0032502 2.66E-10 6424 

GO:BP anatomical structure development GO:0048856 7.41E-10 5836 

GO:BP animal organ development GO:0048513 2.05E-09 3591 

GO:BP response to stimulus GO:0050896 2.75E-08 9000 

GO:BP regulation of response to stimulus GO:0048583 7.91E-08 3970 

GO:BP carbon dioxide transport GO:0015670 2.19E-07 15 
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GO:BP biological regulation GO:0065007 3.27E-07 13096 

GO:BP negative regulation of cellular process GO:0048523 3.90E-07 4749 

GO:BP multicellular organismal process GO:0032501 6.48E-07 7463 

GO:BP regulation of primary metabolic process GO:0080090 8.92E-07 5869 

GO:BP 
regulation of nitrogen compound metabolic 
process GO:0051171 

2.5351E-06 5706 

GO:BP regulation of biological process GO:0050789 5.8397E-06 12361 

GO:BP cellular response to stimulus GO:0051716 1.1209E-05 7494 

GO:BP positive regulation of biological process GO:0048518 1.7013E-05 6309 

GO:BP gas transport GO:0015669 1.7016E-05 24 

GO:BP one-carbon compound transport GO:0019755 3.0808E-05 25 

GO:BP response to stress GO:0006950 3.6801E-05 3938 

GO:BP regulation of cellular metabolic process GO:0031323 4.656E-05 5649 

GO:BP positive regulation of cellular process GO:0048522 7.6728E-05 5641 

GO:BP cellular response to chemical stimulus GO:0070887 0.0002596 3049 

GO:BP cell communication GO:0007154 0.00037831 6551 

GO:BP regulation of signal transduction GO:0009966 0.00040327 2968 

GO:BP positive regulation of response to stimulus GO:0048584 0.00046351 2214 

GO:BP supramolecular fiber organization GO:0097435 0.00054132 807 

GO:BP response to organic substance GO:0010033 0.00055217 3034 

GO:BP signal transduction GO:0007165 0.00055857 5993 

GO:BP cellular response to organic substance GO:0071310 0.00079057 2405 

GO:BP signaling GO:0023052 0.00130489 6492 

GO:BP regulation of axon regeneration GO:0048679 0.00158057 28 

GO:BP response to external stimulus GO:0009605 0.00178341 2814 

GO:BP regulation of signaling GO:0023051 0.00290519 3374 

GO:BP regulation of cell communication GO:0010646 0.00313583 3363 

GO:BP regulation of transcription by RNA polymerase II GO:0006357 0.00319086 2574 

GO:BP regulation of cell death GO:0010941 0.0032573 1637 

GO:BP transcription by RNA polymerase II GO:0006366 0.00378545 2676 

GO:BP cell death GO:0008219 0.00398029 2107 

GO:BP regulation of neuron projection regeneration GO:0070570 0.00521021 31 

GO:BP defense response to other organism GO:0098542 0.00575601 1163 

GO:BP regulation of molecular function GO:0065009 0.00631256 3055 

GO:BP secretion by cell GO:0032940 0.00702023 808 

GO:BP negative regulation of biological process GO:0048519 0.008205 5918 

GO:BP protein K48-linked ubiquitination GO:0070936 0.0104892 67 

GO:BP oxygen transport GO:0015671 0.01130858 17 

GO:BP 
regulation of nucleobase-containing compound 
metabolic process GO:0019219 

0.01238068 4088 
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GO:BP cell population proliferation GO:0008283 0.01456825 1988 

GO:BP defense response GO:0006952 0.01888476 1742 

GO:BP locomotion GO:0040011 0.01995959 1349 

GO:BP positive regulation of signal transduction GO:0009967 0.02300705 1523 

GO:BP regulation of RNA metabolic process GO:0051252 0.02410591 3775 

GO:BP negative regulation of response to stimulus GO:0048585 0.02444799 1604 

GO:BP 
negative regulation of multicellular organismal 
process GO:0051241 

0.02556781 1035 

GO:BP regulation of DNA-templated transcription GO:0006355 0.03163657 3474 

GO:BP regulation of nucleic acid-templated transcription GO:1903506 0.03235427 3475 

