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Supplementary figures and files referred to in the manuscript 
The manuscript refers to Supplementary figures 1-9 and Supplementary tables 1-4. These figures and tables can be 

found below in the sections titled “Supplementary figures” and “Supplementary tables”.  Data files as spreadsheets are 
referenced by the main manuscript and in this document by their filename (“Supplementary data file XX) and are available 
along with the manuscript. 

Somatic pan-cancer panel design 

The cancer panel gene composition is shown in SuppDataFile1_PanCancerPanelGeneComposition.xlsx. To design the 
panel, cancer gene lists obtained from the literature(1–39), Color Genomics test suite(46), Rahman cancer gene list(47), 
COSMIC Cancer Gene Census(40,41), genes mutated in one or more MSS samples of the TCGA stomach adenocarcinoma 
study(13,42,43), mutated in three or more of 36 in-house gastric cancer tumor samples, and a list of genes involved in DNA 
repair (Supplementary table 1) were collected into a master gene list with standardized HGNC(48) approved gene name(49), 
or, if the gene was not found in the HGNC list, with the NCBI Entrez(50) preferred gene symbol(51).  

The TERT promoter at GRCh38 genomic coordinates chr5:1295163-1296162 was added.  
Three sequences used for microsatellite instability testing were added (MSI_D2S123 at chr2:51061283-51061523; 

MSI_D5S346 at chr5:112877820-112878183; MSI_D17S250 at chr17:38995794-38996034). Also, two more MSI sequences, 
MSI_BAT25 and MSI_BAT26, were included by virtue of their overlap with genes KIT and MSH2.  

Four sequences from the Epstein-Barr virus genome(57,58) and Fourteen sequences from the genomes of nine H. pylori 
strains were added for strain ELS37(59), strain 35A(60), strain 26695(61), strain B38(62), strain B8(63), strain 52(64), strain 
2017(65), strain HUP-B14(66), and strain SouthAfrica20(67).  

The final panel probes were designed using Agilent SureSelect XT2 Custom Capture technology(68) with a target region 
of 3.75 Mbp.  

Anonymous Patient and Sample IDs 

We assigned each patient and biopsy were an anonymous ID (I_#####) and S_#####, respectively. Each biopsy was also 
assigned a biopsy identifier in the form of N1, T1, T2, T3, etc., where “N” designates normal tissue and “T” designates tumor 
tissue. 

DNA extraction and sequencing 

We collected 2 to 5 individual tumor biopsies of gastric cancer tumors from 37 patients along with normal tissue biopsies 
adjacent to the tumors, for a total of 168 individual tumor biopsies and 37 normal biopsies. All biopsies were fresh-frozen 
tissue. DNA was captured with the somatic pan-cancer panel described above.  
 
Each panel capturing run used 16 biopsy samples which were barcoded and pooled into a hybridization group. The goal was to 
sequence individual tumor biopsies at 1.5x more depth than normal biopsies.  
 
The samples were sequenced on a total of 7 lanes in 3 batches on Illumina HiSeq 4000(69), using paired-end 150 base-pair 
sequencing. The hybridization groups, sequencing dates, and lane numbers were recorded for each sequenced sample aliquot in 
a tabbed table file named PROJECT_info.txt used within the computation pipeline, so these numbers were available for use 
by the pipeline (for example, for plotting sequencing depth of each sequenced sample aliquot). 
 
There were 287 targeted genes that were covered less than 100%, and 24 of these were covered less than 90% (Supplementary 
table 2).  

R packages used 

The R programming language(71) was used for many aspects of the work described below, and within the R programs 
many R packages were used repeatedly: 

1. readbitmap(72) 
2. openxlsx(73) 
3. cluster(74) 
4. vcfR(75) 
5. Rsamtools(76) 
6. futile.logger(77) 
7. VariantAnnotation(78) 
8. GenomicRanges(79) 
9. GenomicFeatures(79) 
10. BSgenome(80) 
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11. TxDb.Hsapiens.UCSC.hg38.knownGene(81) 

Reference genome and reference BED file construction 

The Homo sapiens assembly 38 (hg38)(82) version of the human genome that was obtained from the GATK bundle 
database(83) was used as a starting point for constructing a reference genome. The following sequences were appended to the 
reference sequence: Epstein-Barr virus sequence (gi_94734074(58)) and these nine H. pylori variant genomes [NC_017063 
(59),  NC_017360 (60), NC_000915 (61),  NC_012973 (62), NC_014256 (63), NC_017354 (64), NC_017374 (65), 
NC_017733 (66), NC_022130 (67)] 

GENCODE(84) GFF3 version hg38 from was used to create a merged and ±12bp slop BED file of all CDS regions. The 
additional H. pylori and EBV regions were added to the BED file. Gene names were standardized to the HUGO preferred 
name(86). 

Project BED file construction 

Based on the design of the Agilent SureSelect XT2 Custom Capture we were provided with target region BED file 
3025671_Covered.bed for the somatic pan-cancer.  The panel design was lifted over to hg38 genome coordinates using the 
liftOver program(87) and padded by 200bp to create a padded target panel BED file.  A target CDS BED file was also created 
by intersecting the CDS BED file above with the padded target panel BED file. 

 
Shorthand names are used in the rest of this document when describing methods that made use of BED files: 

• BED_TARGET_RGNS: the BED file of panel target regions including H. pylori and Epstein-Barr virus regions 
• BED_MERGED_TGTS: version of BED_TARGET_REGIONS with overlapping regions merged 
• BED_PADDED_TGTS: version of BED_MERGED_TGTS with 200 bp padding added 
• BED_HPY: BED file of H. pylori regions 
• BED_EBV: BED file of Epstein-Barr virus regions 
• BED_PAD_REGIONS: BED file of the actual pad regions adjacent to target regions 
• BED_NON_TARGET: BED file of genomic regions not in BED_PADDED_ 

TGTS 
• RN_NAMED_TARGET_RGNS: BED that replaces BED_PADDED_TGTS column 4 gene names with R1, R2, 

…RN. 

Read filtering and mapping 

All FASTQ files (pre and post-processed) were QC’d using FASTQC(90) and FASTX(91). 
FASTQ files were trimmed using Scythe(88) version 0.991 and Sickle(89) version 1.33. Scythe utilized options -q sanger -

p 0.05 and illumina_adapters.fa file.  Sickle was run with options pe -t sanger -g -q 30 -l 75, to produce reads with a minimum 
length of 75 bp and with an average PHRED Q score of 30 for the sequence in a sliding window.  

 
A total of 15 biopsies from 3 persons were removed (9 tumor biopsies and 1 normal biopsy had poor coverage): 

• I_8275_S_26900 through S_26905 (N1, T1-T5) 
• I_9295_S26909 through S_26913 (N1, T1-T4) 
• I_9708_S_26914 through S_26917 (N1, T1-T3) 
 
We followed GATK(70) Best Practices for Variant Calling v2017.  Reads were aligned to the reference using BWA-

MEM(92) with options -L 0,0 -M -t 4 and sorted-merged using samtools(93) program suite version 1.8.  Different BAM 
ReadGroups from the same biopsy were merged.  Duplicate reads were marked using the Picard Tools(94) MarkDuplicates 
command of version 2.14.0. Indel realignment and base quality score recalibration was performed using GATK(95–97)version 
3.7. 

Quality control testing for artifacts, cross-sample contamination, and gender detection 

Chromosome and target region mapped read counts were assessed using samtools view command with options -q 30 -f 2 -
F 3844 (minimum mapping score of 30, reads must be properly aligned, must not be secondary or supplementary alignments, 
must pass platform/vendor quality controls, and must not be PCR optical duplicates) and bamtobed the bedtools program 
suite(98) version 2-2.27. Bar plots of the counts were produced. Target region counts were intersected target BED using the 
intersect command of the bedtools with the -wo argument. The number of base pairs in the regions of each of the output BED 
files was summed and aggregated across biopsies and plotted. 

 
Hybrid selection and coverage metrics were generated BAM file using the CollectHsMetrics command of the Picard Tools 

program suite with options MINIMUM_BASE_QUALITY=22, MINIMUM_MAPPING_QUALITY=30, 
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PER_TARGET_COVERAGE, CLIP_OVERLAPPING_READS=false and interval file produced from the 
BED_TARGET_RGNS BED file.  Coverage metrics were plotted and used as the first of two steps to confirm poor coverage 
of biopsies first identified with the FASTQC summary plots. 

 
Mapping quality metrics were assessed using CollectMultipleMetrics command of the Picard Tools. Additional mapping 

quality metrics were generated using bamqc version 2.2 of the Qualimap(99) program with using BED_TARGET_RGNS BED 
file, to produce a per-biopsy directory of metrics files. 

 
Basepair-level coverage was generated using samtools view with options -q 30 -F 3840 and bedtools coverage command 

with options -nonamecheck -sorted -d and the panel target regions. These files were aggregated across all biopsies and plots 
were used as the second of two steps to confirm poor coverage of biopsies prior to removing them from the analysis. 
 

Sequencing artifact statistics were collected using CollectSequencingArtifactMetrics command of the GATK program 
suite version 4.0.6.0 with options --INCLUDE_UNPAIRED=true --MINIMUM_INSERT_SIZE 10 --
MINIMUM_MAPPING_QUALITY=30 --MINIMUM_QUALITY_SCORE=22. Results were aggregated across biopsies and 
plotted. That data shows that the mean sequencing error rate is about 0.03%, with a peak rate of 0.07% for C>T transitions, 
which was deemed highly favorable. 

 
Cross-sample contamination testing was performed using GATK program suite version 4.0.6.0 GetPileupSummaries, 

which utilized a hg38 liftedOver version of the Gnomad version r2.0.1 human exome SNP dataset(100), and  
CalculateContamination. These were aggregated and plotted. The data shows that cross-sample contamination was less than 
1.5% for all biopsies except P26.3 (5%) and P17.3 (2.5%). These contamination levels were deemed acceptable. 
 

Sequence data for each biopsy was tested to verify that gender matched the recorded gender of the person; for each biopsy 
sample, the ratio of number of reads mapping to chromosome Y to total number of reads was calculated. If the ratio exceeds 
0.00025, the biopsy is deemed male, else female. All biopsies were found to match the expected gender. 
 
After quality control, the number of passing biopsies was reduced to 115 individual tumor biopsies from 32 patients. 

Extraction of unaligned and Epstein-Barr and H. pylori reads 

Amount of unaligned reads was assessed using samtools view command with argument -F 2. The number of unaligned 
reads were plotted. 

