Supplemental Online Content

- Tsampasian V, Elghazaly H, Chattopadhyay R, et al. Risk factors associated with post—COVID-19 condition: a systematic review and meta-analysis. *JAMA Intern Med.* Published online March 23, 2023. doi:10.1001/jamainternmed.2023.0750
- eMethods. Search Strategy in PubMed
- eTable1. Newcastle-Ottawa Quality Assessment table for included cohort studies
- eTable 2. Meta-regression analysis by geographic location
- eFigure 1. PRISMA flow diagram of the study selection process
- **eFigure 2.** Funnel plots assessing publication bias for each group meta-analysis: A) Sex, B) Age, C) Body Mass Index, D) Smoking, E) Diabetes, F) IHD, G) COPD, H) CKD, I) Hospitalisation, J) ICU K) Vaccination
- **eFigure 3.** Subgroup analysis of studies investigating the correlation of female sex and development of post—COVID-19 condition according to study population
- **eFigure 4.** Subgroup analysis of studies investigating the correlation of female sex and development of post—COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- **eFigure 5.** Subgroup analysis of studies investigating the correlation of age and development of post–COVID-19 condition according to study size
- **eFigure 6**. Meta-regression analysis bubble plot of studies investigating age as risk factor for post–COVID-19 condition.
- **eFigure 7.** Subgroup analysis of studies investigating the correlation of age and development of post–COVID-19 condition according to study population
- **eFigure 8.** Subgroup analysis of studies investigating the correlation of age and development of post–COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- **eFigure 9.** Forest plot showing the effect of BMI on post—COVID-19 condition. Individuals with higher BMI have an increased risk of developing post—COVID-19 condition.
- **eFigure 10.** Subgroup analysis of studies investigating the correlation of obesity and development of post—COVID-19 condition according to study population
- **eFigure 11.** Subgroup analysis of studies investigating the correlation of obesity and development of post—COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- **eFigure 12.** Subgroup analysis of studies investigating the correlation of smoking and development of post—COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- **eFigure 13.** Forest plot showing the effect of asthma on post—COVID-19 condition. Individuals with asthma have an increased risk of developing post—COVID-19 condition.
- **eFigure 14.** Subgroup analysis of studies investigating the correlation of asthma and development of post—COVID-19 condition according to study size
- **eFigure 15.** Forest plot showing the effect of COPD on Long COVID. Individuals with COPD have an increased risk of developing post–COVID-19 condition.
- **eFigure 16.** Subgroup analysis of studies investigating the correlation of COPD and development of post–COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- © 2023 American Medical Association. All rights reserved.

- **eFigure 17.** Forest plot showing the effect of diabetes on post—COVID-19 condition. Individuals with diabetes have an increased risk of developing post—COVID-19 condition.
- **eFigure 18.** Subgroup analysis of studies investigating the correlation of diabetes and development of post—COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- **eFigure 19.** Forest plot showing the effect of CKD on post–COVID-19 condition. CKD was not significantly associated with post–COVID-19 condition.
- **eFigure 20.** Subgroup analysis of studies investigating the correlation of CKD and development of post—COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- **eFigure 21.** Forest plot showing the association of IHD with post–COVID-19 condition. Individuals with IHD have an increased risk of developing post–COVID-19 condition.
- **eFigure 22.** Subgroup analysis of studies investigating the correlation of IHD and development of post–COVID-19 condition according to study quality (as per the Newcastle- Ottawa Scale)
- **eFigure 23.** Forest plot showing the association of immunosuppression with post—COVID-19 condition. Individuals with immunosuppression have an increased risk of developing post—COVID-19 condition.
- **eFigure 24.** Forest plot showing the association of anxiety/depression with post—COVID-19 condition. Individuals with anxiety/depression have an increased risk of developing post—COVID-19 condition.
- **eFigure 25.** Subgroup analysis of studies investigating the correlation of anxiety/ depression and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)
- **eFigure 26.** Forest plot showing the association of hospitalisation with post—COVID-19 condition. Individuals that were hospitalised during the acute infection had an increased risk of developing post—COVID-19 condition.
- **eFigure 27.** Subgroup analysis of studies investigating the correlation of hospitalisation and development of post—COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)
- **eFigure 28.** Forest plot showing the association of ICU admission with post—COVID-19 condition. Individuals that required ICU admission during the acute infection had an increased risk of developing post—COVID-19 condition.
- **eFigure 29.** Subgroup analysis of studies investigating the correlation of ICU admission and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)
- **eFigure 30.** Subgroup analysis of studies investigating the correlation of ICU admission and development of post–COVID-19 condition according to study size
- **eFigure 31**. Sensitivity analysis of all the risk factors examined using only the studies that included patients with laboratory confirmed COVID-19 infection
- **eFigure 32.** Sensitivity analysis of all the risk factors with studies that investigated ≥5 variables

This supplemental material has been provided by the authors to give readers additional information about their work.

- Long COVID.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
- 2. Post COVID.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
- 3. Chronic COVID.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
- 4. 1 or 2 or 3
- 5. Risk*.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
- 6. Variable*.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
- 7. Predictor*.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
- 8. Factor*.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
- 9. 5 or 6 or 7 or 8
- 10. 4 and 9