GO:BP export from cell GO:0140352 0.03364887 866 

GO:BP cell surface receptor signaling pathway GO:0007166 0.03462974 2816 

GO:BP DNA-templated transcription GO:0006351 0.03713049 3595 

GO:BP nucleic acid-templated transcription GO:0097659 0.03795358 3596 

GO:BP regulation of RNA biosynthetic process GO:2001141 0.03954254 3484 

GO:BP RNA biosynthetic process GO:0032774 0.04209486 3615 

GO:BP regulation of biosynthetic process GO:0009889 0.04251432 4175 

GO:BP regulation of response to external stimulus GO:0032101 0.04533914 948 

GO:CC intermediate filament GO:0005882 1.08E-58 217 

GO:CC intermediate filament cytoskeleton GO:0045111 2.06E-52 255 

GO:CC keratin filament GO:0045095 1.36E-49 102 

GO:CC polymeric cytoskeletal fiber GO:0099513 3.68E-28 779 

GO:CC supramolecular polymer GO:0099081 4.57E-25 1026 

GO:CC supramolecular fiber GO:0099512 4.15E-24 1017 

GO:CC extracellular space GO:0005615 8.48E-22 3368 

GO:CC extracellular region GO:0005576 1.04E-20 4302 

GO:CC supramolecular complex GO:0099080 1.11E-20 1377 

GO:CC cytoplasm GO:0005737 6.78E-18 12270 

GO:CC vesicle GO:0031982 2.47E-14 3973 

GO:CC extracellular exosome GO:0070062 9.35E-14 2108 

GO:CC extracellular vesicle GO:1903561 1.84E-13 2132 

GO:CC extracellular membrane-bounded organelle GO:0065010 1.94E-13 2133 

GO:CC extracellular organelle GO:0043230 1.94E-13 2133 

GO:CC cytosol GO:0005829 1.00E-11 5419 

GO:CC endoplasmic reticulum GO:0005783 1.4465E-06 2031 

GO:CC cytoskeleton GO:0005856 5.3323E-06 2381 

GO:CC haptoglobin-hemoglobin complex GO:0031838 2.027E-05 11 

GO:CC hemoglobin complex GO:0005833 0.00013997 13 

GO:CC endomembrane system GO:0012505 0.00031646 4733 
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GO:CC extracellular matrix GO:0031012 0.00035086 565 

GO:CC external encapsulating structure GO:0030312 0.00037412 566 

GO:CC collagen-containing extracellular matrix GO:0062023 0.00102482 429 

GO:CC cytoplasmic vesicle GO:0031410 0.00363285 2487 

GO:CC intracellular vesicle GO:0097708 0.00383297 2489 

GO:CC endoplasmic reticulum membrane GO:0005789 0.00858259 1162 

GO:CC endoplasmic reticulum subcompartment GO:0098827 0.00995922 1166 

GO:CC 
nuclear outer membrane-endoplasmic reticulum 
membrane network GO:0042175 

0.01220072 1184 

GO:CC 
endoplasmic reticulum protein-containing 
complex GO:0140534 

0.01295723 127 

GO:CC endoplasmic reticulum lumen GO:0005788 0.02244166 312 

GO:CC organelle membrane GO:0031090 0.03647855 3685 

GO:CC cAMP-dependent protein kinase complex GO:0005952 0.04977835 9 

 
 
 
Point 1.6: Even more problematic is Fig. S12, which lists root terms of the respective Gene 
Ontology branches as being associated with the found clusters (“Molecular Function” and 
“Cellular Component”)… to best of my knowledge these terms are associated with almost all 
proteins. 
 
Response: We thank Reviewer #1 for this critical comment. The GOs in Figure.S12 were 
obtained from running FuncAssociate3.0 [6]. The functional modules were discovered by SAFE 
(spatial analysis of functional enrichment) [8]. This figure was used to demonstrate the functional 
relationships/modules among the new human PPIs discovered in this study.   
 
 
Point 1.7: To my remark regarding the fact that top-scoring associations do not make much sense 
the authors respond, that yes, but they were not experimentally validated, so that’s not a problem. 
But the authors’ Statment 3) does not specify that you have to experimentally validate the 
“powerful tools to predict human PPI”. 
 
Response: We thank Reviewer #1 for this comment. Our statement was based on both 
computational and experimental validations. Those advanced similarity-based methods, which 
leverage the underlying network characteristics of PPIs, show superior performance over other 
general link prediction methods in both computational validation among all six interactomes (see 
Figure 3) and experimental validation (see Figure 5). Note that those statements do not rely on 
AUROC results.  
 
 
Point 1.8: This statement that proteins share a GO term (organelle membrane) is not a statistical 
test. In fact, I’ve tested it, and no it’s not a statistically significant term (as they are no statistically 
enriched terms for the set of proteins interacting with APOL2), so these proteins really do not 
have anything in common. 
 
Response: We thank Reviewer #1 for this comment.  
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The statement that those six genes: APOL2, ELOVL4, ERGIC3, FAM210B, SLC35C2, and 
TIMMDC1 share a GO term (organelle membrane) was based on the functional enrichment 
analysis using g:Profiler, rather than FuncAssociate3.0. We apologize for not making this point 
clear in our previous response letter.  
 