 
Reads mapping to Epstein-Barr virus or H. pylori bacterial genomes were extracted using samtools view with option -F 

3844.  The number of reads were aggregated and plotted. 

MSI assessment 

Microsatellite instability was assessed using MSIsensor(101) scan and msi. The msi command used options -f 0.05 -c 20 -l 
5 -p 10 -m 50 -q 3 -s 5 -w 40 -u 500 -b 1 -x 0 -y 0  and paired tumor-normal BAM.  The results were aggregated and plotted. 

Variant calling 

Panel of Normals construction 

A panel of normal (PON) was used with GATK Mutect2(102) caller using the Best Practices procedure outlined by the 
BROAD Institute(103).   Gnomad v2.0.1 hg38 VCF was used for germline SNPs. 

SNV variant calling with multiSNV 

SNV variants were called using multiSNV(104), which calls germline and somatic SNVs jointly (simultaneously) in all 
biopsies of a person. 

 
The multiSNV program was modified in several ways: 

1. Modified to improve calling of germline SNVs. The original code called a variant when the major alleles in 
normal and tumor were different, but this missed germline calls when 100% of reads in both normal and tumor 
were alternate allele reads (and therefore were the  major allele). The code was modified to change this condition 
to call a variant if the major allele differed from the reference allele. 

2.  Modified to count reads with lower mapping quality that the normal quality threshold. Option -x (--
minMapQualX) was added, taking a mapping quality number as an argument. This causes counts of reads with 
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mapping quality >= the specified mapping quality to be accumulated and written to the output VCF file in the 
form of XD and XCOUNT FORMAT keys, with XD having counts of reference and alternate allele reads at or 
above that mapping quality (like AD) and XCOUNT having counts of reads with bases A,C,G,T at or above that 
quality (like BCOUNT). 

3.  Modified to speed up the program. The program was modified to keep the reference FASTA file open while 
processing, and cache reference information for faster access. 

 
SNV variants were called using the multiSNV program (version v2.3-15 with above modifications added) with options --

include-germline 1 --include-LOH 1 --minBase 22 --minMapQual 30 --minMapQualX 1 --dmin 15 --udmin 3 --dmax 500 --
medianN 40 --medianT 40 --mva 1 --low_depth 15 --weak_evidence 0.01 --normal_contamination 0.03 --
minVariantReadsForTriallelicSite 2 --flag-homopolymer 5 --mu 0.0001 --Rmdups 1 --add_UD 1 --conv 0 --bed 
<BED_PADDED_TGTS> -N <NUM_BIOPSIES>.  The passing variants were selected using GATK SelectVariants.  

 
Germline SNVs were extracted from the per-person multiSNV VCF using bcftools view command to extract non-wildtype 

variants for the normal, requiring minimum depth of 15 and minimum VAF of 0.2. Variants were flagged with INFO flag 
GNOMAD if they appeared in the <GNOMAD_EXOME_VCF> using the bcftools annotate command. 
 

Tandem Repeats Finder, RepeatMasker, and WindowMasker tracks(105) were downloaded from the UCSC Table Browser 
version hg38 (106–109),  The INFO flags PON, QUES, and RPTS were added to the per-person germline VCF files using 
BED files to specify the applicable regions: the PON GATK, PON questionable regions, and simple repeats BED files. 
Germline variants were filtered to produce a VCF of likely germline mutations that were not common population SNPs or in 
questionable call areas or areas containing simple repeats. 

Somatic indel variant calling with Mutect2 

Somatic indel variants were called using GATK Mutect2(102) version 4.0.6.0, with options which calls somatic SNVs and 
indels from paired normal and tumor input BAM files. The SNV calls were filtered out (multiSNV SNV calls were used 
instead) and only the indel calls were used. Mutect2 was run with options --create-output-bam-index --create-output-variant-
index --af-of-alleles-not-in-resource 0.0000025 --disable-read-filter MateOnSameContigOrNoMappedMateReadFilter --min-
base-quality-score 22 --seconds-between-progress-updates 30 --panel-of-normals PanelOfNormals.gatk.vcf.gz --germline-
resource <GNOMAD_EXOME_VCF> to produce per-tumor VCF files of somatic variants and per-tumor BAM files of 
realigned reads.  

 
The Mutect2 output VCF files were filtered using the FilterMutectCalls command of the GATK program suite with 

options --annotate-with-num-discovered-alleles --max-alt-allele-count 1 --max-strand-artifact-probability 0.9 --min-median-
base-quality 22 --min-median-mapping-quality 30 --unique-alt-read-count 5 --seconds-between-progress-updates 30 --smith-
waterman FASTEST_AVAILABLE -OVI --contamination-table <TUMOR CONTAMINATION FILE> to produce per-biopsy 
confident somatic variant call set VCF files. 

Sequencing artifacts were removed from these VCF files using the GATK FilterByOrientationBias with options --artifact-
modes G/T --artifact-modes C/T -OVI -P to produce per-biopsy artifacts-removed somatic variant call set VCF files. The non-
passing variants were filtered using GATK SelectVariants. 
 
Merging per-biopsy VCFs 

This project uses multi-regional sequencing with multiple tumors per biopsy, yet the Mutect2 output is on a per-biopsy 
basis. The Mutect2 per-biopsy somatic indel VCF files of each person were merged to form per-person VCF files of somatic 
indels. This was a long multi-step procedure, established so as to ensure that the final merged file contained only those somatic 
variants for which there was solid evidence of either mutant or wild type genotype from either Mutect2 or the GATK caller 
HaplotypeCaller from each biopsy of the person. The procedure was: 

1. Generate a union set of passing germline and somatic variants for each person 
2. GATK HaplotypeCaller version 4.0.6.0 was used to call variants that exist in the union set but were not called in the 

biopsy 
3. All per-person biopsy VCFs were then merged 
4. The bcftools isec command with options -n=<NUM_TUMORS> -c all -w 1 to intersect all per-biopsy merged VCF 

files of variants present in all biopsies 
5. The bcftools isec command with options -n=2 -c all -w 1 calls at all loci where a mutation occurred in ANY of that 

person’s tumors. 
6. The bcftools isec command with options -n=2 -c all -w 1, to produce normal VCF files containing calls at all loci 

where a mutation occurred in ANY of that person’s tumors. 
7. The final VCF was created by merging the per-person normal all-loci VCF file and all of the person’s per-biopsy 

enhanced all-loci VCF files. 
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Merging per-person VCF variant files 

Per-person MultiSNV VCF files were merged using the bcftools merge to produce a single project VCF file containing all 
MultiSNV germline and somatic SNV variants called in any biopsy of any person. In the same way, all of the per-person 
Mutect2 merged VCF files were merged to produce a single project VCF file containing all Mutect2 indel somatic variants 
called in any biopsy of any person. 

Preparing VCF file of TCGA gastric adenocarcinoma somatic variants for comparison 

Utilizing cBioPortal(42), datasets for Nature 2014 (PubmedID: 25079317) downloaded on 11/2016 -   
data_mutations_extended.txt and data_clinical.txt were utilized to generate a VCF file in GRCh38 using a custom Rscript. The 
VCF file was then filtered according to padded targets region of the panel. 

Annotating VCF variant files 

The two merged project VCF files from multiSNV and mutect2 variant calling, and the TCGA somatic variant VCF file, 
were annotated Annovar(110) with the following datasets: 
refGene,1000g2015aug_all,avsnp150,cosmic86,clinvar_20170905,gnomAD_genome_ALL,ExAC_ALL, and hrcr1. 
Additionally, the VCF files were annotated with four INFO flag tags (PON, STR, RPT, WMR) (see above). The VCF files are 
primary outputs of the project, and are named  AllVars.multiSNV.anno.marked.vcf.gz, AllVars.mutect2.anno.marked.vcf.gz, 
and TCGA_GC_data_mutations_extended_hg38.panel.norm.anno.marked.vcf.gz. 

Pre-analysis of variants and assigning variant status 

Analysis of variant status was performed using a custom Rscript that read the two annotated and flag-marked VCF files for 
variants called by multiSNV and Mutect2.  It calculated the following values, which are used in filtering below: 
 

• GTval: variant genotype value, one of “WT” (wild type), “HET” (germline), “HOM” (germline), “BIA” (bi-
allelic), “GRM” (germline indeterminate zygosity), “SOM” (somatic), “LOH” (somatic with loss of 
heterozygosity), “BOTH” (both germline and somatic mutations at same locus), created by analyzing the 
FORMAT field genotype strings (e.g. 0/0, 0/1, etc.). 

• VarStat: variant status, one of “WT” (wild type), “GRM” (germline), “SOM” (somatic), “LOH” (somatic with 
loss of heterozygosity), “UNK” (unknown or unusual/rare), created from the SS FORMAT tag if available 
(multiSNV only), else from GTval (Mutect2 only): 

• VarFunctional: examines the Annovar functional consequence annotations Func.refGene and 
ExonicFunc.refGene and assigns a single functional consequence keyword to each variant, one of synonymous, 
nonsynonymous, stoploss, stopgain, inframeindel (indel), frameshift (indel), unknownExonic, splicing, intronic, 
UTR (could be either UTR5 or UTR3), TERT_PROMOTER, ncRNA (non-coding RNA), intergenic (includes 
up/downstream), other 

Forced calling of variants based on evidence in sister biopsies 

Manual examination of variant call results revealed examples of cases where it appeared that multiSNV or Mutect2 had 
made an incorrect call, calling a genotype as wildtype in one or more tumors when it was called as a somatic variant in one or 
more other tumors. This is expected in Mutect2, which does not do joint-sample calling, and in multiSNV is due to its using a 
conservative estimate of joint probabilities for mutations that are clonal in nature. Based on our manual review of the data, we 
implemented a special forced variant calling algorithm using special R code. It read the multiSNV and Mutect2 merged VCF 
files (all patients, all biopsies in one VCF file) and applied an algorithm to test whether a given variant called in one biopsy 
should be called in another sister biopsy. If the algorithm indicated the variant should be called, a file of these forced variant 
calls was created, and subsequently whenever one of the VCF files was read, the forced variant call file was also read and used 
to modify the VCF file data to include the forced variant calls. The algorithm was as follows. For each variant of each sample 
in the VCF file in question, a wild-type call is changed to a somatic mutation call if: 

1. The sample under consideration is a TUMOR sample 
2. The sample locus under consideration is called wildtype 
3. The paired NORMAL sample is called wildtype at that locus 
4. The locus has only a single record in the VCF file 
5. Read count, ref and alt depth, and purity/copy-number-adjusted VAF data (described later) is available for the 

sample at that locus 
6. In the sample under consideration, the read count for the alt allele is >= 2 OR is equal to 1 and the copy-number-

adjusted VAF for the allele is >= 0.01 
7. There are one or more sister TUMOR samples for the same person 
8. At least one sister TUMOR is called variant 
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9. All sister TUMORS that are called variant have their first alternate allele equal to the alt allele in the sample 
under consideration 

10. At least one sister TUMOR that is called variant has its first alternate allele read count >= 6 
11. That same sister TUMOR has PureCN gene CNV data available for the gene containing the variant, and its 

purity/copy-number-adjusted VAF for its first alternate allele is >= 0.025 

Filtering variants in VCF variant files 

The common R code used for variant analysis included the definition of filters and application of them to the variant list to 
create filtered subsets of variants. Each filter has a name which starts with “grm” for filters that select only germline variants 
and with “som” for those that select only somatic variants. For the purpose of describing somatic variants in the main part of 
the manuscript, the following filters were used: 

• somPanelGenes: Selects somatic variants described in the manuscript as the full set after filtering out false positives 
and sex chromosome mutations. Referred to as the “final list” of variants. 