eTable 1. Newcastle-Ottawa Quality Assessment table for included cohort studies

Study Abdelrahman et al. ³⁸ Aranda et al. ³⁹ Asadi-Pooya et al. ⁴⁰	***	Comparability **	**	7	Quality of Study
Asadi-Pooya et al.40	***			7	High
		**	***	8	High
	***	*	**	6	Moderate
Augustin et al. 41	***	**	**	7	High
Ayoubkhani et al. 42	***	**	**	7	High
Baruch et al. ⁴³	***	**	***	8	High
Bellan et al. 44	***	**	**	7	High
Blomberg et al. ⁴⁵	***	**	***	8	High
Chudzik et al. 46	***	**	**	7	High
Daitch et al. ⁴⁷	***	**	***	8	High
Debski et al. 48	***	**	**	7	High
Dias et al. ⁵⁰	***	**	**	7	High
Emecen et al. 51	***	**	**	7	High
Estrada-Codecido et al. 52	***	**	**	7	High
Fernández-de-las-Peñas et al. 53	***	*	***	7	High
Fernández-de-las-Peñas et al. 54	***	**	***	8	High
Fernández-de-las-Peñas et al. 55	***	**	***	8	High
Fernández-de-las-Peñas et al. ⁵⁶	***	**	***	8	High
Fernández-de-las-Peñas et al. 57	***	**	***	8	High
Fernández-de-las-Peñas et al. 58	***	**	***	8	High
Fernández-de-las-Peñas et al. 59	***	*	***	7	High
Ioannou et al. 60	***	**	***	8	High
Jones et al. ¹³	***	**	***	8	High
Kisiel et al. 61	**	**	**	6	Moderate
Kostev et al. 62	***	**	**	7	High
Menezes et al. ⁶³	**	**	**	6	Moderate
Munblit et al. 64	***	**	**	7	High
Pazukhina et al. 65	**	**	**	6	Moderate
Peghin et al. ⁶⁶	***	**	***	8	High
Peters et al. 67	**	**	**	6	Moderate
Petersen et al. ⁶⁸	**	**	**	6	Moderate
Righi et al. ⁶⁹	***	**	**	7	High
Silverberg et al. 70	**	**	**	6	Moderate
Štěpánek et al. ⁷¹	**	**	**	6	Moderate
Subramanian et al. ⁷²	***	**	***	8	High
Thompson et al. ²⁴	***	**	***	8	High
Tleyjeh et al. 73	**	**	**	6	Moderate
Whitaker et al. ⁷⁴	***	**	**	7	High
Wu et al. ⁷⁵	***	**	**	7	High
Zhang et al. ⁷⁶	**	**	***	7	High
Zisis et al. ⁷⁷	***	**	***	8	High

^{*}Each star indicates a point for each component. Any study can obtain a maximum of four, two and three stars for each component (selection, comparability, outcomes) respectively. Trials with a total score of 7 or higher are considered to be high-quality studies, and those lower than 5 are considered as low-quality studies. These scores indicate at least moderate quality of the included trials.

eTable 2. Meta-regression analysis by geographic location

Risk factor	Geographic location	Significance (p value)
Female Sex	America	0.49
	Asia	0.74
	Europe	0.85
	International	0.84
Age	Asia	0.97
	Europe	0.19
Obesity	Europe	0.76
	International	0.12
Smoking	America	0.82
	Asia	0.54
	Europe	0.48
Diabetes	Europe	0.02
Asthma	Europe	<0.001
IHD	Europe	0.54
CKD	Europe	0.12
COPD	Europe	0.49
	International	0.59
Immunosuppression	Europe	0.75
Anxiety/Depression	Europe	0.84
Hospitalisations	America	0.88
	Asia	0.56
	Europe	0.75
ICU admissions	Asia	0.35
	Europe	0.36
Vaccination status	Asia	0.89
	Europe	0.97

eFigure 1. PRISMA flow diagram of the study selection process

eFigure 2. Funnel plots assessing publication bias for each group meta-analysis: A) Sex, B) Age, C) Obesity, D) Smoking, E) Asthma, F) COPD, G) DM, H) CKD, I) IHD, J) Immunosuppression, K) Anxiety/Depression, L) Hospitalisation, M) ICU admission, N) Vaccination status

K) Anxiety/Depression

L) Hospitalisation

M) ICU admission

N) Vaccination status

eFigure 3. Subgroup analysis of studies investigating the correlation of female sex and development of post–COVID-19 condition according to study population

eFigure 4. Subgroup analysis of studies investigating the correlation of female sex and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

eFigure 5. Subgroup analysis of studies investigating the correlation of age and development of post–COVID-19 condition according to study size

Source	OR (95% CI)	
Fewer than 1000 Patients		
Emecen et al. 45-54	1.41 [1.16; 1.71]	:=-
Emecen et al. 55-64	1.34 [1.07; 1.68]	-
Silverberg et al. 50-60	0.95 [0.50; 1.81]	
Emecen et al. 75	0.90 [0.61; 1.33]	- •
Silverberg et al. >70	0.69 [0.13; 3.66]	•
Total (Random Effects)	1.24 [1.03; 1.49]	\Rightarrow
Prediction interval	[0.78; 1.95]	+
Heterogeneity: $\chi_4^2 = 5.6$ ($P = .2$	23), $I^2 = 29\%$	
More than 1000 Patients		
Ioannou et al. 50-69	1.25 [1.19; 1.31]	=
Kostev et al. 46-60	2.10 [1.81; 2.44]	—
Subramanian et al. 40-49	0.98 [0.95; 1.01]	.
Subramanian et al. 50-59	0.94 [0.91; 0.97]	.
Subramanian et al. 60-69	0.91 [0.87; 0.95]	+
Ioannou et al. 70-74	1.28 [1.22; 1.34]	
Ioannou et al. 75-79	1.32 [1.24; 1.41]	-
Ioannou et al. 80-84	1.38 [1.28; 1.49]	
Ioannou et al. 85-89	1.26 [1.15; 1.38]	=
loannou et al. >90	1.21 [1.09; 1.34]	<u></u>
Kostev et al. >70	1.54 [1.23; 1.93]	
Subramanian et al. >70	0.94 [0.89; 0.99]	=
Total (Random Effects)	1.21 [1.09; 1.34]	
Prediction interval	[0.81; 1.81]	+:-
Heterogeneity: $\chi_{11}^2 = 455.09$ (F	$P < .001$), $I^2 = 98\%$	
Total (Random Effects)	1.21 [1.10; 1.32]	♦
Prediction interval	[0.82; 1.77]	
Heterogeneity: χ_{16}^2 = 468.41 (F	$P < .001$), $I^2 = 97\%$	
		0.2 0.5 1 2 5
		OR of Long COVID by Age (95% CI)

eFigure 6. Meta-regression analysis bubble plot of studies investigating age as risk factor for post–COVID-19 condition

eFigure 7. Subgroup analysis of studies investigating the correlation of age and development of post–COVID-19 condition according to study population

