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Figure S1. Nanoparticle characterization. (A) Size and zeta potential measured by dynamic light
scattering (n=3). (B) Valency of BiTNuer. The left column indicates the molecular ratio of anti-HER2
antibody and SLAMF7 added into the conjugation reaction; the right two columns indicates the number of
copies of anti-HER2 antibody and SLAMF7 per nanoparticle (n=3). (C) HER-NP showed specific binding
with the HER2/neuMs" mouse breast cancer cell lines EO771/E2 and TUBO, compared with HER2/neu'*"
EO771 and 4T1 cells. (Scale bar, 50 pm).
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Figure S2. Stability of BiTNHer. No significant change of nanoparticle size (A), PDI (B) and loaded
protein (C) was observed in PBS or FBS-containing media within 72 hours. Data are presented as
meants.e.m. (n=3)
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Figure S3. SLAMF7 expression and efficiency in promoting phagocytosis. (A) SLAMF7 was highly
expressed on the hematopoietic mouse leukemia cell line L1210 and on mouse bone marrow—derived

macrophage (BMDMs), mouse tumor-associated macrophages (TAM), and the human macrophage cell
line THP-1, but was not expressed on other mouse or human breast cancer cell lines. (B,C) SLAMF7"igh
L1210 cells were more sensitive to anti-CD47 antibody—mediated macrophage phagocytosis, compared
with the SLAMF7"9 breast cancer cell lines EO771 or EO771/E2. Data are presented as meants.e.m.

(n=3); *P<0.05 by two-sided unpaired Student’s f test for the indicated comparisons; n.s., not significant.
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Figure S4. SLAMF?7 is essential for BiTN-mediated macrophage phagocytosis of HER2"'9" cancer
cells. (A) Western blotting confirmed the knock-down of SLAMF7 in THP-1 via siRNA silencing. (B)
Knock-down of SLAMF?7 significantly abrogated the enhancement of macrophage phagocytosis against
SK-BR-3 cancer cells (n=3). (C) Western blotting confirmed the overexpression of SLAMF7 on SK-BR-3
and MDA-MB-468 via plasmid transfection. (D) SK-BR-35-AMF"* and MDA-MB-4685-AMF7* were both
susceptible to macrophage phagocytosis by CD47 blockade (n=3). Data are presented as meants.e.m.;
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 by unpaired Student’s t-test for the indicated comparisons;

