Supplementary Information

Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates

Ryuta Uraki^{1,2,14}, Shun Iida^{3,14}, Peter J. Halfmann^{4,14}, Seiya Yamayoshi^{1,2,14}, Yuichiro Hirata³, Kiyoko Iwatsuki-Horimoto¹, Maki Kiso¹, Mutsumi Ito¹, Yuri Furusawa^{1,2}, Hiroshi Ueki^{1,2}, Yuko Sakai-Tagawa¹, Makoto Kuroda⁴, Tadashi Maemura⁴, Taksoo Kim⁴, Sohtaro Mine³, Noriko Iwamoto⁵, Rong Li⁶, Yanan Liu⁶, Deanna Larson⁶, Shuetsu Fukushi⁷, Shinji Watanabe⁸, Ken Maeda⁹, Zhongde Wang⁶, Norio Ohmagari⁵, James Theiler¹⁰, Will Fischer^{11,12}, Bette Korber^{11,12}, Masaki Imai^{1,2}, Tadaki Suzuki³, and Yoshihiro Kawaoka^{1,2,4,13}

¹Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan

²The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan

³Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan

⁴Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA

⁵Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo 162-8655, Japan

⁶Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA

⁷Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan ⁸Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan

⁹Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan

¹⁰Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

¹¹Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

¹²New Mexico Consortium, Los Alamos, NM 87545, USA

¹³The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo 162-8655, Japan

¹⁴These authors contributed equally

¶Corresponding authors

N-Terminal Domain (NTD)					Receptor Binding Domain (RBD)									
BA.1														
	A67V H69- V70-	T95I G142D V143-	Y145-		N211- L212I	+214EPE	G339D	S371L S373P S375F	K417N N440K	G446S	5477N T478K E484A	Q493R G496S Q498R N501Y Y505H	T547K D614G H655Y N679K P681H	N764K D796Y N856K Q954H N969K L981F
BA.2						+								
T 191 L24S P25- P26- A27-		G142D			V213G		G3 39D	S371F S373P S375F T376A	D405N R408S K417N N440K		S477N T478K E484A	Q493R Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
BA.5 and E	3F-7-like	: BA.5 +	R346T		-		-							-
T191 L24S P25- P26- A27-	H69- V 70-	G142D			V213G		G339D <mark>R346T</mark>	S371L S373P S375F T376A	D405N R408S K417N N440K N440K	L452R	S477N T478K E484A F486V	Q493_ Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
BQ.1 and	BQ.1.1:	BQ.1+	346T											
T19I L24S P25- P26- A27-	H69- V70-	G142D			V213G		G 339 D R 346T	5371L 5373P 5375F 5375F 7376A T376A	U405N R408S K417N N440K N444T	L452R	N460K S477N T478K E484A E484A F486V	Q493_ Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
XBB.1 and	XBB.1.	5: XBB.1	1 +F486P											
T19I L24S P25- P26- A27-		V83A G142D	Y145Q H146-	Q183E	V213E	G 252V	G339H R346T	L3681 S371L S373P S375F S375F T376A	D405N R408S K417N N440K	V445P G446S	N460K 5477N T478K E484A F486P F486P F490S	Q493_ Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
BA.2.75														
T19I L24S P25- P26- A27-		G142D	K147E	W152R F157L I210V	V213G	G257S	G339H	S371L S373P S375F S375F T376A	U4U5N R408S K417N N440K	G446S	N460K 5477N T478K E484A E484A	Q493_ Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
CH.1: BA.2	.75 + R3	46T,K4	44T,L452F	R,F486S										
T191 L245 P25- P26- A27-		G142D	K147E	W1521 F157L I210V	V 213 G	G257S	G339H R346T	S371L S373P S375F T376A	U4U5N R408S K417N N440K K444T	G446S L452R	N460K S477N T478K E484A F486S	Q493_ Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
BN.1: BA.2	2.75 + R3	46T,K3	56T,F490	S	-		_							-
T19I L24S P25- P26- A27-		G142D	K147E	W152 F157L I210V	V213G	G 257S	G339H R346T K356T	S371L S373P S375F T376A	D405N R408S K417N N440K	G446S	N460K S477N T478K E484A E484A	Q493_ Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
XBF and B	M.1.1.1	: BA.2.7	'5 + R346T	,F486P,F4	90S									
T19I L24S P25- P26- A27-		G142D	K147E	W152 F157L I210V	V213G	G257S	G339H R346T	S371L S373P S375F S375F T376A	D405N R408S K417N N440K N440K	G446S	N460K S477N T478K E484A E486P F486P F480S	Q493_ Q498R N501Y Y505H	D614G H655Y N679K P681H	N764K D796Y Q954H N969K
BR.2: BA.2	.75 + R3	46T,L4	52R,F486I											
T191 L24S P25- P26- A27-		6142D	K147E	W 152 F 1571 I210V		3257S	5339H 3346T	S 371L S373P S375F S375F S375F	2405N 2408S 2408S 2417N 2417N 1440K	5446S L452R	V460K 5477N 1478K 1478K 5484A 5486I	2493_ 2498R 1501Y 1505H	0614G 1655Y 1679K 1679K	1764K 0796Y 0954H 1969K