• somCodSplNoSyn: Selects somatic variants described in the manuscript as non-silent coding or splicing mutations 
For identifying germline mutations, the following filter was used: 

• grmReliable: Selects germline variants that are reliably called. 
For comparing mutation rate between TCGA and this project, the following filter was used: 
• somCDS_CodSpl: Selects somatic variants in coding or splicing regions of panel CDS target regions. A similar filter 

was applied to the TCGA mutation data to select mutations for computing TCGA mutation rate, so that the 
comparison fairly compared mutations in the same regions. 

 
Each filter consists of one or more filter actions. Each filter is actually THREE filters: (1) a variant filter that selects a 

subset of all variants; (2) a variant-person filter that selects, for each variant, one or more persons carrying that variant; (3) a 
variant-biopsy filter that selects, for each variant, one or more biopsies carrying that variant. If a variant is not selected in (1), it 
is also not selected for any person in (2) or any biopsy in (3). If a variant is not selected for some person in (2), it is also not 
selected for any biopsy of that person in (3). Some filter actions operate at the level of the variant (1), some at the level of 
person (2), and some at the level of biopsy (3), but all three filter types can be affected by each action. In the following filter 
descriptions, the filter name is shown after the bullet, and a numbered list of filter actions follows. The descriptions are written 
in terms of which variants pass the filter and are accepted. 

Somatic variant filters are as follows: 
• som: somatic variants in tumor biopsies only. Selects a set of 0 or more tumor biopsies for each variant. 

(1) select TUMOR biopsies only 
(2) select VarStat = SOM or LOH 

• somReliable: reliably-called somatic variants in TUMOR biopsies only. 
(1) above som actions applied first 
(2) read depth in NORMAL >= 20 
(3) read depth in ALL TUMORS OF PERSON >= 30 
(4) alternate allele depth in AT LEAST ONE TUMOR >= 5 
(5) NORMAL alternate allele depth = 0 or =1 and VAF <= 0.01 
(6) the variant is called in more than one sample of the person OR it is called in only one sample and the other 

samples of that person have a total allele count for other than the ref and alt alleles of no more than 1 + 10% 
of the variant sample’s alt allele count  

(7) if GQ tag is present (multiSNV only), NORMAL GQ <= 1e-8 
(8) if GQ tag is present (multiSNV only), GQ <= 1e-8 in all tumors of the person 
(9) STR tag not present (not a simple tandem repeat) 
(10) RPT tag not present (not a RepeatMasker repeat) 
(11) WMR tag not present (not a WindowMasker repeat) 
(12) Reject loci that seem to be experiencing sequencing artifacts causing higher than normal sequencing error 

rates, by examining NORMAL biopsies for loci that are called WT but have far fewer than the expected 
number of reference allele reads (given the total read depth and the known sequencing error rate of 0.0008), 
or that are called HET but have far fewer than the expected number of alternate reads (given the total read 
depth and an expected probability of an alternate allele read being no lower than 0.4). At any given locus, if 
two or more NORMAL biopsies show such unusual read counts, reject ALL VARIANTS IN ALL 
BIOPSIES at that locus. Tests are based on the binomial distribution, and the test failure thresholds are 
computed dynamically for each locus that is tested, in order to achieve a total over all variants of 5 or fewer 
false positive rejections with probability >= 0.95. The dynamic threshold is computed in two steps. First, a 
single probability pMin is computed, such that IF a locus is rejected at probability pMin under null 
hypothesis conditions, then there will be fewer than 5 false positive rejections with probability 0.95. Second, 
for each locus, a single probability threshold is computed for rejecting a NORMAL at that locus. For a given 
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NORMAL, its test fails (rejection) if the number of reads of the requisite type (reference or alternate) has a 
probability of occurrence under the null hypothesis of less than this threshold probability. The threshold 
probability is chosen such that the probability of rejection of the locus under the null hypothesis (when 2 or 
more NORMALS fail their test) is pMin (and since each locus has a varying number of NORMALS with 
genotype data, that probability changes depending on the locus). 

(13) variant is not present in the GnomAD genome ALL database or its population frequency is < 0.0001 in that 
database 

(14) variant is not present in ExAC database release 1 or its population frequency is < 0.0001 in that database 
• somExcludeXY: select reliable somatic variants not found on chromosomes X or Y 

(1) above somReliable actions applied first 
(2) variant position is not in chrX or chrY 

• somPanelGenes: select reliable somatic variants in LCC panel genes, not found on X or Y 
(1) above somExcludeXY actions applied first 
(2) variant lies in a region given by the BED_MERGED_TGTS bed file 
(3) there is at least one LCC panel gene within the variant’s gene.RefGene list created by Annovar  

• somCodSplNoSyn: select reliable non-silent coding/splicing somatic variants in LCC panel genes, not on X or Y 
(1) above somPanelGenes actions applied first 
(2) VarFunctional is one of nonsynonymous, stoploss, stopgain, frameshift, inframeindel, unknownExonic, 

splicing, TERT_PROMOTER, other 
• somCDS_CodSpl: select reliable coding/splicing somatic variants in CDS target regions of LCC panel genes, not on 

X or Y 
(1) above somPanelGenes actions applied first 
(2) VarFunctional is nonsynonymous, synonymous, stoploss, stopgain, frameshift, inframeindel, 

unknownExonic, splicing, TERT_PROMOTER, other 
(3) variant lies in a region given by the BED_TARGET_RGNS bed file 

 
Germline variant filters are as follows: 
• grm: germline variants in normal biopsies only.  Selects a set of 0 or more normal biopsies for each variant. 

(1) select NORMAL biopsies only 
(2) select VarStat = GRM 

• grmReliable: reliably-called germline variants in NORMAL biopsies only. 
(1) above grm actions applied first 
(2) read depth in NORMAL >= 20 
(3) alternate allele depth in NORMAL >= 5 
(4) if GQ tag is present (multiSNV only), NORMAL GQ <= 1e-8 
(5) STR tag not present (not a simple tandem repeat) 
(6) RPT tag not present (not a RepeatMasker repeat) 
(7) WMR tag not present (not a WindowMasker repeat) 
(8) no NORMAL biopsies with a genotype other than 0/0 and read depth >= 30 may have VAF < 0.16.  A 

variant is filtered out from ALL biopsies if ANY NORMAL BIOPSY fails this test.  This would indicate a 
likely artifact problem at the locus. Sequencing errors will cause occasional NORMALS with very low VAF, 
but those should be called with a genotype of 0/0. 

(9) Reject loci that seem to be experiencing sequencing artifacts causing higher than normal sequencing error 
rates (same method as somReliable filter described above). 

 
The following TCGA data variant filter was created for extracting somatic variants from TCGA data in the same regions 

as targeted by the LCC panel, for the purpose of comparing mutation rate between TCGA and this project. This filter matches 
as closely as possible the somCDS_CodSpl filter above, given the available mutation attributes. 

 
• TCGA.somCDS_CodSpl: select somatic variants for comparison to MSEQ project variants to compare mutation rates: 

(1) select TUMOR biopsies only (TCGA data only contained tumor biopsy data) 
(2) VarStat = SOM or LOH 
(3) read depth in ALL TUMORS OF PERSON >= 30 
(4) alternate allele depth in AT LEAST ONE TUMOR >= 5 
(5) STR tag not present (not a simple tandem repeat) 
(6) RPT tag not present (not a RepeatMasker repeat) 
(7) WMR tag not present (not a WindowMasker repeat) 
(8) total number of somatic mutations < 400 (else presumed to be WGS rather than WES sample; samples 

weren’t annotated with type of sequencing in the downloaded TCGA file). The number 400 was chosen after 
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examining all samples for number of mutations and observing a bimodal distribution that was attributed to 
type of sequencing. 

(9) variant is not present in the GnomAD genome ALL database or its population frequency is < 0.0001 in that 
database 

(10) variant is not present in ExAC database release 1 or its population frequency is < 0.0001 in that database 
(11) variant position is not in chrX or chrY 
(12) variant lies in a region given by the BED_MERGED_TGTS bed file. 
(13) there is at least one LCC panel gene within the variant’s gene list created by Annovar 
(14) VarFunctional is nonsynonymous, synonymous, stoploss, stopgain, frameshift, inframeindel, 

unknownExonic, splicing, TERT_PROMOTER, other 
(15) CDStgtRgns: variant lies in a region given by the BED_TARGET_RGNS BED file 

Assessing variant filters 

For each of the variant filters listed above, a bar plot was made with one bar per sample, and each bar being a stack of bar 
segments, one segment for each filtering action within that filter, and with each segment’s height corresponding to the number 
of variants removed by that action for that sample. These plots were reviewed to assess how each filtering action in each filter 
was behaving, to look for any unexpected or problematic filtering actions. 

Removing biopsies judged to be unreliable outliers 

A bar plot was made, with one bar per biopsy and with each bar being two stacked bar segments, one segment showing 
number of “reliable” somatic variants in the biopsy (passing filter “somReliable”) and the other showing the number of 
“unreliable” somatic variants (passing filter “som” but not passing “somReliable”). Review of this plot showed three biopsies 
that were judged to be unreliable outliers, and they were subsequently removed from the analysis: 

1. I_6579_S_26840 (T1): this biopsy had over 4000 total somatic variants, more than 10 times its sibling biopsies. 
2. I_9709_S_26846 (T3): this biopsy had almost twice as many somatic variants (225) as its sibling biopsies, all of 

which had a fairly uniform number (around 125) of somatic variants. 
3. I_19343_ S_26861 (T4): this biopsy had more than twice as many somatic variants (260) as its sibling biopsies, all of 

which had a fairly uniform number (around 100) of somatic variants. 