n.s., not significant.
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Figure S5. pHrodo assay further confirmed BiTNxer induced phagocytosis of EO771/E2 cancer
cells. Confocal imaging showed colocalization of phagocytosed cancer cell (blue) and pHrodo
bioparticles (green) in same macrophages, confirming the results of phagocytosis. Arrow heads indicate
the macrophages phagocytosing both cancer cells and pHrodo bioparticles. (Scale bar, 20 ym)
Experiment was repeated twice with similar results between repeats.
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Figure S6. BiTNxer (with aCD47) induced macrophage phagocytosis in two different cancer cell
lines. Combination treatment with BiTNxer and aCD47 led to a significantly greater degree of
phagocytosis of HER2/neu"s" TUBO cells compared with HER2/neu'" 4T1 cells. Data are presented as
meants.e.m. (n=3); ****P < 0.0001 by one-way ANOVA; ***P < 0.001 by unpaired { test.
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Figure S7. BiTNker sensitized HER2"9" cancer cells to CD47 blockade. (A) Macrophage phagocytosis
of HER2-positive EO771/E2 cells increased with increasing concentrations of BiTNuer. (B) The
combination of BiTNxer and aCD47 induced a greater degree of phagocytosis of HER2-positive
EO771/E2 cells when cells were pretreated with 0.4 mg/mL BiTN+er and 10 ug/mL aCD47. Data are
presented as meants.e.m. (n=4); ****P < 0.0001 by one-way ANOVA; ***P<0.001 by unpaired Student’s ¢
test for the indicated comparisons; n.s., not significant.
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Figure S8. The polarization phenotype of macrophages resulted in similar levels of phagocytosis
of HER2"9h EQ771/E2 cells. Bone marrow—derived macrophages (BMM) were polarized with
lipopolysaccharide to induce M1 polarization and with IL-4 to induce M2 polarization. (A) Polarization did
not affect the expression level of SLAMF7 on macrophages. (B) Polarization of macrophages did not
affect macrophage phagocytosis of HER2"9" EO771/E2 cells via the combination treatment of BiTN1er
and aCD47. Data are presented as meants.e.m. (n=3). ****P < 0.0001 by one-way ANOVA.
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Figure S9. BiTNuer induced phagocytosis is not dependent on FcR engagement. a, SDS-PAGE
analysis of Fc fragment digestion and F(ab’)2 generation from anti-HER2 antibody. Red line indicated the
band of F(ab’)2 around 110 kDa; b, Purified F(ab’)2 fragment of anti-HER2 antibody had similar binding
affinity to HER2-overexpressing EO771/E2 cells; ¢, BMDM phagocytosis of HER2'°Y EO771 and HER2"h
EO771/E2 mouse breast cancer cells in the presence of aCD47 after treatment with PBS, NP with
unconjugated anti-HER2 antibody (IgG or F(ab’)2 fragment) and SLAMF7,or BiTNHer conjugated with anti-
HER2 antibody (IgG or F(ab’)z fragment), (n=3). *P<0.05, ****P<0.0001 by unpaired Student { test for the
indicated comparisons.
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Figure S10. Biodistribution of HER-NP showed little accumulation into other major organs after
intratumoral (i.t.) injection, IgG-NP was used as a non-tumor targeting control group. a, IVIS imaging of
mice after i.t. injection of BODIPY-loaded nanoparticles; b, Tumor signal decline over time after i.t.
injection (n=3); c, Ex vivo imaging of major organs 24 hours after i.t. injection; d, Quantitive measurement
of NP signals in major organs 24 hours after i.t. injection (n=3); e, Confocal imaging of intratumoral
distribution of BODIPY-labeled nanoparticles, (Red, BODIPY; Blue, DAPI. Scale bar, 50 um). Data are
presented as meants.e.m. (n=3)
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Figure S11. Determining the optimal dose of aCD47 for TUBO tumor-bearing BALB/c mice.
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Although BiTN+er in combination with either 20 pg or 50 ug aCD47 showed significant tumor inhibition
(A), mouse survival was prolonged when the aCD47 dose was 50 ug (B). The BiTNxer dose was
normalized as 4 mg/kg, and mouse IgG was used as a negative control for aCD47. Therefore, 4 mg/kg

BiTNHer plus 50 ug aCD47 was selected for all in vivo experiments. Data are presented as meants.e.m.
(n=5). **P < 0.01, ***P < 0.001 by unpaired Student’s t test; ****P<0.0001, log-rank test.
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Figure S12. Combined treatment of BiTNrer and aCD47 promoted the infiltration of NK cells within TUBO
tumors compared with 4T1 tumors (n=3). Data are presented as meanzs.d.; **P<0.01 by one-way
ANOVA with a Bonferroni post hoc correction; P>0.05 was considered as not significant.
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Figure S13. Combined treatment with BiTNxer and aCD47 induced macrophage activation in a
HER2-dependent manner. (A) Combination treatment did not alter the number of intratumoral F4/80*
macrophages but significantly increased the number of Iba-1* activated macrophages in HER2/neuMs"
TUBO breast tumors. (B) Combination treatment slightly increased the number of infiltrated macrophages

and their activation in HER2/neu'®" 4T1 breast tumors. (Scale bar, 50 um) Three biologically independent
animals for each group were tested with similar results.

DAPI  F4/80

Iba-1

o

F4/80
Q
.. G) .

