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1. Metasurface fabrication 

Laser writing on bulk SiO2 substrate provides the birefringence required by the geometric phase metasurface. 

Under intense laser irradiation, several tens of randomly distributed nanopores are created near the laser 

focal spots within a volume of bulk SiO2, wherein each individual nanopore has an elongated oblate cross 

section in a plane parallel to the surface of the metasurface. The elongated shape of the nanopores is 

responsible for the induced birefringence. The long axis of the randomly distributed nanopores (the 

direction of the slow axis direction of the induced birefringence) is perpendicular to the polarization of the 

writing laser beam. The key parameter for birefringent operation is the phase retardance, defined as the 

optical delay between the fast and slow polarization axes. The phase retardation of the patterned volume 

2 ( ) /xx yyn n h     is determined by the refractive index contrast xx yyn n and the writing depth h. Here, 

xxn  and yyn are the local effective refractive indices of the patterned volume along the nanopores short axis 

and long axis and are related to the filling factor of nanopores in SiO2 as well as the host material refractive 

index. In a geometric phase system,  should be equal to π to maximize the phase modulation efficiency. 

To manipulate the local wavefront of the incident light, we change the orientation of the nanopores in the 

local volume by controlling the polarization of the incident writing laser.  

 In our experiment, we fabricated a metasurface with an area of 6 mm*6 mm inside a SiO2 substrate 

with a diameter of 2.54 cm. The writing laser is a PHAROS Yb-doped potassium gadolinium tungstate-

based mode-lock regenerative amplified Yb:KGW (Ytterbium-doped potassium gadolinium tungstate) 

based femtosecond laser system (Pharos, Light Conversion Ltd.) working at 1030 nm wavelength (photon 

energy ~ 1.2 eV). The laser has a variable repetition rates (Viosil, ShinEtsu, OH content 1200 ppm) from 

1kHz to 1MHz and a pulse duration is from 190 fs to 10 ps. The laser beam is focused into a 3 mm thick 

bulk SiO2 with ~5 μm in diameter at the focal point by a 0.16 numerical aperture aspheric objective lens. 

The SiO2 sample was mounted onto XYZ computer-controlled three-axial air-bearing translation stage 

(Aerotech Ltd.). The polarization is rotated by an electro-optic modulator. If more than one layer of 

nanostructures is to be imprinted into the metasurface, scanning along the scan path can be repeated at other 

depths within the sample thickness by changing the position of the sample relative to the focusing 

arrangement along the beam propagation direction. Alternatively, the focusing depth might be altered during 

a scan to form nanostructures at varying depths. 

 The fabricated metasurface nanostructure is embedded in the glass substrate at ~0.65 mm from the 

top surface. The total thickness of the nanostructure layer is ~1 mm. Due to the weak birefringence 

 45 10xx yyn n    , 25 birefringent layers were fabricated with a layer separation of ~40 μm. Note that 

the nonnegligible thickness of the metasurface requires the 4f system with reasonable focal length so that 

paraxial approximation can be applied properly. The transmission of the metasurface is related to the size 



of the nanopores, which is determined by the laser pulse density. To achieve higher transmission efficiency, 

the size of the nanopores should be small enough to reduce the Rayleigh scattering. The lengths and widths 

of the elongated nanopores in our samples are typically around 40 nm and 20 nm, respectively. The total 

transmission is > 95% at the working wavelength.  

 Figure S1(a) shows the crossed polarization image of the sample. Each two pairs of transmitting 

stripes correspond to one metasurface period based on the transmittance profile described by 

( ) sin(2 )mst x,y x  . The slow axis orientation distribution of the metasurface is shown in Fig. S1(b). The 

spatially distributed angle from -90° to 90° indicates the final geometric phase of the metasurface ranging 

from -180° to 180°. Fig. S1(c) presents the polarized microscope transmittance image of the boxed 

region of the metasurface in Fig. S1(a). Figure S1(d) shows the effective optical axis distribution of the 

boxed region of the metasurface in Fig. S1(b). A scanning electron microscope image of the laser written 

area shows the formation of the nanopore defects within the metasurface. The black elongated nanopores 

has the smallest feature size of ~20 nm. 