SNV/Indel Clonality assignment 

For each SNV or indel variant in each person, clonality is assigned from the GTval values as follows: 
• CLONAL: NORMAL is not germline variant, TUMORS are all somatic variant (for that variant). 
• SUBCLONAL: NORMAL is not a germline variant, more than one but not all TUMORS are somatic variant. 
• PRIVATE: NORMAL is not germline, only one TUMOR is somatic variant. 
• GERMLINE: NORMAL and all TUMORS are germline variant. 
• GONE: the variant, whatever sample it was called in, has been filtered out by the grmReliable or somPanelGenes 

filter. 
• NONE: no variant was called in the NORMAL or any TUMORS. 

Analysis of coverage data 

A custom R program was used to compute and plot numerous coverage statistics (here, “minimum depth” means depth of 
at least 15X): 

• mean mapped coverage of each biopsy across all target regions 
• a series of global coverage statistics 
• for each of the following, the mean target region depth  (across target regions and/or biopsies), standard deviation of 

depth, and percent of target regions and/or biopsies with minimum depth: 
a) each biopsy 
b) each individual 
c) each target region specified in the RN_NAMED_TARGET_RGNS BED file 
d) each targeted gene 
e) each DNA pool hybridization group 

Checking biopsy pairing 

All pairs of biopsies (regardless of owning individual) were compared for similarity by computing the cosine similarity of 
the variant allele frequencies (VAFs) of all germline variants present in one or both biopsies and having a depth in both 
biopsies lying between 80% and 250% of the mean depth of all the biopsy’s variants. A cosine similarity threshold is chosen by 
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seeking a minimum in the empirical distribution of the cosine similarities from all pairs (since most pairs are mismatch, but a 
number of pairs will batch, giving a bimodal distribution). As a result of this testing, two mismatches were discovered, leading 
to 6 biopsies being removed from the analysis: 

• I_26180_S_26858 (T1): This tumor biopsy did not match its normal biopsy 
• I_9298_S_26895 through S_26899 (N1, T1-T4): The normal biopsy matched the I_19343_S_26857 (N1) biopsy and 

mismatched its tumor biopsies. 

Mutation rate analysis and comparison to TCGA 

Somatic mutations were filtered using the somCDS_CodSpl.samp filter on a per-sample basis. TCGA somatic mutations 
from the preprocessed TCGA GC VCF file were filtered using the TCGA.somCDS_CodSpl.samp filter on a per-sample basis. 
The mutation rates of each MSEQ sample, the mean rate of the MSEQ MSI and non-MSI samples, and the mean rate of the 
TCGA MSI and non-MSI samples were computed, along with standard error of the mean for each mean rate, and these were 
plotted on a bar plot for comparison of mutation rates. 

Purity, copy-number, and aneuploidy analysis 

Copy-number analysis, including tumor purity and ploidy analysis, was performed using PureCN(117), version 1.16.0, that 
was designed for use with targeted-panel data. A genome mappability file was created using the GEM library(118) program 
version 1.778 beta and the GATK bundle genome reference file Homo_sapiens_assembly38.fasta.  The PureCN IntervalFile.R 
program was run to create text and BED intervals files, using options --infile <FILTERED_BED_FILE> --fasta 
Homo_sapiens_assembly38_ LCCpanel.fasta --genome hg38 –force 
Homo_sapiens_assembly38_LCCpanel.gemV2_100.mappability.bigwig --offtarget --offtargetwidth=200000.  The PureCN 
Coverage.R program was run on each biopsy’s final recalibrated BAM files (both NORMAL and TUMOR) with the interval 
file and options --seed 123 --force --removemapq0, producing four PureCN coverage files per biopsy. 
 
Per-tumor-biopsy VCF files of variants were prepared for PureCN by merging, on a per-tumor-biopsy basis, the two per-person 
multiSNV and Mutect2 pass-filtered normalized VCF files for each biopsy. 

Purity and ploidy analysis and calling CNV 

The PureCN PureCN.R program was run on each tumor biopsy’s PureCN coverage file and PureCN VCF file, using options --
normaldb <normalDB .rds file> --normal_panel <mapping bias .rds file> --intervals <PureCN intervals file>  --snpblacklist < 
simple repeats BED file> --genome hg38 --seed 123 --postoptimize --force --error=0.001 --padding=100 --alpha=0.005 --
minpurity=0.1, to call CNV segments in the biopsies. 

Manual curation of PureCN purity/ploidy solution 

A custom R program named ManualCuratePureCNsample.R was run for each tumor biopsy to analyze the PureCN run’s 
results and determine whether or not the chosen purity/ploidy solution should be altered and the resulting manual curation of 
purity/ploidy established as the new chosen solution. The program was run with options  --minLikelihoodFrac 0.7 --
minPeakHeatFrac 0.7 --minProductFrac 0.7 --minTgtPloidy 1 --maxTgtPloidy 6 --minTgtPurity 0.1 --maxTgtPurity 1.0 --
maxNonHighAdjVAF 1.2 --minNonLowAdjVAF -0.2 --maxVarsBadVAF 2 --maxFracVarsBadVAF 0.2 --CR1_thresh 0.15 --
roundCRstart 0.01 --minCRsegs 5 --minCRsegLen 10e6 --roundCRdelta 0.01. It uses three methods to detect poor PureCN 
solutions. The first method is based on the observation that sometimes PureCN's maximum likelihood solution has a heatmap 
value significantly lower than the peak heatmap value, and in those cases the solution often appears to be wrong. The method is 
to reject as unacceptable those PureCN solutions that have ANY of the following conditions: 

1. PureCN total likelihood value ranked within bottom --minLikelihoodFrac total likelihoods among all solutions. 
2. PureCN heatmap value ranked within bottom --minPeakHeatFrac heatmap values among all solutions, but if this 

rejects all solutions, instead choose the one solution (after the previous step) that has the highest heatmap value. 
3. A combination of the above two factors, obtained by taking the product of the PureCN total likelihood and heatmap 

values, and rejecting those solutions with a product ranked within the bottom –minProductFrac products among all 
solutions. If this rejects all solutions, instead choose the one solution (after the previous steps) that has the highest 
product value. 

The second method is based on the values of the variant allele frequencies after adjusting them for purity, ploidy, and 
copy-number. It is observed that sometimes, a large fraction of these VAF values are greater than 1 or less than 0, suggesting 
that the PureCN purity/ploidy solution is incorrect and caused the adjusted VAF to be too high or low. The method is to reject 
as unacceptable those PureCN solutions that have BOTH of the following conditions: 

1. Number of PureCN-filtered variants with purity/ploidy/copy-number-adjusted VAF (variant allele frequency) outside 
the acceptable range (which is minNonLowAdjVAF to maxNonHighAdjVAF) is > maxVarsBadVAF 

2. Fraction of such variants is > maxFracVarsHighVAF 
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After applying these two algorithms, additional steps are applied to eliminate more solutions: 
1. If there is more than one remaining non-rejected solution, reject those with ploidy outside the range 

minTgtPloidy..maxTgtPloidy, unless this rejects all solutions. 
2. If there is more than one remaining non-rejected solution, reject those with purity outside the range 

minTgtPurity..maxTgtPurity, unless this rejects all solutions. 
3. If there is more than one remaining non-rejected solution, choose the one with the highest total log likelihood. 
 
Another function of ManualCuratePureCNsample.R is to read the PureCN segments output file and estimate a biopsy copy 

ratio that corresponds to the presumed no-CNVs copy ratio. Typically, there will be long segments on many separate 
chromosomes where the PureCN copy ratio is approximately but not exactly 1, typically differing by no more than 0.01 
between such segments. A Wilcoxon test comparing the copy ratios of the markers within such segments to the expected no-
CNVs copy ratio of 1.0 often produces a very small p-value because the copy ratios of the markers are slightly different than 
1.0 and exhibit almost no variance. This suggests that PureCN does not normalize the copy ratio data as well as it might, as 
even in a highly disturbed cancer genome there should be a significant genome fraction in dosage balance and having the same 
copy ratio. That copy ratio should be identified as the no-CNVs copy ratio for the purpose of performing a Wilcoxon test for 
amplification or deletion. ManualCuratePureCNsample.R uses an algorithm to identify segments whose unadjusted raw copy 
ratio is very close to 1, and where the number of such segments is relatively high compared to segments with other copy ratios: 

1. Eliminate from consideration all segments whose copy ratios are not in the range 1 ± CR1_thresh. If this results in 
eliminating ALL segments, increase CR1_thresh by 10% and try again, repeating until at least minCRsegs of at least 
minCRsegLen total length are obtained. 

2. Beginning with roundCR = roundCRstart, round each of the remaining segments' unadjusted copy ratios to the nearest 
multiple of roundCR. 

3. Find the most common rounded copy ratio. If more than one copy ratio occurs with the same maximum occurrence 
frequency, choose the ratio closest to 1. 

4. If the number of segments in that most-common-copy-ratio is < minCRsegs, or if the total length of those segments is 
< minCRsegLen, increase roundCR by roundCRdelta and repeat the above steps, until an acceptable most-common-
copy-ratio is found. 

The mean copy ratio of those segments having a rounded copy ratio equal to the most-common-copy-ratio is computed and 
added as a comment to the new curation .csv file, in the 'Comment' column, as for example the comment:    'LOW 
PURITY;EXCESSIVE LOH;CR1=1.0233'. This number can be divided into any raw copy ratio from PureCN to move it in the 
direction of what is surmised to be a more accurate copy ratio, and resulting in those most-common-copy-ratio segments 
having an adjusted copy ratio that is equal to or at least closer to 1.0. The program writes a new copy of the .csv file containing 
PureCN purity and ploidy solution and the computed CR1 value in a new subdirectory named “curated” (done on a per-tumor-
biopsy basis). 

Rerunning PureCN.R on curated data 

For each tumor biopsy for which a different purity/ploidy solution was chosen in the preceding step, the PureCN 
PureCN.R program was run a second time, with the --rds option specified to request that it recompute output files using the 
new purity/ploidy solution. 

Mutation burden calculation 

The PureCN Dx.R program was run on each tumor biopsy’s PureCN .rds file, with options --callable 
<BED_TARGET_RGNS> --exclude hg38_simpleRepeats_merged.bed –force, to estimate the mutation rate. Per-tumor-biopsy 
comma-separated variable output files are created. 