DAPI

Iba-1




A H+S+NP H+S+NP BiTNper BiTNper
aCD47 +1gG +aCD47 +1gG +aCD47

H+S+NP H+S+NP BiTNyer BiTNper
B aCDA47 +1gG +aCDA47 +lgG +aCD47

Figure S14. Combined treatment of BiTNuer and aCD47 induced lymphocyte infiltration in a HER2-
dependent manner. Combined treatment of BiTNuer and aCD47 increased the CD4*T and CD8*T cell
infiltration within (A) HER2/neu"" TUBO breast tumors in BALB/c mice, compared with (B) HER2/neu'®¥
4T1 breast tumors. (Scale bar, 50 um) Three biologically independent animals for each group were tested
with similar results.
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Figure S15. CD8 depletion study. (A) /n vivo experimental design for CD8 depletion in TUBO tumor-
bearing mice. (B) Flow cytometry analysis of splenocytes confirmed that CD8* T cells were completely
depleted after aCD8 treatment. (C) The tumor-inhibitory effect of the combination treatment was
abrogated by CD8* T cell depletion (n=7). (D) The survival benefit for mice was abrogated by CD8* T cell
depletion; ***P<0.001 by log-rank test (n=7). (E) CD8* T cell depletion significantly decreased the
infiltration of CD4* cells, CD8" T cells, and dendritic cells (DCs), especially the number of infiltrated IFNy-
producing CD8" T cells, while increasing the number of immunosuppressive myeloid-derived suppressor
cells (MDSCs) (n=3). For all figures, data are presented as meants.e.m.. *P<0.05, ***P<0.001,
****P<0.0001 by unpaired Student’s f test for the indicated comparisons; n.s., not significant.
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Figure S16. The combination of BiTNuer and aCD47 induced memory T cell activation. (A) Flow
cytometric analysis of splenocytes from TUBO tumor-bearing mice showed that the combination of
BiTNHer and aCD47 induced a shift in naive CD4* and CD8" T cells towards memory phenotypes (n=3).
(B) The combination of BiTN1er and aCD47 induced a shift in naive CD4* and CD8" T cells towards
central memory phenotypes, but not effective memory phenotypes (n=3). For all figures, data are
presented as meants.e.m. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 by one-way ANOVA with a
Bonferroni post hoc correction; n.s., not significant.
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Figure S17. BiTN treatment didn’t induce long term autoimmune toxicity. (A) No significant change
of complete blood count was observed on mice 30 days after treatment. Healthy, healthy Balb/c mice
without treatment; Healthy Treated, healthy Balb/c mice with subcutaneous injection of BiTNxer and
aCDA47; TUBO Treated, TUBO-bearing Balb/c mice with intratumoral injection of BiTNuer and aCD47
(n=3 for Control group, n=4 for Control Treated and TUBO Treated groups). (WBC, white blood cell; RBC,
red blood cell; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; MCHC, mean
corpuscular hemoglobin concentration; HGB, hemoglobin; HCT, hematocrit; SEGS, segmental
neutrophils; MONOS, monocytes; EOS, eosinophils; BASOS, basophils; LYMPHS, lymphocytes; LUC,
large unstained cells). P>0.05, not significant (n.s.). (B) H&E staining of major organs 30 days after the
last treatment (scale bar, 1mm). No obvious inflammation or lymphocyte infiltration was observed on mice
30 days after treatment. Healthy, healthy Balb/c mice without treatment; Healthy Treated, healthy Balb/c
mice with subcutaneous injection of BiTNxer and aCD47; TUBO Treated, TUBO-bearing Balb/c mice with
intratumoral injection of BiTN1er and aCD47. Data are presented as meants.e.m. (n=3). P>0.5 was seen
as not significant (n.s.) by one-way ANOVA with a Bonferroni post hoc correction.
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Figure S18. PD1 blockade enhanced the antitumor effect of BiTNuer /aCD47 combination treatment
in the more immunosuppressive tumor type EO771/E2. (A) Tumor growth was inhibited by treatment
with BiTNHer and aCD47 (n=8) and (B) slightly prolonged the survival of EO771/E2-bearing mice. (C)
Immunofluorescence staining showed higher expression of PD1 and PDL1 in the relatively unresponsive
tumor type EO771/E2 compared with responding tumor type TUBO (scale bar, 50 um). Three biologically
independent animals for each group were tested with similar results. (D) The triple combination treatment
(BiTNHer, aDC47, and aPD1) did not suppress tumor growth in EO771-bearing mice (n=7), but did
increase the number of infiltrating lymphocytes in EO771/E2 tumors (n=4) (E). (F) The triple combination
treatment enhanced infiltration of IFNy-producing CD8* T cells and regulatory CD4" T cells into EO771/E2
tumors (n=4) and increased the infiltration of dendritic cells (DCs) and macrophages in EO771/E2 tumors
(n=4) (G). (H) The triple combination treatment increased cytokine levels in the peripheral blood of
EO771/E2 tumor-bearing mice (n=3). For all figures, data are presented as meanzs.e.m. *P<0.05,
**P<0.01, ***P<0.001 by unpaired Student’s t test for the indicated comparisons; ***P<0.001 by log-rank
test.