b

Supplementary Figure 1. Amino acid differences between representative forms of recently emerged Omicron variants.

a, Amino acid differences in the Spike of commonly circulating Omicron variants. BA.1 was rapidly globally replaced by BA.2; the most common form of BA.2 serves as the reference. Spike amino acid differences between the ancestral strain WIV04/2019 (Pango lineage A; Accession ID: EPI_ISL_402124 (https://gisaid.org/wiv04/))

and the baseline form of BA.2 are shown in grey. When other Omicron variants share spike BA.2-defining mutations in a given position, they are noted in grey. When they differ, the amino acid change is highlighted in the color assigned to each variant (the same color as used in Figure 1). Representative forms of the variants that are currently commonly circulating are shown: BA.5, BF-7-like lineages that resemble BA.5 lineages with the addition of R346T, and BQ.1 and BQ.1.1 sublineages; XBB sublineages including XBB.1.5; and several common BA.2.75 sublineages. Four representative forms of currently circulating BA.2.75 sublineage spikes are highlighted in shades of green. The recombinant lineage XBF is included here because it carries a BA.2.75 lineage Spike. Deletions are indicated by a dash (-), insertions by a plus sign (e.g., +214EPE means a three amino acid insertion of EPE after position 214). Reversions from BA.2 to the ancestral form are indicated by an underscore (). b, Highlighting amino acid differences between BA.2, BA.5, and BA.2.75 and examples of BA.2.75 variants throughout the full proteome. Only amino differences from the most representative form of BA.2 are shown, illustrated as a tick mark. The grey line represents the full proteome. All changes in the most common forms of BA.5 and BA.2.75 relative to BA.2 are noted, as these are candidates for contributing to a selective advantage for BA.5 over BA.2, and for BA.2.75 over BA.5 and BA.2. Details for the amino acid differences are shown in part a. Amino acids that are distinctive in the three BA.2.75 variants studied in this paper are highlighted, BA.2.75 V1–V3, as well as several sublineages of BA.2.75 that have persisted into 2023. Full-length representative forms of Pango lineages are defined as the most common circulating form of a given Pango lineage.