Source	OR (95% CI)	
Both Hospitalized and Not		[]
Emecen et al. 45-54	1.41 [1.16; 1.71]	 •
Emecen et al. 55-64	1.34 [1.07; 1.68]	-
Ioannou et al. 50-69	1.25 [1.19; 1.31]	<u>+</u>
Wu 45-64	0.76 [0.27; 2.14]	T
Emecen et al. 75	0.90 [0.61; 1.33]	_
Ioannou et al. 70-74	1.28 [1.22; 1.34]	+
Ioannou et al. 75-79	1.32 [1.24; 1.41]	<u>-</u>
Ioannou et al. 80-84	1.38 [1.28; 1.49]	
Ioannou et al. 85-89	1.26 [1.15; 1.38]	<u> </u>
Ioannou et al. >90	1.21 [1.09; 1.34]	i i
Wu et al. >65	0.94 [0.26; 3.40]	
Total (Random Effects)	1.28 [1.25; 1.33]	•
Prediction interval	[1.21; 1.37]	≒
Heterogeneity: $\chi_{10}^2 = 12.26$ (P	$= .27), I^2 = 18\%$	
100 × 100 ×		
Not Hospitalized		
GS 45-69	1.10 [0.50; 2.43]	
Kostev et al. 46-60	2.10 [1.81; 2.44]	
Silverberg et al. 50-60	0.95 [0.50; 1.81]	
Subramanian et al. 40-49	0.98 [0.95; 1.01]	
Subramanian et al. 50-59	0.94 [0.91; 0.97]	
Subramanian et al. 60-69	0.91 [0.87; 0.95]	
TwinsUK 45-69	1.76 [0.98; 3.16]	-
Usoc 45-69	1.10 [0.56; 2.16]	- •
GS 70	0.74 [0.19; 2.92]	• <u> </u>
Kostev et al. >70	1.54 [1.23; 1.93]	-
Silverberg et al. >70	0.69 [0.13; 3.66]	
Subramanian et al. >70	0.94 [0.89; 0.99]	=
TwinsUK >70	1.05 [0.47; 2.36]	- •
Usoc >70	2.62 [1.25; 5.51]	
Total (Random Effects)	1.13 [1.02; 1.25]	
Prediction interval	[0.84; 1.52]	+ ; -
Heterogeneity: χ_{13}^2 = 143.62 (F	$P < .001$), $I^2 = 91\%$	
Total (Random Effects)	1.21 [1.11; 1.33]	♦
Prediction interval	[0.84; 1.76]	-
Heterogeneity: χ^2_{24} = 477.64 (F	$P < .001$), $I^2 = 95\%$	0.2 0.5 1 2 5
		OR of Long COVID by Age (95% CI)

eFigure 8. Subgroup analysis of studies investigating the correlation of age and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

Figure 9. Forest plot showing the effect of BMI on post–COVID-19 condition. Individuals with obesity have an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)	
Bellan et al.	2.70 [0.81; 9.00]	+
Daitch et al.	1.64 [1.28; 2.10]	-
Dias et al.	1.03 [1.01; 1.05]	
Fernandez-de-las-Penas et al.	0.85 [0.15; 4.80]	
loannou et al.	1.09 [1.05; 1.14]	<u> </u>
Jones et al.	1.05 [0.80; 1.37]	- -
Kisiel et al.	2.62 [0.67; 10.21]	 •
Kostev et al.	1.09 [0.95; 1.26]	iii
Menezes et al.	6.20 [1.13; 34.06]	
Munblit et al.	1.29 [0.98; 1.70]	
Peters et al.	1.10 [0.83; 1.46]	
Petersen et al.	1.08 [0.99; 1.18]	i i
Stepanek et al.	1.02 [0.99; 1.05]	
Subramanian et al.	1.14 [1.11; 1.17]	•
Whitaker et al.	1.39 [1.31; 1.47]	2
Wu et al.	5.44 [2.12; 13.96]	
Total (Random Effects)	1.15 [1.08; 1.23]	 \$
Prediction interval	[0.94; 1.42]	
Heterogeneity: $\chi_{15}^2 = 161.91 (P < .0)$	01), $I^2 = 91\%$	
		0.1 0.5 1 2 10
		OR of Long COVID by BMI (95% CI)

eFigure 10. Subgroup analysis of studies investigating the correlation of obesity and development of post–COVID-19 condition according to study population

Source	OR (95% CI)	
Hospitalized		
Bellan et al.	2.70 [0.81; 9.00]	
Daitch et al.	1.64 [1.28; 2.10]	-
Dias et al.	1.03 [1.01; 1.05]	
Fernandez-de-las-Penas et al.	0.85 [0.15; 4.80]	
Munblit et al.	1.29 [0.98; 1.70]	
Total (Random Effects)	1.31 [0.98; 1.76]	
Prediction interval	[0.52; 3.31]	
Heterogeneity: $\chi_4^2 = 18.42 (P = .001)$), $I^2 = 78\%$	
Both Hospitalized and Not Hos	spitalized	
loannou et al.	1.09 [1.05; 1.14]	
Jones et al.	1.05 [0.80; 1.37]	- -
Menezes et al.	6.20 [1.13; 34.06]	
Peters et al.	1.10 [0.83; 1.46]	
Petersen et al.	1.08 [0.99; 1.18]	p
Whitaker et al.	1.39 [1.31; 1.47]	=
Wu et al.	5.44 [2.12; 13.96]	
Total (Random Effects)	1.21 [1.04; 1.40]	♦
Prediction interval	[0.77; 1.89]	+
Heterogeneity: $\chi_6^2 = 63.72 (P < .001)$), $I^2 = 91\%$	
Not Hospitalized		
Kisiel et al.	2.62 [0.67; 10.21]	
Kostev et al.	1.09 [0.95; 1.26]	i i i i i i i i i i i i i i i i i i i
Subramanian et al.	1.14 [1.11; 1.17]	
Total (Random Effects)	1.14 [1.11; 1.17]	ļ ¢
Prediction interval	[0.96; 1.34]	
Heterogeneity: $\chi_2^2 = 1.82 (P = .40)$,	$I^2 = 0\%$	
Total (Random Effects)	1.18 [1.09; 1.27]	♦
Prediction interval	[0.94; 1.49]	
Heterogeneity: $\chi_{14}^2 = 144.43 \ (P < .0)$	01), $I^2 = 90\%$	0.1 0.5 1 0 10
		0.1 0.5 1 2 10
		OR of Long COVID by BMI (95% CI)

eFigure 11. Subgroup analysis of studies investigating the correlation of obesity and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