As shown in Fig.R1, both the GO term (organelle membrane) and the GO term (endoplasmic 
reticulum-Golgi intermediate compartment membrane) have adjusted p-value less than 0.05, 
and hence are statistically significant.  

Figure R1: Functional enrichment analysis of a set of proteins interating with APOL2. The 
analysis was performed by using g:Profiler. 

 
 
 
Point 1.9: The authors do not prove that any of the newly discovered and validated human 
interactions is not just noise. With the exception of the set of keratins, but that is trivial and could 
result from the bias of the methods used. The performance testing is suboptimal, and small biases 
in the method can lead to misinterpretation of the AUC measures. 
 
Response: We thank Reviewer #1 for this comment.  
 
As shown in Fig.R3 of our previous response letter, those proteins involved in the predicted PPIs 
do show many statistically significant GO terms.  
 
Regarding the AUROC, as we mentioned in our response to Point 1.1, we were aware of that 
AUROC will overestimate the performance of a link prediction method for imbalanced dataset, 
thus AUROC were not considered in ranking methods tested in this work. The reason that we 
calculated the AUROC is because (1) it has been widely used in link prediction papers [1-5]; (2) 
we wanted to explicitly demonstrate that it is quite misleading in evaluating methods of predicting 
PPIs.  
 
As many of those predicted PPIs have been experimentally validated, this indicates that they are 
not just noise. 
 
 
 
Finally, we thank Reviewer #1 again for reviewing our manuscript. We hope our responses above 
have fully addressed her/his concerns.  
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Responses to Reviewer #2 
 
The authors have adequately addressed my comments. 
 
We thank Reviewer #2 for reviewing our manuscript again. We are glad to know that the reviewer 
is satisfied with our previous response.  
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Responses to Reviewer #3 
 
Point 3.0: My concerns were mostly addressed.  
Response: We thank Reviewer #3 for reviewing our manuscript again. 
 
Point 3.1: The only remaining one is concerning the set of considered PPI networks. In the 
previous paper it was only 4 small PPI networks, and now it is 5 small and 1 large ppi networks. 
It would be good if this could be improved further. 
 
Response: We thank Reviewer #3 for this comment. We apologize for not better explaining our 
motivations of focusing on those interactomes used in this study.  
 
We know that, to evaluate the performance of PPI prediction methods, we need reliable and 
unbiased benchmark interactomes. Literature-curated interactomes of PPIs with multiple lines of 
supporting evidence might be highly reliable, but they are largely influenced by selection biases. 
Therefore, in this study we focused on interactomes emerging from systematic screens that lack 
selection biases. For simplicity, we mainly focused on binary datasets where co-complex 
membership annotations are not included. Hence, we focused on the following benchmark 
interactomes for performance evaluation: (1) A plant interactome including 2,774 proteins and 
6,205 PPIs, derived from the PPIs in the A. thaliana Interactome, version 1 (AI-1) and literature 
databases; (2) a worm interactome including 2,528 proteins and 3,864 PPIs, derived from C. 
elegans version 8 (WI8), which is assembled from high-quality Y2H PPIs; (3) a yeast interactome 
of S. cerevisiae including 2,018 proteins and 2,930 PPIs, derived from the union of CCSB-YI1, 
Ito-core and Uetz-screen datasets; (4) a human interactome including 8,274 proteins and 52,548 
PPIs, derived from HuRI, which is assembled from binary protein interactions from three separate 
high-quality Y2H binding assays. Note that all the interactomes were downloaded from the 
interactome database (https://ccsb.dana-farber.org/interactome-data.html) maintained by the 
Center for Cancer Systems Biology (CCSB) at Dana-Farber Cancer Institute (DFCI).  
 
Following the excellent suggestion made by Reviewer #3 (“there are far more interactome data 
available in databases such as BioGRID [2] or STRING [3]”), we have also tested two additional 
human interactomes in BioGRID and STRING. Together with the four benchmark interactomes 
mentioned above, we now have in total 6 interactomes in the current version of our manuscript 
(see Fig.R2).  

Figure R2: Benchmark interactomes considered in this study. 
 
We believe that this set of six interactomes (from four species) is comprehensive enough to 
assess various PPI prediction methods. Moreover, our computational validation demonstrated 
that there are five consistently high-performing methods, i.e., RNM, MPS(T), MPS(B&T), RepGSP 
and SEAL, which yield relatively high AUPRC and P@500 in their computational evaluations over 
the six interactomes.   
 