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Figure $19. Inmunostaining of immune cell infiltration in EO771/E2 and EO771 tumors from
C57BL/6 mice. (A) The triple combination treatment (BiTN1er +aCD47+aPD1) increased the infiltration of
CD4*T and CD8*T cells within HER2"S" EO771/E2 breast tumors in C57BL/6 mice, compared with
HER2"°¥ EO771 breast tumors. (B) The triple combination treatment also increased the infiltration and
activation of macrophages within HER2"" EQ771/E2 breast tumors in C57BL/6 mice, compared with
HER2"°¥ EO771 breast tumors. (Scale bar, 50 um) Three biologically independent animals for each group
were tested with similar results.
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Figure S20. CD47 blockade is required for potent tumor inhibition in EO771/E2 tumor-bearing
mice. Combination of aPD1 with BiTNwer retarded rapid tumor growth compared with 1gG, but the anti-
tumor effect is not as potent as the triple combination treatment of aCD47, aPD1 and BiTNwer (n=6). Data
are presented as meanzts.e.m.; **P<0.01, ****P<0.0001 by unpaired Student’s t-test for the indicated
comparisons; n.s., not significant.
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Figure S21. Inmunostaining of immune cell infiltration in EO771/E2 and EO771 tumors from
STING knockout mice. (A) Treatment with aCD47+aPD1 increased the infiltration of CD4* and CD8* T
cells into HER2"S" EQ771/E2 breast tumors in STING-knockout mice, but the addition of BiTNxer P had
little effect. (B) Combined treatment of BiTN1er and aCD47+aPD1 increased the infiltration of
macrophages into HER2"S" EO771/E2 breast tumors, but not in STING knockout mice. (Scale bar, 50
pm). For all figures, data are presented as meants.e.m. (n=5). ***P<0.001, ****P<0.0001 by unpaired
Student’s t test for the indicated comparisons; n.s., not significant.
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Figure S22. STING signaling was not activated in dendritic cells during combination treatment. (A-
B) Immunofluorescence staining of EO771/E2 tumors implanted in WT (A) and STING knockout (B) mice;
areas within the dashed squares are shown at higher magnification to the right; arrowheads indicate the
nuclear translocation of pIRF3 within CD11c* dendritic cells (scale bar, 50 um). (C) Quantification of
infiltrated CD11c* DCs and percentage of nuclear pIRF3* DCs in the tumors (n=5). (D) Expression of type
| interferons was not significantly elevated in intratumoral CD11c* macrophages after the triple
combination therapy (IFNA, interferon a; IFNB, interferon ) (n=3). For all figures, data are presented as
meanzts.e.m. *P<0.05, **P<0.01 by unpaired Student’s ¢ test for the indicated comparisons; n.s., not
significant.
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Figure S23. Enhanced macrophage phagocytosis in a folate receptor-targeted manner. (A) The
triple-negative breast cancer cell 4T1 expresses higher levels of folate receptor (FR) a than does the
TUBO cell line. (B) Size distribution of folate-conjugated nanoparticles (Folate-NP) and folate/SLAMF7-
conjugated nanoparticles (BiTNro) measured by diffuse light scattering. (C) BiTNro at a 3:1 folate:SLAMF7
conjugation ratio had the most robust pro-phagocytic effect in FR"9" 4T1 cancer cells. (D) Similarly,
BiTNFro transformed FR-expressing 4T1 mouse breast cancer cells into SLAMF7"9" cells and promoted
mouse (BALB/c bone marrow) macrophage phagocytosis in the presence of aCD47. Data are presented
as meants.e.m. (n=3). ****P<0.0001 by one-way ANOVA with a Bonferroni post hoc correction;
****P<0.0001 by unpaired Student’s { test for the indicated comparisons.
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Figure S24. Combination treatment with BiTNro and aCD47 did not induce an efficient systemic
antitumor effect in 4T1 tumor metastasis owing to PD1 expression. (A) Experimental design for
establishing 4T1 tumor metastasis model and treatment. (B) The BiTNr, +aCD47 combination treatment
inhibited primary tumor growth in 4T1-bearing BALB/c mice (n=6). (C) The BiTNr, +aCD47 combination
treatment significantly increased the infiltration of IFNy-producing CD8* T cells and decreased the number
of intratumoral regulatory T cells in the primary 4T1 tumor (n=3). (D) Combined BiTNr, and aCD47
treatment promoted the infiltration of professional antigen-presenting dendritic cells (DCs) (n=3). (E) Flow
cytometric analysis of splenocytes from 4T1 tumor-bearing mice showed that BiTNr, +aCD47 induced a
shift in naive CD4* and CD8* T cells towards memory phenotypes (n=3). (F) The BiTNr, +aCD47
combination treatment induced the fewest and smallest tumor metastases after surgical removal of the
primary tumor. (G) Tumor size after the 3™ treatment with BiTNr, +aCD47 for good responders vs poor
responders (n=3); good responders survived longer than did poor responders (poor: n=5, good: n=4). (H)
PDL1 and PD1 levels were significantly lower in the tumor microenvironment of good responders to the