Source	OR (95% CI)	
High		
Bellan et al.	2.70 [0.81; 9.00]	+
Daitch et al.	1.64 [1.28; 2.10]	-
Dias et al.	1.03 [1.01; 1.05]	•
Fernandez-de-las-Penas et al.	0.85 [0.15; 4.80]	
loannou et al.	1.09 [1.05; 1.14]	•
Jones et al.	1.05 [0.80; 1.37]	+
Kostev et al.	1.09 [0.95; 1.26]	<u></u>
Munblit et al.	1.29 [0.98; 1.70]	 • -
Subramanian et al.	1.14 [1.11; 1.17]	i
Whitaker et al.	1.39 [1.31; 1.47]	=
Wu et al.	5.44 [2.12; 13.96]	
Total (Random Effects)	1.19 [1.10; 1.30]	>
Prediction interval	[0.93; 1.53]	 -
Heterogeneity: $\chi_{10}^2 = 138.78 (P < .0)$	001), $I^2 = 93\%$	
Moderate		
Kisiel et al.	2.62 [0.67; 10.21]	 •
Menezes et al.	6.20 [1.13; 34.06]	•
Peters et al.	1.10 [0.83; 1.46]	†
Petersen et al.	1.08 [0.99; 1.18]	P
Stepanek et al.	1.02 [0.99; 1.05]	P
Total (Random Effects)	1.06 [0.96; 1.16]	\$
Prediction interval	[0.82; 1.36]	†:
Heterogeneity: $\chi_4^2 = 7.99 \ (P = .09)$,	$I^2 = 50\%$	
Total (Random Effects)	1.15 [1.08; 1.23]	
Prediction interval	[0.94; 1.42]	
Heterogeneity: $\chi_{15}^2 = 161.91 (P < .0)$	001), $I^2 = 91\%$	
		0.1 0.5 1 2 10
		OR of Long COVID by BMI (95% CI)

eFigure 12. Subgroup analysis of studies investigating the correlation of smoking and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

Source	OR (95% CI)	
High NOS		
Abdelrahman et al.	1.56 [0.51; 4.76]	-
ALSPAC G0	0.82 [0.44; 1.52]	
ALSPAC G1	1.05 [0.42; 2.60]	
Aranda et al.	1.20 [0.48; 3.01]	
BCS70	0.75 [0.22; 2.59]	
Dias et al.	1.42 [0.75; 2.68]	+-
Emecen et al.	1.15 [1.02; 1.29]	<u>+</u>
Fernandez-de-las-Penas et al.	1.35 [0.52; 3.51]	-
GS	0.91 [0.24; 3.45]	
Jones et al.	1.43 [0.92; 2.22]	[
MCS	8.80 [1.04; 74.62]	· · · · · · · · · · · · · · · · · · ·
NCDS	1.89 [0.54; 6.65]	
NS	0.64 [0.08; 5.11]	
Subramanian et al.	1.09 [1.06; 1.12]	<u> </u>
Usoc	1.44 [0.60; 3.44]	
Whitaker et al.	1.11 [1.03; 1.20]	<u> </u>
Wu et al.	0.74 [0.28; 1.95]	
Total (Random Effects)	1.10 [1.07; 1.12]	į.
Prediction interval	[1.07; 1.13]	į.
Heterogeneity: $\chi_{16}^2 = 10.47 (P = .84)$	$I^2 = 0\%$	
Moderate NOS		
Kisiel et al.	1.17 [0.14; 9.47]	
Petersen et al.	1.74 [0.85; 3.56]	+
Silverberg et al.	1.99 [0.92; 4.31]	
Total (Random Effects)	1.80 [1.08; 3.00]	
Prediction interval	[0.07; 48.92]	
Heterogeneity: $\chi_2^2 = 0.24 \ (P = .89)$, i	² = 0%	
Total (Random Effects)	1.10 [1.07; 1.13]	į.
Prediction interval	[1.07; 1.13]	
Heterogeneity: $\chi_{19}^2 = 14.36 (P = .76)$), $I^2 = 0\%$	
		0.1 0.5 1 2 10
		OR of Long COVID by Smoking Status (95% CI)

eFigure 13. Forest plot showing the effect of asthma on post-COVID-19 condition. Individuals with asthma have an increased risk of developing post-COVID-19 condition.

Source	OR (95% CI)	
loannou et al.	1.32 [1.26; 1.38]	<u> </u>
ALSPAC G0	0.92 [0.40; 2.11]	
ALSPAC G1	1.00 [0.47; 2.13]	-
BCS70	1.53 [0.56; 4.17]	- •
GS	1.21 [0.51; 2.87]	-
Jones et al.	1.06 [0.77; 1.46]	- ₩÷
Kostev et al.	1.38 [1.19; 1.60]	
MCS	0.57 [0.09; 3.70]	
NCDS	1.97 [0.67; 5.76]	-
Subramanian et al.	1.17 [1.14; 1.21]	
TwinsUK	1.30 [0.48; 3.53]	- -
Usoc	1.01 [0.49; 2.08]	- + i -
Wu et al.	0.96 [0.26; 3.58]	
Total (Random Effects)	1.24 [1.15; 1.35]	♦
Prediction interval	[1.05; 1.48]	<u> </u>
Heterogeneity: $\chi_{12}^2 = 25.27$ (F	$P = .01$), $I^2 = 53\%$	
		0.1 0.5 1 2 10
		OR of Long COVID by Asthma Status (95% CI)

eFigure 14. Subgroup analysis of studies investigating the correlation of asthma and development of post–COVID-19 condition according to study size

