Supplementary Figures

Figure S1: (a) Histogram showing the percentage of fertilization utilizing the sperm from control and MTX treated males. **(b)** Kaplan Meier plot displaying the survival of fertilized eggs until the beginning of hatch. Histogram showing the percentage of hatching embryos **(c)** and the day of hatching **(d)** on control and MTX group. Values are means \pm SEM. Numbers in the graph represent the analyzed embryos. Statistics for A and C were generated by contingency table followed by Chi-square test. Statistics for B and D were generated by using the Long-rank (Matel-Cox) test, Gehan-Breslow-Wilcoxon test. ns: P > 0.05.

Figure S2: (a) Histogram displaying percentage of 5' halves relative to their corresponding 3' halves from tRNAs not affected (tRNA-Pro^{UGG}, -Arg^{UCU}, -Val^{AAC}) or having a reduction (tRNA-Ser^{GCU}) on MTX treatment. Data represent three biologically independent replicates (n = 3) composed by RNA isolated from 9 males' sperm. Asterisk indicated significant differences analyzed by multiple unpaired t-student' test followed by a correction for multiple comparison (Holm-Sidak method, with alpha = 0.05). Values are means ± SD. (b) Histogram showing the read coverage for tRNA-Glu^{CUC} and -Ser^{GCU}. See also **Supplementary Data 5**.

Figure S3: (a) Histogram showing the read coverage and size distribution for the most abundant rRNAs (28s, 18s and 5.8s) between control and MTX. **(b)** Histograms showing the size distribution for all mapped tsRNA and rRNA on control and MTX treated males. Dotted lines represent the median length. Values on read's size distribution are means ± SD. See also **Supplementary Data**

Figure S4: Histogram showing the percentage of survival and hatching of different batches of fertilized wild-type eggs injected with sperm RNA fractions obtained from control, 10MTX and 50MTX treated males.). Each dot represents a biological experimental replicate composed by a pool of embryos. Number of embryos utilized: 20-50nt RNA Control-Inj (n= 14, 24, 18, and 20); 10MTX-Inj (n= 26, 18, 20, and 38); and 50MTX-Inj (n= 9, 14, 25, and 36). 50-90nt RNA Control-Inj (n= 16, 13, 12, 14, and 12); 10MTX-inj (n= 24, 22, 12, and 22); and 50MTX-Inj (n= 16, 21, and 39). 20-90nt RNA Control-Inj (n= 11, 20, and 28); 10MTX-Inj (n= 21, 18, and 16); and 50MTX-Inj (n= 24, 25, 15, and 21).

Hatching rate; for 20-50nt RNA Injections: Control-Inj: n=13, 10, 11, 18; 10MTX-Inj: n= 8, 6, 20, 32: and 50MTX-Inj: n=7, 6, 6 viable embryos at the hatching start point. For 50-90 nt RNA Inj: Control-Inj: n= 15, 8, 6, 8, 11; 10MTX-Inj: n= 19, 9, 7, 18; 50MTX-Inj: n= 13, 15, 6 viable embryos at the hatching start point. For 20-90nt RNA injection: Control-Inj: n= 10, 15, 21; 10MTX-Inj: n= 20, 13, 8; 50MTX-Inj: n= 20, 23, 9, 13 viable embryos at the hatching start point. Statistics by one-way ANOVA followed by Turkey's multiple comparisons test. Non-significant differences were observed in all cases (P > 0.05). Values are means ± SE.

Supplementary Tables

Gene symbol	Accession Number	Primer sequence (5´- 3´)			
Trmt6	ENSORLG0000009862.2	Fw: CGGGAACAGACAACAGGAATA Rv: GACCCTTCAGACCTTGATCTTT			
Dnmt2 (Trdmt1)	ENSORLG00000019403.2	Fw: AGGCCACCTCGCTTTATTC Rv: CTTGTGGGAGAGGCCATAATC			
Nsun2	ENSORLG00000014332.3	Fw:AGATGCTTCACGCTGACATG Rv: TTGTTGTCCACGTCATTGGC			
RPL7	ENSORLG0000007967.2	Fw: CGCCAGATCTTCAACGGTGTAT Rv: AGGCTCAGCAATCCTCAGCAT			
ef1a	ENSORLG0000007614	Fw: GGAGGCCAGCGACAAGATGAGC. Rv: ACACGGCCGACAGGGACAGTTC			