combination treatment. For all figures, data are presented as meants.e.m. *P<0.05, **P<0.01,
****P<0.0001 by one-way ANOVA with a Bonferroni post hoc correction; *P<0.05, **P<0.01, ***P<0.001,
****P<0.0001 by unpaired Student’s f test for the indicated comparisons; **P<0.01 by log-rank test; n.s.,
not significant.
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Figure S$25. Biocompatibility of BiTNr.. (A) No obvious hemolysis was observed after in vitro incubation
of erythrocytes with BiTNro within the range of estimated blood concentrations of BiTNr. after intravenous
injection at 40 mg/kg (n=4). (B) No significant change in body weight was observed after intravenous
injection of BiTNro (n=3). (C) Intravenous injection of BiTNro did not significantly change the peripheral
blood levels of urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT),



or creatinine (n=3). (D) Intravenous injection of BiTNr. did not show obvious toxicity to major organs (scale
bar, 1 mm). Three biologically independent animals for each group were tested with similar results. For all
figures, data are presented as meanzts.e.m.; P>0.5 was seen as not significant (n.s.) by one-way ANOVA
with a Bonferroni post hoc correction.
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Figure S26. Gating strategy for analyzing myeloid cells, including dendritic cells (DCs), myeloid-
derived suppressor cells (MDSCs) and macrophages from CD45-selected cells from tumors related to
Figures 3 and 5 and Supplementary Figures S15, S18, and S24.
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Figure S27. Gating strategy for analyzing NK cells from CD45-selected cells from tumors related to
Supplementary Figures S12.
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Figure S28. Gating strategy for analyzing T cells from CD45-selected cells from tumors related to
Figures 3 and 5 and Supplementary Figures S15, S18, S24.
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Figure S29. Gating strategy for analyzing splenocytes from spleens related to Supplementary Figures
S16 and S24.
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Figure S30. Uncropped original gel images of western blots in Figure 1c, S4, S9, S23.