Source	OR (95% CI)					
More than 1000 Patients						
loannou et al.	1.32 [1.26; 1.38]			+		
Kostev et al.	1.38 [1.19; 1.60]			-		
Subramanian et al.	1.17 [1.14; 1.21]			+		
Total (Random Effects)	1.27 [1.15; 1.41]			♦		
Prediction interval	[0.36; 4.45]			++-		
Heterogeneity: χ_2^2 = 21.86 (<i>P</i>	< .001), <i>I</i> ² = 91%					
Fewer than 1000 Patients						
ALSPAC G0	0.92 [0.40; 2.11]			+	_	
ALSPAC G1	1.00 [0.47; 2.13]		<u> </u>	+;-	_	
BCS70	1.53 [0.56; 4.17]			+ + +		
GS	1.21 [0.51; 2.87]			+		
Jones et al.	1.06 [0.77; 1.46]		_	-		
MCS	0.57 [0.09; 3.70]		•	╁		
NCDS	1.97 [0.67; 5.76]		_	+	•	
TwinsUK	1.30 [0.48; 3.53]			++-		
Usoc	1.01 [0.49; 2.08]			+	_	
Wu et al.	0.96 [0.26; 3.58]	_		+ :		
Total (Random Effects)	1.10 [0.88; 1.37]					
Prediction interval	[0.84; 1.42]		-	+		
Heterogeneity: $\chi_9^2 = 2.56$ (P =	.98), $I^2 = 0\%$					
Total (Random Effects)	1.24 [1.15; 1.35]			♦		
Prediction interval	[1.05; 1.48]			_		
Heterogeneity: χ_{12}^2 = 25.27 (P	$= .01), I^2 = 53\%$					
		0.1	0.5	1	2	10
		OR of Long C	OVID by	Asthr	na Status (9	35% CI)

eFigure 15. Forest plot showing the effect of COPD on post–COVID-19 condition. Individuals with COPD have an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)					
Aranda et al.	1.59 [0.55; 4.60]			-	-	
Bellan et al.	12.70 [1.41; 114.62]			-	<u> </u>	
Daitch et al.	1.98 [1.18; 3.33]			-		
loannou et al.	1.42 [1.38; 1.47]					
Jones et al.	1.53 [0.85; 2.75]			-		
Kostev et al.	0.89 [0.76; 1.04]			-		
Menezes et al.	4.30 [0.34; 54.95]			- -	•	_
Munblit et al.	1.32 [0.88; 1.98]			-		
Pazukhina et al.	1.24 [0.77; 2.01]			- - - - - - - - - - 		
Wu et al.	3.05 [0.38; 24.77]			-		
Total (Random Effects)	1.38 [1.08; 1.78]			→		
Prediction interval	[0.70; 2.74]			+		
Heterogeneity: χ_9^2 = 40.13 (P	$< .001$), $I^2 = 78\%$		ı			
		0.01	0.1	1	10	100
		OR of L	ong COVII	D by COPD	Status (9	95% CI)

eFigure 16. Subgroup analysis of studies investigating the correlation of COPD and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

Source	OR (95% CI)		
High NOS			
Aranda et al.	1.59 [0.55; 4.60]		- • -
Bellan et al.	12.70 [1.41; 114.62]]	 • •
Daitch et al.	1.98 [1.18; 3.33]		
loannou et al.	1.42 [1.38; 1.47]		
Jones et al.	1.53 [0.85; 2.75]		+=-
Kostev et al.	0.89 [0.76; 1.04]		
Munblit et al.	1.32 [0.88; 1.98]		
Wu et al.	3.05 [0.38; 24.77]		- •
Total (Random Effects)	1.40 [1.06; 1.85]		⇒
Prediction interval	[0.64; 3.03]		- -
Heterogeneity: χ_7^2 = 39.15 (<i>P</i>	$< .001$), $I^2 = 82\%$		
Moderate NOS			
Menezes et al.	4.30 [0.34; 54.95]		- •
Pazukhina et al.	1.24 [0.77; 2.01]		-
Total (Random Effects)	1.29 [0.81; 2.08]		
Prediction interval			
Heterogeneity: $\chi_1^2 = 0.88$ (P =	1.35), $I^2 = 0\%$		
Total (Random Effects)	1.38 [1.08; 1.78]		⇔
Prediction interval	[0.70; 2.74]		
Heterogeneity: χ_9^2 = 40.13 (<i>P</i>	$< .001$), $I^2 = 78\%$		
		0.01 0.1	1 10 100
		OR of Long CC	OVID by COPD Status (95% CI)

eFigure 17. Forest plot showing the effect of diabetes on post–COVID-19 condition. Individuals with diabetes have an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)	
ALSPAC G0	1.68 [0.17; 16.37]]
BCS70	1.08 [0.24; 4.81]	
Bellan et al.	0.95 [0.35; 2.59]	
Blomberg et al.	1.49 [0.41; 5.47]	
Dias et al.	1.04 [0.78; 1.39]	- [-
Fernandez-de-las-Penas et al.	1.07 [0.71; 1.62]	-
GS	3.04 [0.49; 18.92]]
loannou et al.	1.07 [1.04; 1.11]	
Jones et al.	1.07 [0.78; 1.46]	- -
Kostev et al.	0.85 [0.73; 0.99]	
Menezes et al.	1.50 [0.22; 10.17]]
Munblit et al.	1.12 [0.81; 1.54]	-
NCDS	0.30 [0.04; 2.32]	
Pazukhina et al.	1.04 [0.71; 1.52]	-
TwinsUK	1.28 [0.25; 6.54]	
Usoc	1.25 [0.44; 3.56]	
Wu et al.	1.03 [0.36; 2.96]	
Yanksi et al.	1.98 [0.80; 4.90]	
Total (Random Effects)	1.06 [1.03; 1.09]	į
Prediction interval	[1.03; 1.10]	•
Heterogeneity: $\chi_{17}^2 = 13.84$ ($P = .68$), $I^2 = 0\%$	
		0.1 0.5 1 2 10
		OR of Long COVID by Diabetes Status (95% CI)

eFigure 18. Subgroup analysis of studies investigating the correlation of diabetes and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

eFigure 19. Forest plot showing the effect of CKD on post-COVID-19 condition. CKD was not significantly associated with post-COVID-19 condition.