 

FIG. S1 The metasurface information. (a) Crossed polarization image. (b) Slow axis distribution. (c) Zoomed in area in (a), which 

is taken by a microscope. (d) The effective optical axis distribution. The right panel is the scanning electron microscope image of 

the sample area. 

 

2. Theory of  tunable retardance imaging 



Geometric phase results from polarization change and the local orientation of the optical axis of the 

metasurface. The Jones matrix of the designed geometric phase metasurface with constant phase retardance 

𝜋 and spatially varying local optical axes   is given as: 
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Here, ( )x,y x    , assuming the phase gradient direction is along x axis. Given the metasurface is 

sandwiched between two orthogonal linear polarizer (x-polarized) and analyzer (y-polarized), the Jones 

matrix of the combination of the three components can be written as 
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which shows the combined device can be understood as an effective amplitude grating which changes the 

polarization of the input light by 90 degrees and exhibits a sinusoidal transmittance function 

( ) sin(2 )mst x,y x  . 

 

FIG. S2. Measurement setup. L1 and L2, lens. P, polarizer. A, analyzer. MS, metasurface. Fourier plane, Plane 2. 

 

To illustrate the formation of image when the metasurface is placed with a transverse shift 𝑠 along x axis 

and a longitudinal shift   along z axis with respect to the origin of the Fourier plane (FP), we apply the 

scalar diffraction with the angular spectrum method of analysis. Figure S2 shows the experiment setup. 

Denote the electrical field of the input object at Plane 0 as 
0 0( , )inE x y . The angular spectrum of the electric 

field 
2 2 2( , )E x y  on FP is 2 2 2 2( , ) [ ( , )]x yF f f E x y F , where F  is the Fourier-transform operator. Under 

Fresnel approximation, 1( )x yf , fF  on Plane 1 which is | | ( 0)    in front of the FP is related to the angular 

spectrum 2 ( )x yf , fF  by 

                                                                  2 2

2 1( , ) ( , )exp[j ( )]x y x y x yF f f F f f f f                                             (S3) 

Thus, with Eq. S3 and consider
2 2 2( , )E x y  will be the Fourier transform of the input object in the absence 



of metasurface, the angular spectrum on Plane 1 can be determined by 

                                       2 2
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where 
1f (

2f ) is the focal distance of L1 (L2). With metasurface placed on Plane 1, the angular spectrum just 

behind the metasurface is the convolution of 1( , )x yF f f  and the Fourier transform of the transmittance 

function 
1 1( )mst x s, y  of metasurface, which can be expressed by 
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where ∗ is the convolution operator, 2 /s   . 

With Fresnel propagation, the angular spectrum on the FP is given by 
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To understand the functionality of metasurface, the electric field on the FP is calculated with the inverse 

Fourier transform as 
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where (0)

2 2 2( , )E x y  is the electric field on FP without the metasurface in the setup. This result shows 

effectively, the electric field on the FP simultaneously experienced an angular shift and a spatial shift 

induced by the metasurface. A similar derivation for the case when metasurface is placed behind the FP 

( 0)   yields the same expression for '

2 2 2( , )E x y  as Eq. S7. 

 The output electric field on the image plane turns out to be the subtraction of two laterally sheared 

images with different phase retardation, which is written as 
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where 
22 2 f   is the shearing distance, 

2 1/M f f   is the magnification, 
3 3 2( ) 2 / ( )x x f     is 

a spatially varying phase resulted from the longitudinal shift 𝜖 of metasurface, 2 /s    represents a 

bias phase brought by the transverse shift 𝑠 of metasurface. 



 For simplicity, consider the case when 
1 2f f  and flip the coordinate of the image plane. With a 

phase object 
0 0 0 0( , ) Aexp[j ( , )]inE x y x y , the intensity to be captured at the image plane is given by 
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The image contrast varies as the bias retardation between the LCP and RCP changes. Assume the object has 

unity amplitude, i.e., A=1 and consider the metasurface located at the Fourier plane, i.e., 
3( ) 0x   . For 

simplicity, we define the phase gradient of the object as 
3 3 3 3( , ) ( , )x y x y      . The signal could be 

given as:  signal

1
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2
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image contrast could be given as  
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As we can tell the cotangent term dominates the overall image contrast. When the bias retardation 2  

approaches 0 or 2 , the two replicas interfere destructively, and the background goes to almost zero resulting 

in maximum image contrast.    