CNV segment p-values 

A custom R program named CreateCNVsegmentPvals.R was run for each tumor biopsy, with options --fdr 0.01 --
CR_thresh 0.1 --CRdif_thresh 0.25 --CRdif_frac 0.25 and input files BED_TARGET_RGNS, PureCN curation, .rds data, and 
segment copy-number files, which assigned each segment a p-value by using a Wilcoxon test: 

1. For each segment, get the PureCN markers overlapping it from the PureCN .rds file and adjust their copy ratios by 
dividing them by the presumed no-CNVs copy ratio (CR1 value obtained from the curation file comment). 

2. Further adjust the marker copy ratios for purity and ploidy (see below), using that of the PureCN solution given in the 
PureCN curation file. Those copy ratios that were originally equal to the CR1 value are now exactly 1. 

3. Use a single-tailed Wilcoxon single-sample test to test the marker adjusted copy ratios to see if they satisfy the null 
hypothesis of having a population mean rank of 1 (or for the alternative hypothesis, that it is less than or more than 1). 
Two tests are done, one for less than, one for more than. Select the smaller of the resulting p-values as the result p-
value for the gene. If the first p-value is selected, the gene is annotated as having a copy ratio < 1 (DELetion), and for 
the second p-value, > 1 (DUPlication). 
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A multiple-testing-adjusted q-value was associated with each such p-value using the Benjamini and Hochberg (FDR) 
method. Each gene is annotated with adjusted copy ratio, mean marker adjusted copy ratio p-value, and q-value. 

CNV gene p-values 

A custom R program named CreateCNVgenePvals.R was run for each tumor biopsy, with option --ttest and as input, 
PureCN curation, .rds data, and gene copy-number files, which assigned each gene a p-value by using a Student’s t-test: 

1. For each gene, get the PureCN markers overlapping it from the PureCN .rds file and adjust their copy ratios by 
dividing them by the presumed no-CNVs copy ratio (CR1 value obtained from the curation file comment). 

2. Further adjust the marker copy ratios for purity and ploidy (see below), using that of the PureCN solution given in the 
PureCN curation file. Those copy ratios that were originally equal to the CR1 value are now exactly 1. 

3. Use a single-sample Student’s t-test to test the marker adjusted copy ratios to see if they satisfy the null hypothesis of 
having a normal population mean equal to 1 (or for the alternative hypothesis, that it is less than or more than 1). Two 
tests are done, one for less than, one for more than. Select the smaller of the resulting p-values as the result p-value for 
the segment. If the first p-value is selected, the segment is annotated as having a copy ratio < 1 (DELetion), and for 
the second p-value, > 1 (DUPlication). 

A multiple-testing-adjusted q-value was associated with each such p-value using the Benjamini and Hochberg (FDR) 
method. Each segment is annotated with adjusted copy ratio, mean marker adjusted copy ratio p-value, q-value, and names of 
specified target genes contained within it. 

Chromosome copy-number 

A custom R program named GetChrCNV.R was run for each tumor biopsy, with options --ploidyTolForGain 0.6 --
ploidyTolForLoss 0.6 --fracForAltered 0.66, to analyze the PureCN copy-numbers for CNV segments along the genome, in 
order to estimate copy-numbers and loss-of-heterozygosity for whole chromosomes and chromosome arms. The program used 
centromere positions given by downloading the human genome version GRCh38 centromeres track data using the UCSC Table 
Browser(106–109) on 21-May-2018, then extracting columns 2-4, sorting in GRCh38 chromosome order with sort command 
in bedtools suite, and merging overlapping regions with the merge command of the bedtools suite. The GetChrCNV.R program 
read the PureCN curation file of sample purities and ploidies and the PureCN segments file with mean marker copy-number of 
each CNV segment (adjusted for purity/ploidy by CreateCNVsegmentPvals.R). It computed several values for each 
chromosome and chromosome arm: 

1. PureCN purity/ploidy estimates and number of PureCN CNV segments in the chromosome or arm 
2. mean adjusted copy ratio and copy-number of the segments. 
3. rounded marker adjusted copy-number that covers the most CNV segment distance for chromosome or arm segments 

with that copy-number 
4. fraction of distance covered by the CNV segments that have that most frequent rounded adjusted copy-number 
5. fraction of chromosome marker distance over which the segments’ adjusted copy-number was > ploidy+0.75 
6. fraction of chromosome marker distance over which the segments’ adjusted copy-number was < ploidy-0.75 
7. fraction of chromosome marker distance over which the PureCN’s estimated segment minor copy number was 0 and 

not flagged by PureCN as unreliable and where total rounded copy number lies between 1 and 6 (loss-of-
heterozygosity, LOH) 

8. flags for fractions in 4-7 above exceeding the threshold of 0.66 of the chromosome marker distance 
9. number of segments available to estimate copy ratio 
10. number of segments with gain if the gain flag is set, or number with loss if the loss flag is set 
11. mean copy ratio/number of those segments with gain if gain flag set, or with loss if loss flag set 

Ancestral CNV events and TestCNVedgesOfSamplesOfPerson.R 

The CNV analysis performed by PureCN is done individually per biopsy to try to identify ancestral CNV events that are 
common to more than one biopsy of an individual. PureCN does no per-person analysis, so a custom R program was developed 
for this purpose, named TestCNVedgesOfSamplesOfPerson.R. The fundamental idea behind the program is that ancestral CNV 
events should have CNV segments with the same start and/or end position within the biopsies descending from the ancestral 
cell. 

Adjusting copy ratios, copy-numbers, and variant allele frequencies for purity and ploidy 

The raw output from PureCN programs normally includes raw, unadjusted copy-numbers (for variants, segments, and 
genes). The purity and ploidy of a biopsy strongly affect these numbers.  

Adjustment of copy ratios and copy-numbers for purity and ploidy is discussed in Zack et al(120). In this paper, the 
algebra is incorrect in the q(x)/T factor in the equation for computing R’(x) on page 13. The corrected algebra is: 
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R'(x)  = q(x)/T = DR(x)/aT - 2(1-a)/aT = (aT + 2(1-a))R(x)/aT - 2(1-a)/aT 
= R(x) + 2(1-a)R(x)/aT - 2(1-a)/aT 
= [aTR(x) + 2(1-a)R(x) - 2(1-a)]/aT 

where: 
R'(x) = adjusted coverage ratio 
R(x) = raw coverage ratio 
q(x) = integer copy-number in cancer cells 
D = average ploidy across all cells of tumor (of sample) 
a = purity 
T = tumor ploidy 

 
The corrected equations were incorporated at numerous places into the PureCN CNV analysis presented above. Using R 

language, the adjustment of a raw copy ratio CRraw for estimated purity and ploidy to produce corrected copy ratio CR was: 
CR = (purity*ploidy*CRraw + 2*(1-purity)*CRraw - 2*(1-purity))/(purity*ploidy) 
ind = (CR < 0) 
CR[ind] = 0 

 
The inverse operation was also used at times: 

CRraw = (purity*ploidy*CR + 2*(1-purity))/(purity*ploidy + 2*(1-purity)) 
ind = (CRraw < 0) 
CRraw[ind] = 0 

 
Variant allele frequencies (VAFs) are also altered by purity and ploidy. If a given locus has a copy-number (in the tumor 

cells) of CN and the actual VAF is called VAF, then each tumor cell produces CN*VAF copies of the variant allele. For N 
cells total, the number of variant allele copies will be CN*VAF*purity*N, since only purity*N of the cells are tumor cells. The 
total number of copies of the allele (wild type and variant) in N cells is (CN*purity*N + 2*(1-purity)*N). The observed (raw) 
VAF is therefore: 

 VAFraw = (CN*VAF*purity) / (CN*purity + 2*(1-purity)) 
Solving this for VAF gives the formula for correcting a raw VAF for purity, given the VAF and copy-number CN at its 

locus: 
 VAF = VAFraw * (2*(1-purity)/(CN*purity) + 1) 

Classifying into molecular subtypes 

The TCGA adenocarcinoma paper(13) developed a molecular subtype classification for stomach cancer. The paper did not 
provide formal methods for testing DNA sequence data from a biopsy in order to classify it, but it did give general guidelines. 
The four molecular subtypes are prioritized as follows, and their guidelines are: 

1. EBV (Epstein-Barr virus): if the biopsy has strong evidence of infection by this virus, it is classified as EBV. 
2. MSI (microsatellite instability): otherwise, if the biopsy was determined to have microsatellite instability, it is 

classified as MSI. 
3. CIN (chromosome instability): otherwise, a biopsy with significant aneuploidy was classified as CIN, and 

chromosomal arms were considered altered if at least 66% of the arm was lost or gained with a log2 copy-number 
change greater than 0.1. 

4. GS (genomically stable): otherwise, the biopsy was classified as genomically stable. 
 
A custom R program named classifyMolecular.R was developed to apply this classification scheme to the biopsies. The 

specific algorithms used were: 
1. EBV: the count of the number of reads mapping to EBV genes in the panel was adjusted for biopsy purity by dividing 

the count by the purity estimate from PureCN, for each biopsy. The total read count for each biopsy was likewise 
adjusted. The purity-adjusted EBV read count for each biopsy was adjusted for library size by multiplying it by the 
mean of the purity-adjusted total read count and dividing by the purity-adjusted total read count in that biopsy. The 
resulting normalized and purity-adjusted EBV read counts were clustered into two clusters using k-means. The 
midpoint between the clusters was chosen as a threshold for calling EBV infection and EBV molecular subtype. 

2. MSI: the output file from the MSIsensor program was read and biopsies whose MSIsensor score exceeded the 
threshold of 3.5 were called MSI molecular subtype. 

3. CIN: the output file from GetChrCNV.R was read and for each biopsy the number of altered chromosome arms was 
counted. The counts were clustered into two clusters using k-means. The midpoint between the clusters was chosen as 
a threshold for calling CIN molecular subtype for a biopsy. The threshold of 66% of the arm lost or gained was used 
to call an arm altered, as with TCGA. Unlike TCGA, a loss or gain segment was considered to be any segment whose 
purity/ploidy-adjusted copy-number was > ploidy+0.75 or < ploidy-0.75 (whereas TCGA used 1.07 (= 2^0.1) instead 
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of 0.75). This was because a typical single-chromosome gain or loss will change copy-number by exactly 1.0 in the 
ideal situation, but since the copy-number values are noisy, such a value could easily fall slightly above 1.0 even 
though the actual value is indeed 1.0. The TCGA value of 1.07 was considered to be too close to 1.0. 