 
Finally, we thank Reviewer #3 again for reviewing our manuscript. We hope our responses above 
have fully addressed her/his concerns.  
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Reviewers' Comments: 

Reviewer #1: 
Remarks to the Author: 
The authors have successfully addressed my remaining concerns. 

Reviewer #3: 
Remarks to the Author: 
As already mentioned in my previous review of the article, most of my concerns have been addressed. 

The only remaining one is concerning the fact that the performances and behaviors of the tested PPI 
are only assessed on a small number of PPI networks. After asking twice for using more data, the 
paper is still using only 5 small and one large PPI networks (including three different versions of the 
Human PPI network that may largely overlap). 

While I understand the difficulty of testing 26 PPI prediction methods on a larger number of PPI 
network, the used PPI network dataset is too small to be considered as representative of the large 
quantity, variety and quality of the available PPI data. Thus, the claims made by the authors should be 
toned down throughout the paper. 

Importantly, this limitation should be indicated in the Discussion section of the paper. 
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Response to Reviewer #3 
 
 
Point 3.0: As already mentioned in my previous review of the article, most of my concerns have 
been addressed. 
 
We thank Reviewer #3 very much for reviewing our manuscript again.  
 
 
Point 3.1: The only remaining one is concerning the fact that the performances and behaviors of 
the tested PPI are only assessed on a small number of PPI networks. After asking twice for using 
more data, the paper is still using only 5 small and one large PPI networks (including three 
different versions of the Human PPI network that may largely overlap). 
 
Response: We thank Reviewer #3 for this comment. In the first version of our manuscript, we 
evaluated 24 prediction methods on four Y2H-based PPI datasets and one synthetic dataset. In 
the revised version, we tested two additional human PPI datasets using 26 methods. There are 
several reasons why we did not test those methods on many other existing PPI datasets:  

• First, we emphasize that, to evaluate the performance of various PPI prediction methods, we 
need reliable and unbiased benchmark interactomes. Literature-curated interactomes of PPIs 
with multiple lines of supporting evidence might be highly reliable, but they are largely 
influenced by selection biases. Therefore, in this work we focused on interactomes emerging 
from systematic screens that lack selection biases.  

• Second, in a previous work1, Kovács et al. have already evaluated the performance of the L3-
based PPI prediction method on 16 interactomes from 7 species. They found that L3 displays 
superior performance in those interactomes (e.g., interactomes of S. cerevisiae, A. thaliana, 
C. elegans). Those L3-based methods, e.g., L3, RNM and MPS, still show superior 
performance than other methods in the interactomes considered in the current study.  

• Third, we tested two more human interactomes (rather than more interactomes of other 
species), because the experimental validation focused on human PPIs. 

• Last but not least, it’s computationally very challenging to systematically validate all the 26 
methods over too many interactomes. 

We apologize for not making those points more explicit to the reviewer in our previous responses. 
We hope the reviewer could understand our choice now. 
  
 
Point 3.2: While I understand the difficulty of testing 26 PPI prediction methods on a larger 
number of PPI network, the used PPI network dataset is too small to be considered as 
representative of the large quantity, variety and quality of the available PPI data. Thus, the claims 
made by the authors should be toned down throughout the paper. 
 
Response: We thank Reviewer #3 for this comment. In the revised manuscript, we have toned 
down our conclusions throughout the paper, including  

• the Abstract (see page 2, line 58):  “…advanced similarity-based methods, which leverage the 
underlying network characteristics of PPIs, show superior performance over other general link 
prediction methods in the interactomes we considered.”  
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• the Introduction section (see page 4, line 118): “We found that advanced similarity-based 
methods, which leverage the underlying characteristics of PPIs, show superior performance 
over other link prediction methods in both computational and experimental validations in the 
interactomes we considered.” 

• and the Discussion section (see page 11, line 397): “By contrast, link prediction methods 
MPS and RNM, which leverage specific connectivity properties of PPI networks (i.e., the L3 
principle), displayed the most promising performance in the interactomes we considered.” 

 
Point 3.3: Importantly, this limitation should be indicated in the Discussion section of the paper. 
 
Response: We thank Reviewer #3 for this excellent suggestion. In the revised manuscript, we 
have added this point in the Discussion section (see page 12, lines 439-441):  

“In addition, we only considered six interactomes from four species, which certainly does 
not cover the variety and quality of all the available PPI datasets from different species.” 

 
 

 
Finally, we thank Reviewer #3 again for reviewing our manuscript. We hope our responses above 
have fully addressed her/his concerns.  
 
 
Reference 
1. Kovács, I. A. et al. Network-based prediction of protein interactions. Nat Commun 10, 1240 

(2019). 
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