Source	OR (95% CI)
Bellan et al., 2021	5.90 [0.69; 50.40]
Dias	0.89 [0.60; 1.33]
Ioannou	1.22 [1.18; 1.27]
Jones	1.22 [0.59; 2.54]
Kostev	0.94 [0.74; 1.19]
Munblit et al., 2021	1.14 [0.68; 1.90]
Pazukhina	1.13 [0.44; 2.87]
Wu	1.28 [0.19; 8.65]

Total (Random Effects) 1.12 [0.98; 1.28] **Prediction interval** [0.85; 1.48] Heterogeneity: $\chi_7^2 = 8.95 (P = .26), I^2 = 22\%$

OR of Long COVID by CKD Status (95% CI)

eFigure 20. Subgroup analysis of studies investigating the correlation of CKD and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

Source	OR (95% CI)			
High NOS				
Bellan et al., 2021	5.90 [0.69; 50.40]		 	+
Dias	0.89 [0.60; 1.33]		-	
loannou	1.22 [1.18; 1.27]		+	
Jones	1.22 [0.59; 2.54]			
Kostev	0.94 [0.74; 1.19]		- 	
Munblit et al., 2021	1.14 [0.68; 1.90]		- - -	
Wu	1.28 [0.19; 8.65]		- -	_
Total (Random Effects)	1.11 [0.94; 1.30]		\bar{\bar{\bar{\bar{\bar{\bar{\bar{	
Prediction interval	[0.77; 1.59]		+	
Heterogeneity: χ_6^2 = 8.93 (P =	: .18), <i>I</i> ² = 33%			
Moderate NOS				
Pazukhina	1.13 [0.44; 2.87]		- -	
Total (Random Effects)	1.13 [0.44; 2.87]			
Prediction interval				
Heterogeneity: not applicable				
Total (Random Effects)	1.12 [0.98; 1.28]		>	
Prediction interval	[0.85; 1.48]			
Heterogeneity: $\chi_7^2 = 8.95$ (P =	$= .26$), $I^2 = 22\%$	0.4	0.5.4.0	1
		0.1	0.5 1 2	10

OR of Long COVID by CKD Status (95% CI)

eFigure 21. Forest plot showing the association of IHD with post–COVID-19 condition. Individuals with IHD have an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)					
Bellan et al.	1.72 [0.55; 5.36]		_	- - 		
loannou et al.	1.28 [1.18; 1.38]			+		
Jones et al.	1.26 [0.76; 2.08]			+		
Menezes et al.	1.50 [0.22; 10.17]			+ + +		
Munblit et al.	1.32 [0.88; 1.98]			+	_	
Total (Random Effects)	1.28 [1.19; 1.38]			♦		
Prediction interval	[1.13; 1.45]			 —		
Heterogeneity: $\chi_4^2 = 0.31$ (P =	$(.99), I^2 = 0\%$		ı			
3 7,14	,	0.1	0.5	1	2	10
		OR of L	ong COVID	by CAD	Statu	ıs (95% CI)

eFigure 22. Subgroup analysis of studies investigating the correlation of IHD and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

Source	OR (95% CI)		1 :	
High NOS Bellan et al. loannou et al. Jones et al. Munblit et al. Total (Random Effects) Prediction interval	1.72 [0.55; 5.36] 1.28 [1.18; 1.38] 1.26 [0.76; 2.08] 1.32 [0.88; 1.98] 1.28 [1.19; 1.38] [1.09; 1.51]		•	
Heterogeneity: $\chi_3^2 = 0.28$ (<i>P</i> =				
Moderate NOS				
Menezes et al. Total (Random Effects) Prediction interval	1.50 [0.22; 10.17] 1.50 [0.22; 10.17]			
Heterogeneity: not applicable				
Total (Random Effects) Prediction interval Heterogeneity: $\chi_4^2 = 0.31$ ($P = 0.31$)	[1.13; 1.45]		÷	

0.1

0.5 1 2

OR of Long COVID by CAD Status (95% CI)

10

eFigure 23. Forest plot showing the association of immunosuppression with post–COVID-19 condition. Individuals with immunosuppression have an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)					
Blomberg et al.	2.64 [0.57; 12.23]		_	+		
Kisiel et al.	1.42 [0.97; 2.09]			-	<u> </u>	
Wu et al.	1.83 [0.51; 6.59]			+		
Total (Random Effects)	1.50 [1.05; 2.15]			<	$\dot{\triangleright}$	
Prediction interval	[0.15; 15.41]			+		
Heterogeneity: $\chi_2^2 = 0.69$ ($P =$.71), $I^2 = 0\%$			1		
_		0.1	0.5	1	2	10
	OR of L	ong CO	√ID by Immi	unosi	uppre	ssion Status (95% CI)

eFigure 24. Forest plot showing the association of anxiety/depression with post–COVID-19 condition. Individuals with anxiety/depression have an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)			
loannou et al.	1.15 [1.12; 1.19]		-+	
Kisiel et al.	1.10 [0.63; 1.93]		-	
Kostev et al.	1.03 [0.87; 1.22]		-	
Subramanian et al.	1.40 [1.35; 1.45]		-	
Total (Random Effects)	1.19 [1.02; 1.40]			
Prediction interval	[0.60; 2.37]			
Heterogeneity: $\chi_3^2 = 72.78$ (P	$< .001), I^2 = 96\%$			
		0.5	1	2
	OR of L	ong COVID by	Psychiatric Illness	Status (95% CI)

eFigure 25. Subgroup analysis of studies investigating the correlation of anxiety/ depression and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

