Supplementary table 1: Search strategy and results in databases

Key words	Results in Medline (Pubmed)	Results in CINAHL	Results in SportDiscus	Results in Scopus
S1: (BFR[Title/Abstract]) OR (blood	2,245	353	511	482
flow restriction [Title/Abstract]) OR				
(kaatsu training [Title/Abstract]) OR				
(occlusion training [Title/Abstract])				
OR (vascular occlusion training				
[Title/Abstract])				
S2: (arm [Title/Abstract]) OR	275,234	20,779	12,040	159
(shoulder [Title/Abstract]) OR (upper				
limb [Title/Abstract]) OR (upper				
extremity [Title/Abstract]) OR (rotator				
cuff [Title/Abstract])				
S1 AND S2	100	96	122	12

Supplementary table 2. Measurement method of the outcome of interest in strength, muscle size, and tendon thickness									
Study	Comparators	Outcome for strength	Testing specification						
Bowman et al.,2020	LL-BFRT vs LL-RT	Internal rotation (isokinetic)	No information with regards to the testing position.						
Bowman et al.,2020	LL-BFRT vs LL-RT	External rotation (isokinetic)	Isokinetic internal rotation and external rotation measurements were performed at 180°/s, 270/s, and 300°/s using the Biodex System 3 (Biodex Medical Systems, Shirley, NY, USA).						
Bowman et al.,2020	LL-BFRT vs LL-RT	Abduction (MVIC)	No information for the testing position						
Bowman et al.,2020	LL-BFRT vs LL-RT	Scaption (MVIC)	No information for the testing position						
Bowman et al.,2020	LL-BFRT vs LL-RT	Flexion (MVIC)	No information for the testing position						
Lambert et al.,2021	LL-BFRT vs LL-RT	Internal rotation 90° (MVIC)	Prone internal rotation at 90° of shoulder abduction						
Lambert et al.,2021	LL-BFRT vs LL-RT	External rotation 90 ^o (MVIC)	Prone external rotation at 90° of shoulder abduction						
Lambert et al.,2021	LL-BFRT vs LL-RT	Internal rotation 0° (MVIC)	Seated internal rotation at 0° of shoulder abduction						
Lambert et al.,2021	LL-BFRT vs LL-RT	External rotation 0° (MVIC)	Seated external rotation at 0° of shoulder abduction						
Lambert et al.,2021	LL-BFRT vs LL-RT	Scaption (MVIC)	Seated scaption at 90° of relative flexion.						
Lambert et al.,2021 LL-BFRT vs LL-RT Flexion (MVIC) Seated forward flexion at 90° of shoulder abduction									

		Abduction (MVIC) -	Subject assumes a sitting position on the table. The shoulder is in a neutral					
Brumit et al.,2020	LL-BFRI vs LL-RI	supraspinatus	position and abducted to 30°. The elbow is flexed to 90°. The therapist					
Brumit at al. 2020		External rotation 0.0% (M)/IC)	applies resistance laterally to the upper extremity above the elbow region.					
Brumit et al.,2020	LL-DFRIVSLL-RI	External rotation 90 (MVIC)	Prone external rotation at 90° of shoulder abduction					
Yamanaka et al.,		Banch proce (1DM)	On a bench. The TRIM was determined when the participant successfully					
2012	LL-DFRIVSLL-RI	Bench press (TRIVI)	completed an exercise with the heaviest barbell throughout the full range of					
			Movimal dynamia strangth (1 DM) was assessed using a free weight flat					
Vasuda et al. 2010		Bench press (1RM)	bench press. A test was considered valid only when the subject used proper					
1 asuua et al., 2010		Bench press (TRM)	form and completed the entire lift in a controlled manner without assistance					
Green et al. 2020		Pectoralis major (MV/IC)	No description of the measurement – measurement methodology illustrated					
			in figure 1: Supine lying with arm at 90° of horizontal abduction					
Green et al. 2020	II-BERT vs HI-RT	Lower trapezius (MV/IC)	No description of the measurement – measurement methodology illustrated					
			in figure 1. Prope lying with arm at 180° of horizontal abduction. Resistance					
			in horizontal extension of the proximal arm					
Green et al., 2020	LL-BFRT vs HL-RT	External Rotation (MVIC)	No description of the measurement – measurement methodology illustrated					
			in figure 1: Prone external rotation at 90° of shoulder abduction					
Green et al.,2020	LL-BFRT vs HL-RT	Serratus anterior (MVIC)	No description of the measurement – measurement methodology illustrated					
,			in figure 1: Upper arm in 90° of shoulder flexion and reach					
Green et al.,2020	LL-BFRT vs HL-RT	Rhomboids (MVIC)	No description of the measurement – measurement methodology illustrated					
			in figure 1: Prone with hand behind the back and resistance was applied on					
			the lateral boarder of the scapula in scapular retraction movement					
Thiebaut et al.,2013	LL-BFRT vs HL-RT	Seated row (1RM)	1RM was calculated by following standard previously described procedures					
			(Baechle et al., 2000)					
Thiebaut et al.,2013	LL-BFRT vs HL-RT	Chest press (1RM)	1RM was calculated by following standard previously described procedures					
			(Baechle et al., 2000)					
Thiebaut et al.,2013	LL-BFRT vs HL-RT	Shoulder press (1RM)	1RM was calculated by following standard previously described procedures					
			(Baechle et al., 2000)					
Salyers,2017	LL-BFRT vs HL-RT	Bench press (1RM)	For completion of the bench press, subjects laid supine on the bench. Five					
			points of body contact were maintained during the entire lift: (a) head, (b)					
			shoulders, (c) buttocks, (d) right foot, and (e) left foot. The bar was then					
			lifted off the rack by the participant, with the assistance from the spotter if					
			needed and lowered to the chest and lifted off their chest until full elbow					
			extension was achieved					
Yasuda et al.,2011	LL-BFRT vs HL-RT	Bench press (1RM)	Maximal dynamic strength (1-RM) was assessed using a free-weight flat					
			bench press. A test was considered valid only when the subject used proper					
			form and completed the entire lift in a controlled manner without assistance					