 
In addition to classifying biopsies for molecular subtype, we classified individuals for molecular subtype. The rules were 

simple: 
1. Individual is EBV if any biopsy was classified as EBV. 
2. Otherwise, individual is MSI if any biopsy was classified MSI. 
3. Otherwise, individual is CIN if any biopsy is CIN. 
4. Otherwise, individual is GS. 
 
Following this classification process, manual examination of the results revealed some cases of questionable classification. 
We added arguments to classifyMolecular.R to allow manual override of its automatic classifications. We made the 
following manual overrides: 
• I_20447_S_26976 (T1): sample was forced to be type MSI. Its MSIsensor score was 1.39, below the threshold of 3.5; 

its sister tumor I_20447_S_26977 (T2) had a score of 10.66. The two tumors had a similar number of somatic 
variants. 

• I_26171_S_26816 (T1): sample was forced to be type GS. It was called as type CIN with an altered chromosome arm 
count of 11, a little above the threshold of 9.5; its sister tumor I_26171_S_26817 (T2) was 8, and both tumors had a 
very low number of somatic mutations. 

H. pylori infection assessment 

Assessment for H. pylori infection was done by classifyMolecular.R in a similar manner as for EBV infection. The count 
of the number of reads mapping to H. pylori genes (without regard to the strain(s) of H. pylori the reads mapped to) in the 
panel was adjusted for biopsy purity by dividing the count by the purity estimate from PureCN, for each biopsy. The total read 
count for each biopsy was likewise adjusted. The purity-adjusted H. pylori read count for each biopsy was adjusted for library 
size by multiplying it by the mean of the purity-adjusted total read count and dividing by the purity-adjusted total read count in 
that biopsy. The resulting normalized and purity-adjusted H. pylori read counts were clustered into two clusters using k-means. 
The midpoint between the clusters was chosen as a threshold for calling H. pylori infection. 

Mutation druggability gene list construction 

Two lists of genes with drugs approved for targeting specific mutations were used to estimate the potential druggability of 
the mutations we found. The OncoKB(121) gene list(122) was trimmed by excluding entries with drug-resistance levels-of-
evidence and removing entries not annotated with a gene targeted by our panel, leaving 50 of the original 64 genes within 
OncoKB levels-of-evidence 1 through 4. The second gene list is of 69 FDA GC-targeted therapy genes(123), of which 44 were 
in our panel. The combined list contained 65 genes, and after two on a sex chromosome and five with poor coverage were 
removed, 58 druggable genes remained on our list. 

Mutation signature analysis 

Mutation signatures have been identified de-novo in TCGA cancer data from multiple cancer projects, using non-negative 
matrix factorization(124,125), including signatures specific to GC(126). The original signatures were single-base-pair 
substitutions with a single base on each side as context. Subsequently, a new study added new single-base signatures and 
expanded the signatures to double-base and indel substitutions(127). Both original (V2.0) and newer (V3.2) signatures have 
been curated in the COSMIC Mutational Signatures database(113). Each signature is defined by a probability vector whose 
sum is 1 and whose elements are the probabilities that the mutational process active for that signature will create a mutation of 
a given type. For single base substitutions, there are 96 possible mutation types including a single context base on each side, 
and so the vector has 96 probabilities in it. The total number of signatures in the V2 set is 30 and in the V3.2 set is 78. De novo 
signature discovery requires a large number of samples in order to pick up the signals of different signatures accurately. When 
the number of available samples is small, as it is in this MSEQ project, de novo signature discovery cannot be done. 

Signatures operating in single samples can be estimated by multiple linear regression techniques to find the combination of 
weights of all signatures under consideration that minimizes the error in predicted mutation spectrum vs. actual mutation 
spectrum. We used one such algorithm is deconstructSigs(128), an R package, to estimate signature weights. The algorithm 
requires a sufficient number of mutations in order to perform well, and because our project used a panel with limited genome 
coverage, the mutation count per sample was too low to expect high-quality results. Instead of extracting per-sample signature 
weights, we combined mutations separately for MSS samples and MSI samples, then ran deconstructSigs on the combined 
mutation set, to estimate signature weights of signatures caused by mutational processes presumably operating within the set of 
samples. We used the V3.2 signature set, but removed several signatures from it: 

a) Sequencing artifact signatures: SBS27, SBS43, SBS45-60 
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b) Signatures with unknown etiology: SBS8, SBS12, SBS16, SBS17a, SBS19, SBS23, SBS28, SBS33, SBS34, 
SBS37, SBS39-41, SBS89, SBS91, SBS93, SBS94 
c) Signatures not expected to occur within our GC tumors: SBS7a-d (UV exposure), SBS11 (alkylating agent 
temozolomide), SBS25 (chemotherapy treatment), SBS29 (tobacco chewing), SBS31 (platinum chemotherapy), 
SBS32 (azathioprine treatment), SBS35 (platinum chemotherapy), SBS38 (UV exposure), SBS87 (thiopurine 
chemotherapy treatment) 
d) Certain signature numbers do not exist as signatures: SBS61-83 

The 31 signatures used in the final signature analysis were: SBS1-6, SBS9, SBS10a-d, SBS13-15, SBS17b, SBS18, 
SBS20-22, SBS24, SBS26, SBS30, SBS36, SBS42, SBS44, SBS84-86, SBS88, SBS90, SBS92. 

Phylogenetic analysis 

Existing programs for printing and annotating trees were found to be very inadequate for our needs, so a custom R 
program named plotTrees.R was developed to generate, annotate, and print phylogenetic trees. Supplementary figure 2 shows 
a selected subsample of trees plotted by this program. Each tree corresponds to one individual and has one leaf node for each 
biopsy of the individual (including the normal biopsy). Also, there are four supplementary figures containing phylogenetic 
trees for every patient (Supplementary figures 3, 5, 6 and 8). 

 
PlotTrees.R uses the R phylogenetic tree packages “ape”(129) and “geiger”(130) to create the trees, and optionally 

performs bootstrapping on them. It was designed to produce trees from somatic SNV, indel data, and copy-number data of 
various kinds. It has many options that determine how trees are generated for each biopsy, including whether to use SNV/indel 
data, CNV data, or both. Three trees can be plotted on one page, a tree made from SNV/indel data, one made from CNV data, 
and one made from both kinds of data. Different sets of options can be applied to control not only the specific CNV data used 
to make the trees, but also to control the annotation on the trees. The biggest part of the program involves positioning tree 
branch annotation to make the tree as uncluttered and readable as possible, and that process is not described here. The 
plotTrees.R program is not general enough for use outside our lab. 

 
The program computed and plotted one tree at a time, each tree belonging to a single individual. The remaining description 

applies to creation of one tree, for one individual. 
 
To make a phylogenetic tree, a distance matrix must be created. It is a square matrix with one row and one column for 

each biopsy, and the values in the matrix represent the similarity of the biopsies of that row and column, with a value of 0 
indicating complete dissimilarity and larger values indicating greater similarity. A distance matrix is created by first creating an 
event matrix, which has one column per biopsy, one row for each event that will be used to determine relative ancestry of the 
biopsies, and values that may be simply 0 if the biopsy did not have the event and 1 if it did, or the values may be more 
complex. This is discussed below when the methods for creating each type of tree are described. 

 
After the event matrix is created, it is used to create a distance matrix by applying a distance metric to it. In plotTrees.R the 

distance metric is the standard Euclidean distance, so that the distance between two biopsies is the sum of the square of the 
differences between the event matrix columns for those two biopsies. The distance matrix is turned into a standard R distance 
matrix object with function as.dist(). The phylogenetic tree is then computed with the fastme.bal() function in the “ape” 
package, which performs the “minimum evolution” algorithm(131) and the root() function is used to root the tree at the normal 
biopsy. 

 
When plotTrees.R is configured to perform bootstrapping, the boot.phylo() function is called with argument x being the 

transpose of the event matrix and the argument FUN being a function that recomputes a new tree from a truncated event matrix 
using the same method as was used for the main tree. The bootstrap result can be annotated on the tree branches as a percent 
number, which is derived as 100*prop.clades()/numBootstraps, where prop.clades() is the “ape” package function that returns 
the number that was associated with each tree node by the boot.phylo() function. When bootstrapping is performed, 
numBootstraps was always 100, i.e. 100 rounds of bootstrapping were performed. 

Somatic SNV/indel-based trees 

The somReliable filter was used to filter somatic variants to obtain reliably-called variants (both SNVs and indels) from 
which to compute trees. (The more stringent somCodSplNoSyn filter was used to select variants for annotating onto the trees.)  
The event matrix was created by examining the VarStat variable for the variants passing the somReliable filter and for the 
tumor biopsies of the individual. Each biopsy with a WT value in VarStat, and the normal biopsy, were assigned an event 
matrix value of 0. Those with a SOM value were assigned a value of 1. Those with an LOH value were assigned a value of 2, 
so that LOH events are weighted twice as much as non-LOH events. SOM and LOH are treated as the same event, even though 
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the LOH may have occurred as two separate events (a SOM event and then another mutation causing LOH). Treating them as 
separate events was problematic and may not be the actual situation anyway. 

CNV-based trees 

Several different types of CNV data could be used as events for creating an event matrix: 
1. Change in ploidy from the diploid ploidy state 
2. Chromosome and chromosome arm copy-number changes 
3. Segment edge copy-number changes 
4. Gene copy-number changes and loss-of-heterozygosity 
plotTrees.R allows any subset or all of these data to be used to create the event matrix. 
 
Ploidy events are determined by data in the PureCN QC file, which contains the purity and ploidy estimates of PureCN 

(curated). Events are entered into the event matrix as one or two rows. Ploidy gain events are treated separately from ploidy 
loss events. The actual ploidy value was not used beyond comparing it to 2 to determine loss or gain, because the precise value 
may be unreliable depending on how well PureCN is able to determine the correct purity/ploidy solution. If any tumor biopsy 
had a ploidy gain, a row was added to the event matrix with all biopsies having 0 except those having the ploidy gain being 1. 
Likewise, a row was added if any tumor biopsy had a ploidy loss. 