Supplementary table 1: Primer sequences utilized for RT-qPCR

Sample	Species	3' Adapter used	3' Adapter barcode	3' barcoded adapter	5' Adapter	small- RNAseq RT primer	Solexa_PCR_fwd	Solexa_IDX_ rev
Control-1	O. latipes	SRBC1	CAGTG	5'- /5rApp/NNNNNCAG TGAGATCGGAAGAGCA CACGTCT/3ddC/-3'	5'- ACACUCUUUCCCUAC ACGACGCUCUUCCG AUCUNNNN-3'	5'- AGACGTGTGCTC TTCCGATCT -3'	5'- AATGATACGGCGACCA CCGAGATCTACACTCTT TCCCTACACGACGCTCT TCCGATCT -3'	5'- CAAGCAGAAGA CGGCATACGAG ATCAGTGGTGAC TGGAGTTCAGAC GTGTGCTCTTCC GATCT – 3'
Control-2	O. latipes	SRBC2	AGCAA	5'- /5rApp/NNNNNAGC AAAGATCGGAAGAGCA CACGTCT/3ddC/-3'	5'- ACACUCUUUCCCUAC ACGACGCUCUUCCG AUCUNNNN-3'	5'- AGACGTGTGCTC TTCCGATCT -3'	5'- AATGATACGGCGACCA CCGAGATCTACACTCTT TCCCTACACGACGCTCT TCCGATCT -3'	5'- CAAGCAGAAGA CGGCATACGAG ATAGCAAGTGA CTGGAGTTCAGA CGTGTGCTCTTC CGATCT – 3'
Control-3	O. latipes	SRBC3	GGTAT	5'- /5rApp/NNNNNGGT ATAGATCGGAAGAGCA CACGTCT/3ddC/-3'	5'- ACACUCUUUCCCUAC ACGACGCUCUUCCG AUCUNNNN-3'	5'- AGACGTGTGCTC TTCCGATCT -3'	5'- AATGATACGGCGACCA CCGAGATCTACACTCTT TCCCTACACGACGCTCT TCCGATCT -3'	5'- CAAGCAGAAGA CGGCATACGAG ATGGTATGTGAC TGGAGTTCAGAC GTGTGCTCTTCC GATCT – 3'
10MTX-1	O. latipes	SRBC4	TACCA	5'- /5rApp/NNNNNTACC AAGATCGGAAGAGCAC ACGTCT/3ddC/-3'	5'- ACACUCUUUCCCUAC ACGACGCUCUUCCG AUCUNNNN-3'	5'- AGACGTGTGCTC TTCCGATCT -3'	5'- AATGATACGGCGACCA CCGAGATCTACACTCTT TCCCTACACGACGCTCT TCCGATCT -3'	5'- CAAGCAGAAGA CGGCATACGAG ATTACCAGTGAC TGGAGTTCAGAC GTGTGCTCTTCC GATCT – 3'
10MTX-2	O. latipes	SRBC5	GTCAG	5'- /5rApp/NNNNNGTC AGAGATCGGAAGAGC ACACGTCT/3ddC/-3'	5'- ACACUCUUUCCCUAC ACGACGCUCUUCCG AUCUNNNN-3'	5'- AGACGTGTGCTC TTCCGATCT -3'	5'- AATGATACGGCGACCA CCGAGATCTACACTCTT TCCCTACACGACGCTCT TCCGATCT -3'	5'- CAAGCAGAAGA CGGCATACGAG ATGTCAGGTGAC TGGAGTTCAGAC GTGTGCTCTTCC GATCT – 3'
10MTX-3	O. latipes	SRBC6	TGACT	5'- /5rApp/NNNNNTGA CTAGATCGGAAGAGCA CACGTCT/3ddC/-3'	5'- ACACUCUUUCCCUAC ACGACGCUCUUCCG AUCUNNNN-3'	5'- AGACGTGTGCTC TTCCGATCT -3'	5'- AATGATACGGCGACCA CCGAGATCTACACTCTT TCCCTACACGACGCTCT TCCGATCT -3'	5'- CAAGCAGAAGA CGGCATACGAG ATTGACTGTGAC TGGAGTTCAGAC GTGTGCTCTTCC GATCT – 3'

Supplementary Table 2: Adapter oligos utilized for library preparation.