Yasuda et al.,2011	LL-BFRT vs No exercise	Bench press (1RM)	Maximal dynamic strength (1-RM) was assessed using a free-weight flat bench press. A test was considered valid only when the subject used proper form and completed the entire lift in a controlled manner without assistance
Study	Comparators	Outcome for muscle size	Measurement method
Yasuda et al.,2011	LL-BFRT vs No exercise	Pectoralis major via MRI (cm ²)	Subjects rested quietly in the magnet bore in a supine position, with their arms extended along their trunk. Continuous transverse images with 10-mm slice thickness were obtained from the upper right side of the body, including the arm. Triceps brachii and pectoralis major muscle CSAs of three contiguous slices for muscle belly were averaged together for statistical analysis.
Yasuda et al.,2010	LL-BFRT vs LL-RT	Pectoralis major via US (cm)	Muscle size was measured using B-mode ultrasound (Aloka SSD-500, Tokyo, Japan) at two anatomical sites [chest (at the site between third and fourth of costa under the clavicle midpoint) and posterior upper arm (at 60% distal between the lateral epicondyle of the humerus and the acromial process of the scapula)] of the left side as has been described previously (Abe et al., 1994, 2000). Briefly, the measurements were carried out while the subjects stood with their elbows extended and relaxed. A 5-MHz scanning head was placed on the measurement site without depressing the dermal surface. The subcutaneous adipose tissue–muscle interface and the muscle–bone interface were identified from the ultrasonic image, and the distance between two interfaces was taken as muscle thickness.
Yamanaka et al., 2012	LL-BFRT vs LL-RT	Upper chest girth (cm)	Upper chest girth was measured around the upper latissimus dorsi and below the armpits at the end of normal expiration.
Yamanaka et al., 2012	LL-BFRT vs LL-RT	Lower chest girth (cm)	Lower chest girth was measured at nipple level at the end of normal expiration.
Lambert et al.,2021	LL-BFRT vs LL-RT	Shoulder lean mass via DEXA (g)	For shoulder region analysis, the region of interest parameters were templated to individual participants based on skeletal landmarks in their initial scan that were then subsequently used for the post-training measure. The 2D landmarks included the cervical vertebrae traced to the top of the first rib, down the outer edge of the rib cage to the location at which the scapula visually intersected the ribs, across the humerus (parallel to the bottom of the scan), and then around the upper arm, shoulder, and trapezius muscles, ending at the highest cervical vertebra below the jawbone.
Salyers,2017	LL-BFRT vs HL-RT	Chest girth via tape (cm)	A measure at the nipple level, under the arms