eFigure 26. Forest plot showing the association of hospitalisation with post–COVID-19 condition. Individuals that were hospitalized during the acute infection had an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)						
Abdelrahman et al.	2.32 [0.79; 6.84]			-	-		
Baruch et al.	3.10 [2.63; 3.65]				-	-	
Blomberg et al.	3.98 [2.21; 7.16]				+	-	
Emecen et al.	1.44 [1.19; 1.75]			-	-		
loannou et al.	2.60 [2.51; 2.69]				+		
Peters et al.	1.20 [0.58; 2.48]		12	-			
Righi et al.	2.65 [1.58; 4.44]				-		
Whitaker et al.	3.45 [2.57; 4.64]				<u> </u> -		
Total (Random Effects)	2.48 [1.97; 3.13]					>	
Prediction interval	[1.22; 5.06]			-			
Heterogeneity: $\chi_7^2 = 50.25$ (P	$< .001$), $I^2 = 86\%$						
G J M	,	0.2	0.5	1	2	5	
	OR of	Long CC	OVID by F	lospital	ization S	Status (95%	CI)

eFigure 27. Subgroup analysis of studies investigating the correlation of hospitalization and development of post–COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

Source	OR (95% CI)			
High NOS				
Abdelrahman et al.	2.32 [0.79; 6.84]		_	-
Baruch et al.	3.10 [2.63; 3.65]			-
Blomberg et al.	3.98 [2.21; 7.16]			-
Emecen et al.	1.44 [1.19; 1.75]			-
loannou et al.	2.60 [2.51; 2.69]			+
Righi et al.	2.65 [1.58; 4.44]			
Whitaker et al.	3.45 [2.57; 4.64]			-
Total (Random Effects)	2.61 [2.07; 3.31]			
Prediction interval	[1.26; 5.43]			
Heterogeneity: χ_6^2 = 45.98 (<i>P</i>	$< .001$), $I^2 = 87\%$			
Moderate NOS				
Peters et al.	1.20 [0.58; 2.48]		-	-
Total (Random Effects)	1.20 [0.58; 2.48]			
Prediction interval				
Heterogeneity: not applicable				
Total (Random Effects)	2.48 [1.97; 3.13]			\Diamond
Prediction interval	[1.22; 5.06]	115		
Heterogeneity: $\chi_7^2 = 50.25$ (P	$< .001$), $I^2 = 86\%$	Ţ		
		0.2	0.5	1 2 5

OR of Long COVID by Hospitalization Status (95% CI)

eFigure 28. Forest plot showing the association of ICU admission with post–COVID-19 condition. Individuals that required ICU admission during the acute infection had an increased risk of developing post–COVID-19 condition.

Source	OR (95% CI)	
Asadi-Pooya	1.79 [1.03; 3.13]	
Bellan et al., 2021	1.47 [0.42; 5.10]	
Dias	1.68 [1.16; 2.44]	
Emecen	2.18 [1.51; 3.14]	
Fernandez-de-las-Penas et al. 1	1.24 [0.44; 3.50]	
Ioannou	2.46 [2.25; 2.68]	<u> </u>
Jones	1.29 [0.42; 3.98]	
Peghin	3.10 [1.18; 8.13]	
Peters	2.40 [0.48; 11.95]	
Righi	2.35 [1.15; 4.80]	
Total (Random Effects)	2.37 [2.18; 2.56]	⇒
Prediction interval	[2.15; 2.60]	_
Heterogeneity: $\chi_9^2 = 8.64 \ (P = .47), I^2$	= 0%	
	0.1	0.5 1 2 10
	OR of Long Co	OVID by ICU Admission Status (95% CI)

eFigure 29. Subgroup analysis of studies investigating the correlation of ICU admission and development of post-COVID-19 condition according to study quality (as per the Newcastle-Ottawa Scale)

eFigure 30. Subgroup analysis of studies investigating the correlation of ICU admission and development of post–COVID-19 condition according to study size

eFigure 31. Sensitivity analysis of all the risk factors examined using only the studies that included patients with laboratory confirmed COVID-19 infection

a. Female Sex

Source	OR (95% CI)				
Abdelrahman et al.	1.72 [0.78; 3.79]		-	li i	
Aranda et al.	3.50 [1.21; 10.13]				
Asadi-Pooya et al.	1.42 [1.05; 1.91]			1 1	
Augustin et al.	1.69 [1.02; 2.79]			 	
Baruch et al.	2.50 [2.21; 2.83]			-	
Bellan et al.	1.22 [0.61; 2.44]			1	
Blomberg et al.	2.02 [1.12; 3.66]				
Chudzik et al.	1.48 [1.19; 1.84]			 - -	
Daitch et al.	1.87 [1.52; 2.31]			1 +	
Debski et al.	1.99 [1.47; 2.70]				
Dias et al.	1.49 [1.09; 2.03]				
Emecen et al.	1.74 [1.57; 1.93]			-	
Estrada-Comecido et al.	1.46 [0.94; 2.27]		1	++-+-	
Fernandez-de-las-Penas et al.	2.54 [1.67; 3.86]				
loannou et al.	1.03 [0.99; 1.08]			# !	
Kisiel et al.	1.61 [0.70; 3.73]		_	 	
Kostev et al.	1.23 [1.15; 1.32]			•	
Munblit et al.	1.88 [1.49; 2.37]			 	
Pazukhina et al.	2.04 [1.57; 2.65]			 	
Peghin et al.	1.55 [1.05; 2.28]			1	
Peters et al.	1.60 [1.18; 2.17]				
Petersen et al.	1.00 [0.98; 1.02]				
Righi et al.	0.97 [0.59; 1.59]		-	+	
Silverberg et al.	1.99 [1.09; 3.63]				
Stepanek et al.	1.48 [1.06; 2.07]			 	
Subramanian et al.	1.61 [1.35; 1.92]			+	
Tleyjeh et al.	1.96 [0.92; 4.17]		87	1 1	
Whitaker et al.	1.38 [1.32; 1.45]			•	
Wu et al.	1.08 [0.53; 2.21]		-	+	
Zhang et al.	1.27 [1.06; 1.52]			 • 	
Total (fixed effect)	1.11 [1.09; 1.13]			i	
Total (random effects)	1.56 [1.40; 1.74]			♦	
Prediction interval	[0.93; 2.63]		9		
Heterogeneity: $\chi_{29}^2 = 603.11 (P < .0)$	01), $I^2 = 95\%$		8.8	1 1	1
		0.1		1 2	10
		OR of Lon	ig COVID	in Females (95	% CI)