 
Chromosome and chromosome arm copy-number change events are determined by data in the chromosome CNV file 

containing the output of the GetChrCNV.R program described earlier, specifically by the values isGain, isLoss, isAltered, and 
isLOH for each chromosome arm and the chromosome as a whole. When one or more of these flags is set for a chromosome in 
any tumor biopsy of the individual, events are created in the event matrix. Each chromosome can have one or more of these 
events: 

1. whole chromosome gain 
2. whole chromosome loss 
3. whole chromosome LOH 
4. chromosome p arm gain 
5. chromosome p arm loss 
6. chromosome p arm altered 
7. chromosome p arm LOH 
8. chromosome q arm gain 
9. chromosome q arm loss 
10. chromosome q arm altered 
11. chromosome q arm LOH 

 
Each of these is treated as a separate event. For example, if one biopsy has "whole chromosome isGain" and another has 

"whole chromosome isLoss", these are separate events, even though the chromosome is the same. A single event can occur in 
any subset of biopsies or all of the biopsies. For example, biopsies 1 and 2 might have a "whole chromosome #21 gain" while 3 
and 4 might have "whole chromosome #21 loss". 

 
The chromosome arm gain events are suppressed if the whole chromosome gain event is present, and likewise for losses. 

The whole chromosome altered event doesn’t exist because it is likely in that case that one arm will have a gain and the other 
arm will have a loss, or one or both arms will be altered, so the event is picked up in the arms. 

 
The meaning of "isAltered" is that a significant part of the chromosome or arm has either a gain or a loss (gain and loss 

distance is summed). That is consistent with TCGA definition of chromosome alteration used for assigning chromosome 
instability to a sample. 

 
The event matrix contains 0 when a biopsy did not have the event, and 1 when it did. 
 
Segment edge copy-number change events are determined by data in the CNV edges file containing the output of the 

TestCNVedgesOfSamplesOfPerson.R program described earlier. Segment edge data is used for these events, rather than 
creating events for each segment that is identified as having a copy-number change, because segments do not necessarily 
correspond to single ancestral CNV events. If a second copy-number change occurs in one biopsy in the middle of a segment in 
which an ancestral copy-number change occurred that was inherited by all the biopsies, the biopsy with two events will have 
three segments rather than one. It is unlikely that the actual ancestral order of events could be determined from the segment 
data. Therefore, we took the approach of recognizing that each ancestral segment edge should be present in all biopsies even if 
each segment were not. By testing the copy-number to the left and right of each segment edge (regardless of which biopsy it 
occurred in), the edge can be validated as being present, with a p-value attached to the test. The 
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TestCNVedgesOfSamplesOfPerson.R program performs this edge testing. While it is possible that two CNV events with 
opposite effects on copy-number will occur at the same location within a biopsy, this is regarded as unlikely and not a 
significant influence on the phylogenetic results. Also, since every CNV event generates two edges, each event could be 
entered into the event matrix twice (if both edges are tested as significant). The effect of this could be countered with event 
matrix weights, discussed below. 

 
Edge events are created from tested segment edges with filter=PASS, SVTCON != INCONSISTENT, and are not near the 

edge of a chromosome arm (which is defined as being located farther than 500,000 bp away from a chromosome end or 
centromere). The event occurs only in biopsies with SIG=YES, and the edge is ignored if the DIR value differs among the 
SIG=YES biopsies. The edge is also ignored if the relationship of CR_L to CR_R is inconsistent with DIR in any SIG=YES 
biopsy. Two types of events are created, copy-number decrease events and copy-number increase events, and edges are ignored 
if both types of events occur at the same position, because that is unlikely to have occurred independently. 

 
The event matrix contains 0 when a biopsy did not have the event, and 1 when it did. 
 
Gene-CNV-segment copy-number change and LOH events are determined by data in the gene CNV file  containing the 

output of the CreateCNVgenePvals.R program described earlier. A single copy-number change or loss-of-heterozygosity can 
alter the copy-number of many genes, even hundreds of genes, depending on its length. Therefore, defining an event for each 
gene that undergoes such a change would completely distort the similarity between different biopsies. To try to avoid this 
problem, gene-CNV-segment events were implemented in a manner that assigns a single event to multiple genes. 

 
A gene-CNV-segment copy-number gain/loss event is defined as a gene whose “CNVtype”, generated by 

CreateCNVgenePvals.R as a result of t-tests of gene marker copy ratios, is AMP or DEL, and the purity/ploidy-adjusted copy-
number changes from the ploidy value in a direction consistent with “type”, and the PureCN “C.flagged” flag for the gene is 
not set (which would indicate unreliable copy-number) in any biopsy of the person. Genes not in the target panel are excluded. 
Since copy-number can go up in one biopsy due to a segment amplification, and down in a different biopsy due to a segment 
deletion, amplifications and deletions are treated as two separate events, so that one or more biopsies could have an 
amplification event in a gene, and one or more OTHER biopsies could have a deletion event in the same gene. 

 
A gene loss-of-heterozygosity event is defined as a gene whose “loh” flag has been set by PureCN, and again the PureCN 

“C.flagged” flag for the gene is not set in any biopsy of the person. Genes not in the target panel are excluded. Loss-of-
heterozygosity can occur with or without copy-number gain or loss, so loss-of-heterozygosity is treated as a separate event 
from copy-number gain/loss, even though in some cases both might be caused by the same underlying CNV event. 

 
The same segment CNV can generate multiple gene copy-number gain/loss events and/or multiple gene loss-of-

heterozygosity events (when the segment extends over more than one gene). In order to not count such a segment event as 
multiple events, for each gene on the segment, adjacent gene events are combined into a single event whenever they occur on 
the same segments within each biopsy. For example, if genes A and B have an amplification and both of them are located in 
CNV segment S1 in biopsy 1, segment S2 in biopsy 2, segment S3 in biopsy 3, etc. then they are combined into the same copy-
number gain event assigned to both of those genes. If the segment number changes in any biopsy, the gene events are not 
combined. The same is done for deletions and for loss-of-heterozygosity. This is expected to eliminate the large majority of 
multiple gene events from the same segment. The actual copy-numbers of the genes and segments do not take part in this 
process. 

 
It is possible that a gene event is also called as a chromosome arm event, but we do not attempt to distinguish that case, 

and treat each type of event independently, so in those cases the event will be counted twice. 
 
The actual value of the copy-number of a gene CNV event is ignored, so if two biopsies have an increase in copy-number 

in a gene, this is considered the same event even if the copy-number is different in the two biopsies. The reason for this is, first, 
PureCN copy-numbers are not accurate enough that we can be certain that two different copy-numbers reflect actual 
differences, and second, most likely if the copy-numbers really are different, there were at least two copy-number events, one 
of them shared by the two biopsies, but we have no way to be sure of that and splitting the event into two events might or 
might not reflect the actual events. So, to keep it simple, just one event is created. However, the actual delta copy-numbers of 
the biopsies can be annotated on the tree if desired. 

 
The event matrix contains 0 when a biopsy did not have the event, and 1 when it did. 
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Event matrix weighting 

The event matrix as described above contains only 0’s (no event) and 1’s (event) except for SNVs/indels with both WT 
and LOH genotypes, which have 2 for a value. However, there is no reason to think that one type of event should have the 
same weight in determining similarity, as another type of event. This is a problem that was addressed by creating a weight 
vector that assigns a weight to each type of event (SNV/indel event or any of the four types of CNV events). The event matrix 
entries are multiplied by the appropriate weights for each row of the matrix before it is used to generate the distance matrix. 
The weight of SNVs/indels is always set to 1.0 as a base reference. The relative weights of the CNV events were chosen by 
simple seat-of-the-pants estimation. The balance of weights between CNV and SNV/indel events was chosen by generating 
trees using different weight balances and comparing the SNV/indel-only, CNV-only, and SNV/indel/CNV (combined) trees. 
The final balance was chosen as the one whose combined trees appeared to have a topology midway between the SNV/indel 
and CNV trees: 

1. SNVevents=1.0 
2. Ploidy=0.5 
3. ChrCNVs=1.0 
4. CNVedges=0.75 
5. CNVgenes=0.5 
No algorithm has been found that might let us choose an event weight vector in an unbiased manner, and therefore the 

combined trees are perhaps to be trusted less than the other two tree types. 
 
When plotTrees.R options are set so as to annotate a particular type of mutation event on the tree, the list of such events is 

analyzed, one event at a time, to determine on which branch or branches the annotation should be placed, starting at the root 
node corresponding to the normal biopsy, and moving down the tree towards the leaves. On a particular branch, if all biopsy 
leaf nodes downstream of that branch have the mutation in question, then that event is annotated on that branch. Otherwise, the 
same analysis continues on one or both downstream branches, depending on whether any leaf nodes of one or both branches 
have the mutation. Therefore, it is possible for the same event to be annotated on multiple branches. For example, if a tree has 
three biopsies, T1, T2, and T3, and T1 branches off first, then if T1 and T2 but not T3 had a certain mutation event, then the 
event would be annotated on the branches leading to T1 and T2 but not on the branch leading to T3. If on the other hand the 
event were clonal and occurred in all three biopsies, it would be annotated on the branch leading out of the normal biopsy, 
because that is the branch that is upstream from all three biopsies. When a branch is annotated with an event, the inference is 
that the event occurred somewhere along that branch in the ancestry of the leaf node biopsies of that branch. The order of 
occurrence of events annotated on a branch is not inferred and remains unknown. 