Yasuda et al.,2011	LL-BFRT vs HL-RT	Pectoralis major via MRI (cm ²)	Subjects rested quietly in the magnet bore in a supine position, with their arms extended along their trunk. Continuous transverse images with 10-mm slice thickness were obtained from the upper right side of the body, including the arm. Triceps brachil and pectoralis major muscle CSAs of
			three contiguous slices for muscle belly were averaged together for statistical analysis
Thiebaut et al.,2013 Thiebaut et al.,2013	LL-BFRT vs HL-RT LL-BFRT vs HL-RT	Pectoralis major via US (cm) Deltoid via US (cm)	Muscle thickness (MTH) was measured by B-mode ultrasound (Aloka SSD- 500, Tokyo) the week prior to and the week after 8 weeks of training by a single experienced technician. A 5-MHz scanning head was placed on the skin without depressing the dermal surface. Distortion of tissue due to excess compression was eliminated by observing that no movement of tissue occurred in the real time ultrasound image. Pectoralis major MTH was also measured at the clavicular midpoint and between the third and fourth costa (Yasuda et al., 2010), and deltoid MTH was measured on the lateral surface of the shoulder and at the thickest MTH of the deltoid. Muscle thickness was determined as the distance between the adipose
			tissue–muscle interface and muscle–bone interface from the ultrasound image.
Thiebaut et al.,2013	LL-BFRT vs HL-RT	Trunk bone-free mass via DEXA (Kg)	Dual energy X-ray absorptiometry (DXA, GE Medical Systems, Lunar Prodigy, encore 2010 software version 13.31.016) was used to assess total bone-free lean body mass using a total body scan in all participants the week prior to training and the week after training.
Study	Comparators	Outcome for tendon thickness	Measurement method
Brumit et al.,2020	LL-BFRT vs LL-RT	Supraspinatus tendon thickness (US mm)	Long- and short-axis views of the supraspinatus were obtained. The footprint of supraspinatus was identified in long axis at the superior facet of the great tuberosity. The transducer was turned 90° to obtain a short axis image of the supraspinatus bringing into view the long head of biceps tendon as well. The thickness of the supraspinatus tendon was measured in the short axis at 3 points (10, 20, and 30 mm) lateral to the long head of the biceps tendon.30 The average of these 3 points was used to represent the thickness of the tendon.
Abbreviations: BFRT, I training; LL-RT, Iow Ioa RM, repetition maximu	blood flow restriction tr ad resistance training; ım; US, ultrasound;	aining; CSA, cross sectional are MRI, magnetic resonance imagi	a; DEXA, dual energy X-ray absorptiometry; HI-RT, high intensity resistance ng; MTH, muscle thickness; MVIC, maximal voluntary isomeric contraction;

Supplementary figure 1. Forest plots depicting studies using LL-BFRT compared to studies using LL-RT in muscle strength presenting significant statistical heterogeneity (I²>75%)

а

	Expe	erimen	tal	Co	ontro	I	Std. Mean Difference			Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Lambert et al.,2021	16.1	0.7	16	14.7	0.7	16	48.6%	1.95 [1.09, 2.81]		
Brumitt et al.,2020	13.54	4.94	24	13.35	5.7	22	51.4%	0.04 [-0.54, 0.61]		
Total (95% CI)			40			38	100.0%	0.96 [-0.91, 2.84]		
Heterogeneity: Tau ² = 1.69; Chi ² = 13.10, df = 1 (P = 0.0003); l ² = 92% Test for overall effect: Z = 1.01 (P = 0.31)								_	-4 -2 0 2 4 Favours [control] Favours [experimental]	

b

	Expe	Experimental Control						Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Bowman et al.,2020	9.04	4.49	14	4.27	3.33	10	48.6%	1.14 [0.25, 2.02]		
Lambert et al.,2021	12.4	0.2	16	12.5	0.2	16	51.4%	-0.49 [-1.19, 0.22]		
Total (95% CI)			30			26	100.0%	0.30 [-1.29, 1.89]		
Heterogeneity: Tau ² = 1.15; Chi ² = 7.91, df = 1 (P = 0.005); l ² = 87% Test for overall effect: Z = 0.37 (P = 0.71)								-4	-2 0 2 4 Favours [control] Favours [experimental]	

	Expe	erimen	tal	C	ontrol			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Bowman et al.,2020	8.56	4.1	14	4.71	3.14	10	45.5%	0.99 [0.13, 1.86]		
Brumitt et al.,2020	18.86	3.46	24	19.27	4.1	22	54.5%	-0.11 [-0.69, 0.47]		
Total (95% CI)			38			32	100.0%	0.39 [-0.68, 1.47]		
Heterogeneity: Tau² = Test for overall effect: 2	0.46; Ch Z = 0.72	i ² = 4.3 (P = 0.	28, df = .47)	1 (P = 0).04); f	²= 77%	ò		-	4 -2 0 2 4 Favours [control] Favours [experimental]

Forest plots comparing low-load resistance training with blood flow restriction (LL-BFR) and low-load resistance training alone (LL-RT) on muscle strength. a) Prone shoulder external rotation (dynamometry in kgs), b) Shoulder scaption (dynamometry in kg), and c) Shoulder abduction (dynamometry in kgs).

Abbreviations: CI, confidence interval; IV, inverse variance; Random, random effects model; SE, standard error.