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Phase synchrony based metastability 

 

Global and local metastability – group-level 
neuromechanistic biomarkers of schizophrenia 
 

We calculated global and local metastability to compare group-level dynamics 

between case-control groups as the standard deviation of instantaneous phase 

synchrony as in [1]–[4]. Metastability measures the balance between functional 

integration and functional segregation, has been found to be stable across multiple 

acquisitions in healthy young adults [1], and is perhaps uniquely suitable for 

assessing schizophrenia. We calculated global and local metastability within each 

mode and for each run. 

 

Global metastability 
 

For the HCPEP dataset we first investigated group (CON, NAP), run (RUN1, RUN2, 

RUN3, RUN4), and group x run effects on global META. Using a 2x4 non-parametric 

ANOVA with the Aligned Rank Transform (ART) [5], [6], we found a significant 

interaction F(3,399)=3.192, p=0.024 for group x run.  

 

Main effects of run 
The main effect of run was not significant for either the CON or the NAP group. 

 

Main effects of group 
We found significant main effects of group which were driven by differences in META 

between CON and NAP in RUN4 (p=0.019, effect size= 0.202). See Table 1 for 

complete results. 

 
Table 1. Non-parametric statistical tests for differences in global META between CON and NAP 

across runs.  



 
ART, Aligned Rank Transform; CON, controls; NAP, non-affective psychosis 

 

For the Cobre dataset, we found a statistically significant difference t(126)=-3.35, 

p=0.002 between CON and SCHZ for global metastability.  

 

Local Metastability 
Global metastability reflects the average metastability across the modes. We were 

interested to also assess the local metastability in the modes.  

 

For the HCPEP dataset we first investigated group (CON, NAP), run (RUN1, RUN2, 

RUN3, RUN4), and group x run effects on global META for each mode 𝜓!, 𝜓", 𝜓#, 𝜓$,	
𝜓%). Using a 2x4 non-parametric ANOVA with the Aligned Rank Transform (ART) [5], 

[6], we found significant interactions for run x group in 𝜓$	F(3,399)=3.665, p=0.013, 

𝜓% F(3,399)=11.325, p<0.001. 

 

Main effects of run 
In the CON group, we found significant main effects of run in 𝜓%, 	𝜒" = 9, p<0.03. In 

the NAP group, we found significant main effects of run in 𝜓$,  𝜒" = 19.77, p<0.001 

META

Step 1 2x4 non-parametric ANOVA using ART

Term F Df Df.res Pr(>F)
COND COND 0.235 1 133 0.629
RUN RUN 1.302 3 399 0.273
COND:RUN COND:RUN 3.192 3 399 0.024

Step 2 CON:1x4 repeated measures non-parametric ANOVA using Friedmann test

chi-squared df p.value method

0.872 3 0.832 Friedman rank sum testMETA and RUN and SUB

Step 4 NAP:1x4 repeated measures non-parametric ANOVA using Friedmann test

chi-squared df p.value method

6.673 3 0.083 Friedman rank sum testMETA and RUN and SUB

Step 6 Non-parametric Wilcox test between CON and NAP for each run

.y. group1 group2 n1 n2 statistic p p.signif effsize magnitude
RUN1 META CON NAP 53 82 2082 0.683 ns 0.035 small
RUN2 META CON NAP 53 82 2131 0.852 ns 0.016 small
RUN3 META CON NAP 53 82 2003 0.445 ns 0.066 small
RUN4 META CON NAP 53 82 2694 0.019 * 0.202 small

data

data



and in 𝜓%, for 𝜒" = 21.81, p<0.001. The drivers for these effects and the associated 

effect sizes are detailed in S2 Supplementary Information. 

 

Main effects of group 
We found significant main effects of group in modes 𝜓$ and 𝜓%. The effect sizes of 

these differences were compared to the largest effect size between any pair of runs 

for that mode (𝜓$,	 effect size=0.308, 𝜓%, effect size=0.410). We retained only group 

differences that were greater these run effects. We thus found significant group 

differences for 𝜓% in RUN1 (p<0.001, effect size=0.442). 

 

We found a significant main effect of group for 𝜓!, p=0.0361, effect size=0.090. 

There were no significant main effects of group for 𝜓" and 𝜓#. 

 

We thus inferred that mode metastability differed between CON and NAP in 𝜓! in all 

runs, and in 𝜓% in RUN1. 

 

For the Cobre dataset, we found significant differences in mode META between 

CON and SCHZ in 𝜓# t(128)=-4.69, p<0.001, and 𝜓% t(122)=-3.550, p=0.003.  

 

Complete statistical results for each dataset can be found in S2 Supporting 

Information. S6 Fig below provides an overview of mode metastability data for each 

dataset in the form of raincloud plots. 

 



 
Fig S6. Raincloud plots for META in each mode for HCPEP and Cobre datasets. Raincloud plots 

show from left to right the raw data, boxplots showing the median, upper and lower quartiles, upper 

and lower extremes, and the distributions of the raw data. A) HCPEP RUN1. B) HCPEP RUN2. C) 
HCPEP RUN3. D) HCPCP RUN4. E) Cobre dataset. *=0.05, **=0.01,***=0.001,****<0.001. Red * 
effect size between groups greater than effect size between runs. Blue * effect size between groups 

less than largest effect size between runs. 
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