	Number of CH.1	Number of other	Total number of	011 4 (7-4-1 (21)	Number of days	One sided p-value, CH.1.1
Countries	sequences	sequences	seugences	CH.1/Total (%)	sampled	increasing
Australia	671	19039	19710	3.4	82	0.00249
Austria	373	30546	30919	1.21	82	0.00249
Belgium	94	3676	3770	2.49	81	0.00249
Brunei	15	755	770	1.95	61	0.00249
Cambodia	20	176	196	10.2	54	0.00249
Canada	215	32532	32747	0.66	83	0.00249
Chile	18	2908	2926	0.62	80	0.00498
Czech Republic	12	1123	1135	1.06	71	0.00249
Denmark	1200	32196	33396	3.59	83	0.00249
Finland	33	2571	2604	1.27	73	0.00249
France	172	24834	25006	0.69	76	0.00249
Germany	426	38287	38713	1.1	80	0.00249
Greece	77	2977	3054	2.52	56	0.04478
Hong-Kong	139	576	715	19.44	72	0.00249
Iceland	51	1130	1181	4.32	81	0.00249
India	27	1362	1389	1.94	76	0.00498
Indonesia	39	5153	5192	0.75	77	0.00249
Ireland	618	4652	5270	11.73	85	0.00249
Israel	121	5533	5654	2.14	64	0.00249
Italy	92	9976	10068	0.91	83	0.00249
Japan	704	65446	66150	1.06	87	0.00249
Liechtenstein	13	137	150	8.67	55	0.99502
Lithuania	28	499	527	5.31	35	0.00249
Luxembourg	64	3673	3737	1.71	79	0.00249
Malaysia	94	3633	3727	2.52	79	0.00249
Netherlands	376	8666	9042	4.16	80	0.00249
New Zealand	726	4245	4971	14.6	53	0.00249
Norway	15	1232	1247	1.2	70	0.26617
Peru	55	4731	4786	1.15	63	0.00249
Poland	17	810	827	2.06	74	0.00498
Portugal	54	1592	1646	3.28	72	0.00249
Singapore	158	3692	3850	4.1	82	0.00249
Slovenia	66	3901	3967	1.66	77	0.00249
Solomon Islands	35	50	85	41.18	22	0.47264
South Korea	266	15983	16249	1.64	73	0.00249
Spain	162	8626	8788	1.84	83	0.00249
Sweden	360	10813	11173	3.22	79	0.00249
Switzerland	69	4628	4697	1.47	79	0.00249
Thailand	136	1714	1850	7.35	65	0.02488
USA	1352	194535	195887	0.69	87	0.00249
Lipitod Kingdom	6665	43545	50210	13.05	83	0.00240

United-Kingdom

Range of dates considered: 2022-10-29 - 2023-01-27

There were 15,938 CH.1 sequences that matched the search term: CA.7, CH.1, CH.1.1, CH.1.1.1, CH.1.1.2, CV.1

CH.1 and CH.1.1 lineages were increasingly sampled in 38/41 countries where it had been sampled ≥ 10 times. They have the consensus form BA.2.75 +[R346T,K444T,L452R,F486S]

Supplementary Figure 2. Isotonic regression analysis showing BA.2.75 sublineage CH.1 and related lineages are increasingly sampled over time in countries where they have become established.

The table provides summary statistics for all countries where CH.1 sequences have been sampled at least 10 times with a sampling date between Oct 29, 2022 and Jan 27, 2023. Three examples of the data over time are plotted to illustrate the increasing frequency of CH.1 sampling. The proportion of CH.1-related lineages in the total sample (y-axis) is calculated each day samples are available (x-axis). The size of the dot reflects the relative sample size on a given day. The *p*-value is calculated based on a one-sided resampling test with 400

randomizations. The results can be updated online using the Isotonic Regression tool at cov.lanl.gov. (<u>https://cov.lanl.gov/content/sequence/ISORG/pango_isorg.html</u>)²⁶. CH.1 and BN.1 (Supplementary Fig. 3) related forms were chosen for display because they are currently the mostly commonly sampled BA.2.75 sublineages.