Supplementary figures 

The following pages show supplementary figures referenced from the manuscript and within this supplementary 
document. 
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Supplementary figure 1: Genes with clonal SNV mutations in at least one gastric cancer
MSS or MSI patient
Genes shown on both left and right sides are those where at least one patient has a clonal somatic
non-silent single nucleotide or short indel (SNV) mutation. Genes are divided into three sections:
TCGAMSS genes are those genes found to be gastric cancer drivers in non-hypermutated
samples by the TCGAGC study; TCGAMSI genes are similar but for TCGA hyper-mutated
samples and not already shown in the TCGAMSS section; Druggable genes are genes previously
identified as druggable and not already shown in the TCGA sections; and Other genes are all
remaining genes not falling into one of those groups. Patients (I_#### IDs at bottom) are
separated by a dark vertical line and patient biopsies within them are separated by a lighter line.
SNV and CNV mutations are shown for each gene/biopsy combination. Gains and losses are
distinguished by box color, while SNVs are shown as a filled circle or triangle using color to
distinguish the mutation type (key at upper-right; nonsense mutations include stop gain/loss and
frameshift). A triangle rather than a circle means a gene has more than one mutation in a patient,
and the type shown is the one generally most detrimental. A bar through all biopsies means the
mutation is clonal. The left side bar plot shows the total number of clonal mutations of each type
in each gene, with short vertical lines separating individual patients. Numbers in boxes at the
bottom give the total number of clonal mutations of each type in each patient in all genes (not
just the ones shown). Patient molecular subtypes (EBV, CIN, GS, MSI) are indicated by color-
coded bars just above the main figure area, and above those are additional color-coded bars
indicating patient MSS/MSI status, sex, age of onset of gastric cancer (where late onset was
defined as occurring at age > 50), ancestry (Latino or white), and tumor histology. The top bar
plot shows SNV mutation rate in each biopsy, in the region targeted by the panel, with non-silent
and silent rates distinguished by color. MSS patients have a lower mutation rate and use the y-
axis scale on the left, while MSI patients with a higher rate use the right-side scale. The right side
bar plot shows the SNV mutation count in each gene summed over all 115 biopsies, normalized
by dividing by the gene CDS length in Kbp, with non-silent and silent mutations distinguished
by color. Gene names are in bold when they were found to be gastric cancer drivers by the TCGA
GC study, with an open circle denoting driver genes in non-hypermutated TCGA samples and a
closed circle denoting those in hypermutated samples.
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Supplementary figure 2: Phylogenetic trees depicting inferred ancestral relationships of
biopsies.
Each tree shows one patient’s biopsies, and each tree is made from a distance matrix derived
from an event matrix of all SNV and indel mutations identified using our cancer gene panel
(CNV changes are not used for the event matrix). Leaves are marked with the biopsy ID, with
“N” for the normal biopsy and “T#” for tumor biopsies, and trees are rooted at the normal
biopsy. Tree edge length is proportional to the total weight of mutations occurring on the edge,
and the preponderance of private over clonal and subclonal mutations leads to most terminal
edges being longer than internal ones. Tree edge annotations show genes containing a non-silent
SNV, indel, or CNV mutation occurring on the edge and that were identified as having an
approved drug (OncoKB) that targets gene mutations (not necessarily the ones occurring here;
these mutations include all non-silent mutations, not just those identified as pathogenic in the
main manuscript). Internal edges correspond to subclonal mutations, present in multiple biopsies.
Mutations on the edge leading from N are clonal mutations. Red text describes SNV and
indel variants with amino acid changes (fs: frameshift) and blue text describes CNV gains and
losses (AMP: amplification or copy-number gain, DEL: deletion or copy-number loss; CN:
estimated gene copy-number changes as subscripts of tumor IDs). A. SNV mutations in
druggable genes, such as ATM, are poorer drug targets if they are private (R1039fs in T3) or
subclonal (W2042R and T2674fs in T2 and T3). B. Clonal druggable mutations (those occurring
in all biopsies), such as ALK (K313T) and BRCA2 (K1777E), make better targets. The lack of
subclonal and private mutations accompanying clonal mutations seen here is rare. C. The same
situation is true for copy-number mutations, such as the EGFR, ALK and FLT2 amplifications
and CHEK2 deletion, which are private mutations. D. The FGFR2 amplification is clonal while
other mutations are private. Clonal druggable mutations are seen in only about half of all CIN
molecular subtypes. E, F, G. Mixtures of druggable SNV and CNV mutations, of all three classes
(private, subclonal, and clonal), is common, making it likely that a gene chosen from a single
biopsy will be an ultimately ineffective drug target. It is also common to have more than one
druggable clonal mutation, which can provide options for selecting the better drug or the use of a
drug combination. H. Sometimes a larger number of clonal and non-clonal druggable mutations
are present, most often seen with the MSI molecular subtype. I. In some patients no druggable
mutations are found, clonal or non-clonal, very common within the GS molecular subtype.
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Supplementary figure 4: Genes with clonal CNV mutations in at least one gastric
cancer MSS or MSI patient
Gene names shown are those in our druggable gene list where at least one patient has a clonal
somatic non-silent single nucleotide or short indel (SNV) or copy number gain/loss (CNV)
mutation. Panel layout is identical to Supplementary figure 1.
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Supplementary figure 7: Genes with only non-clonal mutations in all gastric cancer
MSS and MSI patients
Gene names shown are those where no patient has a clonal somatic non-silent single nucleotide
or short indel (SNV) or copy number gain/loss (CNV) mutation, but at least one patient has a
non-clonal mutation of one of those types. Panel layout is identical to Supplementary figure 1
with the exception that the boxed numbers at the bottom are clonal mutation counts for the
shown genes only.
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Supplementary figure 9: Mutation signatures found in clonal and nonclonal mutations
in MSS and MSI samples
A.Mutation signature weights found for the combined set of clonal mutations in MSS samples.
B. For nonclonal mutations in MSS samples. C. For clonal mutations in MSI samples. D. For
nonclonal mutations in MSI samples.
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Supplementary tables 

Supplementary table 1. DNA repair genes that were somatic pan-cancer panel gene candidates. 
 

Preferred Symbol Alternate Symbol Preferred Symbol Alternate Symbol 
ADH1B  MUS81  
ALDH2  NBN  

ATM  PALB2  
ATR  PARPBP  

ATRIP  POLE  
BACH1  POLH  
BCCIP  RAD50  
BLM  RAD51AP1  
BRAP  RAD51B  

BRCA1  RAD51C  
BRCA2  RAD51D  
BRIP1  RAD52  
EMSY C11orf30 RAD54B  
CAT  RAD54L  

CYP2E1  RAD54L2  
DNA2  UIMC1 RAP80 
EME1  RBBP8  
EME2  RECQL  

ERCC1  RECQL4  
ERCC4  RECQL5  
EXO1  REV1  
FAN1  REV3L  

FANCA  RMI1  
FANCB  RMI2  
FANCC  RPA1  

FANCD2  RPA2  
FANCE  RPA3  
FANCF  RPA4  
FANCG  RTEL1  
FANCI  SHFM1  
FANCL  SOD1  
FANCM  SRCAP  

FEN1  SWSAP1  
HELQ  SYCP3  
INIP  TOP3A  

KEAP1  WRN  
MAD2L2  XRCC2  
MRE11A  XRCC3  

MORF4L1 MRG15 ZRANB3  
POLD1    
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Supplementary table 2. Genes whose CDS is less than 90% covered by the somatic pan-cancer panel. 
Abbreviations: CDS=Coding Sequence 

 
Gene CDS Coverage Comments 

ARID1B 89% Exon 1 has 3 regions totaling about 350 bp that aren't covered 
CD1D 89% Exon 3 longer in 'known genes' than 'RefSeq genes', longer not covered 

RAD51C 89% One exon in 'known genes' but not 'RefSeq genes', not covered 
HLA−DRB1 88%  

OTUD7A 88%  
RPL5 88%  

FOXQ1 88%  
RAD51B 86% Some small exons present in some isoforms not covered 

SMARCB1 83%  
PHOX2B 81%  
CEBPA 81%  
RUNX1 80%  
STK19 80%  
CD70 80%  

MORC4 77%  
PRSS1 76%  
TNF 75%  

FRG1BP 75%  
PDGFRA 74%  

JUP 74%  
HLA−B 69%  
RXRA 62%  

GPI 59%  
TNFRSF14 53% Several exons present in 'known genes' and one in 'RefSeq' not covered 
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Supplementary table 3. Molecular subtype patient count comparison with TCGA. 
Abbreviations: MSEQ=this multiregional sequencing project, TCGA=The Cancer Genome Atlas, EBV=Epstein-Barr Virus, 
MSI=Microsatellite Instability, CIN=Chromosomal Instability, GS=Genomically Stable 
 

 MSEQ TCGA 

Type All 
Patients 

Latino 
Patients 

All 
Patients 

White 
Patients 

Asian 
Patients 

EBV 2 (6.2%) 2 (7%) 26 (8.8%) 19 (8%) 8 (11%) 
MSI 4 (12.5%) 2 (7%) 64 (21.7%) 42 (18%) 15 (20%) 
CIN 12 (37.5%) 11 (38%) 147 (50%) 146 (61%) 38 (51%) 
GS 14 (43.8%) 14 (48%) 58 (19.7%) 31 (13%) 13 (18%) 

Total 32 19 295 238 74 
 

 



 
 Supplementary table 4: Mutation signatures by molecular subtype, histology, and clonality in MSEQ vs. TCGA. 
MSI=microsatellite instability, MSS=microsatellite stable, CIN=chromosomal instability, GS=genomically stable, MSEQ=this project, TCGA=The Cancer Genome Atlas, 
SBS=single base substitution, HR=homologous recombination, MMR=mismatch repair, POLE=DNA Polymerase Epsilon, ROS=reactive oxygen species, POLD1= DNA 
Polymerase Delta 1. 
 

Signature 
Proposed 
etiology 

MSI (%) MSS (%) CIN (%) GS (%) MSEQ TCGA 

MSEQ 
Latino 
MSS 

Patients (%) 

TCGA 
White/Asian 

MSS 
Patients (%) 

Clonal 
Non-
clonal 

Clonal 
Non-
clonal 

Clonal 
Non-
clonal 

Clonal 
Non-
clonal 

GS 
Diffuse 

GS 
Intestinal 

GS 
Diffuse 

GS 
Intestinal 

Clonal 
Non-
clonal 

All 
Mutations 

# Patients 4 4 28 28 12 12 14 14 5 5 39 13 28 28 225 
Total # Mutations 194 335 164 437 77 197 72 208 60 181 243 81 164 437 1984 

SBS1 
Spontaneous 
deamination 

19 17 24 7 38 18 14 - 13 - 31 29 24 7 19 

SBS3 
HR 

deficiency 
- - 29 18 21 - 26 - - 18 - - 29 18 - 

SBS4 
Tobacco 

carcinogens 
- 12 15 - 8 - 7 6 - - 10 6 15 - 9 

SBS5 
Aging 
related 

- - 8 23 14 35 11 30 25 20 32 32 8 23 32 

SBS6 
MMR 

deficiency 
- 12 - 19 - - - - - 9 - 16 - 19 - 

SBS10b 
POLE 

mutations 
7 - 12 - - - 21 - 29 - 11 - 12 - 14 

SBS15 
MMR 

deficiency 
44 30 - 10 - 16 - 26 6 15 - - - 10 9 

SBS17b 
Unknown 
etiology 

- - - - 8 - - - - - 7 - - - 11 

SBS18 
ROS 

damage 
- - - 9 - - - 7 - 12 - 7 - 9 - 

SBS20 
POLD1 

mutations 
7 - - - - - - - - - - - - - - 

SBS21 
MMR 

deficiency 
- 10 - - - - - - - - - - - - - 

SBS24 
Aflatoxin 
exposure 

- - - 11 - 15 14 16 17 17 - - - 11 - 

SBS26 
MMR 

deficiency 
18 12 - - - - - - - - - - - - - 

- 
Other/ 

unknown 
5 6 13 3 9 16 7 15 9 9 9 10 13 3 6 
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