 

3. Retardance images of polystyrene beads 

To validate the tenability of the bias retardation in FOSSM, we image sparsely distributed polystyrene beads 

of 1 μm in diameter (Polybead, Polysciences, Warrington, PA, USA) with the metasurface placed in the 

center of the back aperture plane, which corresponds to 0   in Eq. 2. A fiber coupled 532 nm continuous 

wave laser is used for illumination. When the metasurface is translated along its phase gradient direction, 

retardance images with intensity corresponding to the positive and negative phase gradients of the 

symmetric microspheres are captured as shown in Fig. S3(a)-(e). Note that the imaging system is designed 

such that the shear distance (~1.5 μm) is larger than the size of the microsphere; therefore, two isolated 

images of the same microsphere with bias retardation determined by the metasurface position are captured 

in each shot. The cross sections along the white dashed lines are shown in Fig. S3(f)-(j). 



 

FIG. S3 (a)-(e) Retardance images of the polystyrene beads with retardation bias of  , / 2 , 0, / 2 ,  . Insets, zoomed-in 

images of the regions in the red dashed box. (f)-(j) the cross sections along the white dashed lines in the inset in (a)-(e). 

 

4. Cell preparation 

HEK 293 cells were cultured in Dulbecco modified Eagle medium (DMEM; Gibco) containing 4.5 g/L 

glucose and supplemented with 10% (v/v) fetal bovine serum (FBS, Sigma) and 1% (v/v) penicillin-

streptomycin (Pen-Strep, Sigma-Aldrich). NIH3T3 cells (CRL-1658, ATCC) were cultured in DMEM 

containing 1 g/L glucose supplemented with 10% calf serum (30-2030, ATCC) and 1% of penicillin-

streptomycin (Sigma-Aldrich). Cells were maintained in a humidified incubator at 37°C with a 5% CO2 

atmosphere. For imaging, cells were grown overnight on top of glass coverslips placed in 6-well plates. 

Cells were then fixed with 4% paraformaldehyde in Phosphate-Buffered Saline (PBS) for 20 minutes at 

room temperature and then rinsed once with PBS after fixation. The glass coverslips containing cells were 

then mounted onto microscope slides using ProLong™ Glass Antifade Mountant with NucBlue™ Stain 

(ThermoFisher Scientific) and left to cure overnight at room temperature before imaging. 

 

5. PMMA sample preparation 

PMMA (Sigma-Aldrich) powder was dissolved in toluene with 30 mg/ml concentration. A glass coverslip 

was cleaned with acetone, isopropanol, and water in order. The PMMA solution was then spin-coated on 

the glass coverslip at 3000 rpm for 40 s. The coverslip covered with PMMA solution is then placed on a 

200 °C hot plate for 7 min to anneal. The thickness step was created using O2 plasma etching. Half of the 

PMMA film was protected by a layer of tape. Under 250W forward RF power for 5 minutes, the exposed 

PMMA film was totally etched off from the sample. The PMMA sample is then ready for imaging after 

peeling off the tape. 

 



6. Phase retrieval algorithm 

The phase information is retrieved in two steps. Firstly, the phase gradient with respect to x and y is 

calculated with a three-step phase shifting method. When the metasurface is limited to move within the FP, 

for each direction, three images with phare retardations of -120°, 0°, 120° are taken to calculate the phase 

gradients Gx and Gy in the main text. For the case when the metasurface is moving along the optical axis, 

three images with phare retardations around -120°, 0°, 120° in a certain area containing the targeted object 

are captured for both horizontal and vertical directions, respectively. Local phase retardations are estimated 

pixelwise by evaluating the sinusoidal background in the images and plugged into a generalized phase-

stepping algorithm [1], which solves Gx and Gy in a least-squares manner. In the second step, the phase of 

the object is reconstructed with a least-squares integration method based on finite difference. According to 

Eq. S9, the phase gradients Gx and Gy  are the difference between two pairs of horizontally and vertically 

sheared objects with a shearing distance 2𝛥, respectively. Thus, the phase gradients can be represented by 

a matrix-vector multiplication [2]  

                                                                              'g = A p                                                                             (S11) 

where [vec(G ) vec(G )]T

x yg   is vectorized phase gradients, 'A is the finite difference matrix considering 

the shearing distance 2 , p is the vectorized phase of the object. 