	Number of	Number of	Total		Number of	one sided	
	RN 1	other	number of		davs	P-Value BN 1	
Countries	sequences	sequences	seugences	BN.1/Total (%)	sampled	increasing	
Australia	1973	17737	19710	10.01	82	0.00249	
Austria	720	30199	30919	2.33	82	0.00249	
Belgium	125	3645	3770	3.32	81	0.1393	
Brazil	78	9367	9445	0.83	70	0.00249	
Brunei	43	727	770	5.58	61	0.33831	
Cambodia	122	74	196	62.24	54	0.26617	
Canada	452	32295	32747	1.38	83	0.00249	
Chile	28	2898	2926	0.96	80	0.81841	
China	40	6215	6255	0.64	83	0.86567	
Colombia	41	1080	1121	3.66	57	0.45522	
Croatia	34	1268	1302	2.61	55	0.00249	
Czech Republic	78	1057	1135	6.87	71	0.00249	
Denmark	4151	29245	33396	12.43	83	0.00249	
Finianu	50	2000	2004	1.30	75	0.35572	
Georgia	53	24387	23000	38.13	32	0.00245	
Georgia	2001	36712	29713	5 17	32 80	0.00245	
Greece	2001	2955	3054	3.24	56	0.00243	
Hong-Kong	23	692	715	3.24	72	0.00243	
Iceland	177	1004	1181	14 99	81	0.28856	
India	88	1301	1389	6.34	76	0.6194	
Indonesia	240	4952	5192	4.62	77	0.83831	
Iran	24	84	108	22.22	32	0.45274	
Ireland	315	4955	5270	5.98	85	0.00249	
Israel	287	5367	5654	5.08	64	0.01741	
Italy	237	9831	10068	2.35	83	0.00249	
Japan	3582	62568	66150	5.41	87	0.00249	
Kenya	10	226	236	4.24	39	0.53483	
Laos	25	16	41	60.98	24	0.00249	
Latvia	69	1126	1195	5.77	46	0.00249	
Liechtenstein	10	140	150	6.67	55	0.75871	
Lithuania	53	474	527	10.06	35	0.00249	
Luxembourg	145	3592	3737	3.88	79	0.00249	
Malaysia	454	3273	3727	12.18	79	0.76368	
Mauritius	206	231	437	47.14	33	0.00249	
Mexico	59	1781	1840	3.21	59	0.28358	
Moldova	10	36	46	21.74	28	0.70647	
Netherlands	514	8528	9042	5.68	80	0.0199	
New Zealand	220	4/51	49/1	4.43	53	0.00249	
Norway	33	1214	1247	2.65	/0	0.39801	
Peru	35	4/51	4/86	0.73	63	0.47761	
Poland	35	1505	827	4.23	74	0.00249	
Pullugai Duorto Rico	21	1595	1040	3.1	/2	0.00995	
Puerto-Rico Romania	28	178	930	3.33	49	0.04923	
Russia	20	4103	4193	2 15	50	0.10913	
Singanore	358	3492	3850	93	82	0.00243	
Slovakia	13	427	440	2 95	62	0.00243	
Slovenia	107	3860	3967	2.55	77	0.00249	
South-Africa	11	1096	1107	0.99	75	0.22139	
South-Korea	3104	13145	16249	19.1	73	0.00249	
Spain	159	8629	8788	1.81	83	0.96269	
Sweden	401	10772	11173	3.59	79	0.00249	
Switzerland	176	4521	4697	3.75	79	0.15423	
Thailand	1225	625	1850	66.22	65	0.00249	
Trinidad and Toba	75	270	345	21.74	75	0.00249	
USA	5522	190365	195887	2.82	87	0.00249	
United Kingdom	3250	46960	50210	6.47	83	0.00249	
Vietnam	215	73	288	74.65	53	0.00498	

Range of dates considered: 2022-10-29 - 2023-01-27

There were 32,568 BN.1 sequences that matched the search term: BN.1, BN.1.1, BN.1.1, BN.1.2, BN.1.2.1, BN.1.3, BN.1.3.1, BN.1.4, BN.1.5, BN.1.6, BN.1.7, BN.1.8, BN.1.9

BN.1 and BN.1.1 lineages were increasingly sampled in 35/59 countries where they had been sampled \geq 10 times. They have the consensus form BA.2.75 +[R346T,K356T,F490S]

Supplementary Figure 3. Isotonic regression analysis showing BA.2.75 sublineage BN.1 and related forms are increasingly sampled over time in countries where they have become established.