 To reconstruct the phase of the object, we apply a weighted 𝑙2-norm total variation prior and solve 

the inverse problem 

                                                           ˆ
MN

'

2 xy 2
p

p = argmin A p - g + W p


                                                          (S12) 

where 𝜆 is the regularization parameter, 𝑊 is a weighting matrix, ∙ denotes element-wise multiplication, 

T

xy x y
      is the matrix of forward finite differences in the x and y directions, MN is the number of 

pixels. To solve the problem in Eq. S12, we used CVX, a package for specifying and solving convex 

programs [3, 4].  

 Fig. S4 shows the simulated two sets of three retardance images when the metasurface is shifted 

along x and y axes and the phase retrieval process for a phase object with unity amplitude. 



 

FIG. S4. Simulation of retardance images and phase retrieval when the metasurface is shifted within the FP. (a) The phase of the 

object. (b) The retrieved phase. (c) Three retardance images with phare delays of -120°, 0°, 120° for x and y directions, respectively. 

(d) The phase gradients with respect to x and y calculated from (c). 

 

7. Retardance imaging of a water droplet with a longitudinally displaced metasurface 

Fig. S5 shows the blending of retardance with continuously varying bias retardations as we move the 

metasurface away from the Fourier plane of the microscope. A phase object is imaged by FOSSM with the 

metasurface centered at the optical axis ( 0s  ) at the Fourier plane. Different frames are captured when 

the metasurface is moved away from the Fourier plane along the optical axis while maintained centered in 

the x-y plane. When the metasurface is exactly at the Fourier plane ( 0s  , 0  ), the system performs 

regular edge detection imaging as shown in Fig. S5(b). As the metasurface moves along the z-axis in either 

direction, as shown in Fig. S5(c)-(h), the spatially varying phases of the two sheared replicas form a 

sinusoidal background over the imaging area, which indicates a spatially dependent phase retardation. Here 

in the images, the regions with bright peaks of the interference patterns correspond to zero phase retardation 

which leads to image addition, while the regions with dark valleys of the interference patterns correspond 

to a   phase retardation which leads to edge detection. The size of the edge detection imaging regions 

varies with respect to the distance   between the metasurface and the Fourier plane according to Eq. 2. 



 

FIG. S5. Retardance imaging of a water droplet with a longitudinally displaced metasurface. (a) A small water droplet sandwiched 

between two glass coverslips is used as the phase object. (b) The edge-detection image of the object is formed using a 4f system 

with the metasurface placed symmetrically in the Fourier plane. (c)-(h) Images with the metasurface moved away from the Fourier 

plane by -20 mm, -15 mm, -5 mm, 0 mm, 5 mm, 15 mm, and 20 mm, respectively. The interference pattern becomes higher in 

spatial frequency as the metasurface is moved further away from the Fourier plane, indicating a faster varying phase retardation.  

 

8. Quantitative phase imaging (QPI) of NIH3T3 cells with a longitudinally displaced metasurface 

We further demonstrate the QPI capability when the metasurface is moved away from the Fourier plane. 

Within a neighborhood of the area of interest, the spatially varying phase exp[ j ( )]x  can be estimated 

pixelwise by analyzing the sinusoidal background. By translating the metasurface along the optical axis, 

three images with well separated phase retardations were taken to reconstruct the phase gradient image with 

the generalized phase-stepping algorithm. Figure S6(e) shows the retrieved QPI image of an NIH3T3 cell. 

Figure S6(j) shows the QPI image of the PMMA thin film sample with a thickness of 110 nm. The extracted 

phase matches with the film thickness. 



 

FIG. S6. QPI of NIH3T3 cells with a longitudinally displaced metasurface. (a)-(c) The retardance images are taken such that the 

boxed region has a local phase retardation around -120°, 0°, 120°. (d) The phase gradient image of the cell within the boxed region. 

I The retrieved QPI image of the NIH3T3 cell. (f)-(h) The retardance images of the PMMA calibration sample. (i) The phase 

gradient image of the edge of the 110-nm-thick PMMA thin film. (j) The QPI image of the PMMA sample. (Inset) Cross section of 

the QPI along dashed line. 
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