This figure follows the format of Supplementary Fig. 2, but here the table provides summary statistics for all countries where BN.1 sequences have been sampled at least 10 times between Oct 29, 2022 and Jan 27, 2023. As before, three examples are plotted to illustrate the increasing frequency of BN.1 sampling, and the proportion of BN.1-related lineages in the total sample (y-axis) is calculated each day samples are available (x-axis). The size of the dot reflects the relative sample size on a given day. The *p*-value is calculated based on a one-sided resampling test with 400 randomizations. The results can be updated online using the Isotonic Regression tool at cov.lanl.gov. (https://cov.lanl.gov/content/sequence/ISORG/pango_isorg.html)²⁶. As noted above, CH.1 and BN.1 (Supplementary Fig. 2) were highlighted because they are currently the mostly commonly sampled BA.2.75 sublineages.

	Da	у З		Day 6					
B.1.617.2 (UW5250)	BA.5 (TY41-702)	BA.2.75 (TY41-716)	BA.2.75 (NCD1757)	B.1.617.2 (UW5250)	BA.5 (TY41-702)	BA.2.75 (TY41-716)	BA.2.75 (NCD1757)		
Hand a	City.	Contraction of the second	A STATE		1997				
THE .	C.		A.T.	* 0.9	and the		and the second s		
	ALT.	Street or	The second		TAP.	TAC	- Ar		
T	C. 77	C. A.			770	A Real	Care a		
	Non A	The second second	T	The second	1.AV	C.S.			

Supplementary Figure 4. Semi-macroscopic images of the lungs of hamsters inoculated with SARS-CoV-2.

Wild-type Syrian hamsters (n = 5, per group) were inoculated with 10⁵ PFU of BA.2.75 (TY41-716), BA.2.75 (NCD1757), BA.5 (TY41-702), or B.1.617.2 (UW5250) and sacrificed at 3 or 6 dpi for histopathological examinations. Semi-macroscopic images (hematoxylin and eosin staining) of the lungs from all animals examined are shown. Scale bars, 5 mm. Data are from one experiment.

a SARS-CoV-2 infectious virus titers

b SARS-CoV-2 N sgRNA levels

Supplementary Figure 5. Viral replication in lungs and extrapulmonary organs of wild-type hamsters inoculated with BA.2.75.

Wild-type Syrian hamsters (n = 4) were inoculated with 10⁵ PFU of BA.5 (TY41-702), BA.2.75 (TY41-716), or B.1.617.2 (UW5250). Viral titers (**a**) and levels of subgenomic RNA (sgRNA) targeting the N gene (**b**) in the lungs, brain, heart, kidneys, and spleen of infected animals were measured at 5 dpi. Viral titers and sgRNA levels in the organs were determined by performing plaque assays and quantitative real-time PCR, respectively. Data are means \pm s.e.m. Points represent data from individual hamsters; the lower limit of detection is indicated by the horizontal dashed line. Data were analyzed with the Kruskal–Wallis test with Dunn's multiple comparisons (titers and sgRNA levels in the extrapulmonary organs of infected hamsters) or a one-way ANOVA with Tukey's multiple comparisons test (titers and sgRNA levels in the lungs of infected hamsters).

Supplementary Figure 6. Host responses in the lungs of wild-type hamsters infected with BA.2.75. Wild-type Syrian hamsters (n = 5) were intranasally inoculated with 10⁵ PFU in 30 µL of BA.2 (NCD1288), BA.5 (TY41-702), BA.2.75 (TY41-716), or B.1.617.2 (UW5250). Pro-inflammatory cytokine gene expression levels (*II1* β , *II6*, *Tnfa*, and *Ifny*) in the lungs of the infected hamsters were assessed at 3 dpi (infected hamsters, n = 5; naïve uninfected hamsters, n = 4). Vertical bars show the mean \pm s.e.m. Points indicate data from individual mice. Data were analyzed by using a one-way ANOVA with Tukey's multiple comparisons test. Data are from one experiment.