b. age

c. Obesity

d. Smoking

Source	OR (95% CI)		
Abdelrahman et al.	1.56 [0.51; 4.76]	 +	
Aranda et al.	1.20 [0.48; 3.01]		
Blomberg et al.	1.31 [0.79; 2.17]	- 	
Dias et al.	1.42 [0.75; 2.68]	- + -	
Emecen et al.	1.15 [1.02; 1.29]	<u>+</u>	
Fernandez-de-las-Penas et al.	1.35 [0.52; 3.51]	- +	
Jones et al.	1.43 [0.92; 2.22]	+ -	
Kisiel et al.	1.17 [0.14; 9.47]		
Petersen et al.	1.74 [0.85; 3.56]	+ +	
Silverberg et al.	1.99 [0.92; 4.31]	++	
Subramanian et al.	1.09 [1.06; 1.12]		
Whitaker et al.	1.11 [1.03; 1.20]	i i	
Wu et al.	0.74 [0.28; 1.95]		
Total (Random Effects)	1.10 [1.07; 1.13]	ô	
Prediction interval	[1.07; 1.13]	•	
Heterogeneity: $\chi_{12}^2 = 8.53 (P = .74)$	$I_{1}^{2} = 0\%$		I
		0.2 0.5 1 2	5
	(OR of Long COVID by Smoking Status	(95% CI)

e. Asthma

Source	OR (95% CI)				
loannou et al.	1.32 [1.26; 1.38]			+	
Kostev et al.	1.38 [1.19; 1.60]			-	
Subramanian et al.	1.17 [1.14; 1.21]			+	
Wu et al.	0.96 [0.26; 3.58]	8		•	*
Total (Random Effects)	1.27 [1.15; 1.40]			⇔	
Prediction interval	[0.84; 1.92]				
Heterogeneity: $\chi_3^2 = 21.98$ (P	$< .001$), $I^2 = 86\%$			ı	
		0	.5	1	2
		OR of Long	COVID by	Asthma S	Status (95% CI)

f. COPD

Source	OR (95% CI)					
Aranda et al.	1.59 [0.55; 4.60]			-	-	
Bellan et al.	12.70 [1.41; 114.62]				•	
Daitch et al.	1.98 [1.18; 3.33]			-		
loannou et al.	1.42 [1.38; 1.47]			1		
Kostev et al.	0.89 [0.76; 1.04]			-		
Menezes et al.	4.30 [0.34; 54.95]				-	
Munblit et al.	1.32 [0.88; 1.98]			-		
Pazukhina et al.	1.24 [0.77; 2.01]			-		
Wu et al.	3.05 [0.38; 24.77]				-	
Total (Random Effects)	1.37 [1.05; 1.80]			\langle		
Prediction interval	[0.66; 2.87]					
Heterogeneity: $\chi_8^2 = 40.03$ (P	$< .001$), $I^2 = 80\%$		J.	Į.		
moon profit Silvina (Mill)		0.01	0.1	1	10	100
		OR of Lo	ong COVI	D by COPD	Status (9	5% CI)

g. Diabetes

h. CKD

Source	OR (95% CI)				
Bellan et al., 2021	5.90 [0.69; 50.40]		- 1	•	_
Dias	0.89 [0.60; 1.33]				
Ioannou	1.22 [1.18; 1.27]		+		
Kostev	0.94 [0.74; 1.19]		#		
Munblit et al., 2021	1.14 [0.68; 1.90]		-		
Pazukhina	1.13 [0.44; 2.87]				
Wu	1.28 [0.19; 8.65]	=	<u> </u>		
Total (Random Effects)	1.10 [0.94; 1.30]		>		
Prediction interval	[0.76; 1.59]		+		
Heterogeneity: $\chi_6^2 = 8.95 (P =$	$= .18$), $I^2 = 33\%$		1 1 1		
		0.1	0.5 1 2	10	
		OR of Long C	OVID by CKD St	atus (95%	CI)

i. IHD

Source	OR (95% CI)				
Bellan et al.	1.72 [0.55; 5.36]		-	+ ! + -	1.
loannou et al.	1.28 [1.18; 1.38]			=	
Menezes et al.	1.50 [0.22; 10.17]				
Munblit et al.	1.32 [0.88; 1.98]			+	
Total (Random Effects)	1.28 [1.19; 1.39]			\$	
Prediction interval	[1.08; 1.52]				
Heterogeneity: $\chi_3^2 = 0.30$ (P =	$= .96$), $I^2 = 0\%$			1 1	1
		0.1	0.5	1 2	10
		OR of L	ona COVID	by CAD Sta	tus (95% CI)

j. ICU admission

eFigure 32. Sensitivity analysis of all the risk factors excluding studies with many variables in each study (A study was defined as having many variables when they included ≥5 variables in their analysis)

a. Female Sex

Source	OR (95% CI)			
BCS 70	1.67 [0.56; 4.98]			
Bellan et al.	1.22 [0.61; 2.44]			
Blomberg et al.	2.02 [1.12; 3.66]			
Dias et al.	1.49 [1.09; 2.03]			
Emecen et al.	1.74 [1.57; 1.93]			
Fernandez-de-las-Penas et al.	2.54 [1.67; 3.86]			
GS	1.73 [0.91; 3.29]			
loannou et al.	1.03 [0.99; 1.08]			
Jones et al.	1.47 [1.06; 2.03]			
Kisiel et al.	1.61 [0.70; 3.73]			
Kostev et al.	1.23 [1.15; 1.32]			
Munblit et al.	1.88 [1.49; 2.37]			
Subramanian et al.	1.61 [1.35; 1.92]			
TwinsUK	1.75 [0.73; 4.20]			
Usoc	1.89 [1.03; 3.48]			
Wu et al.	1.08 [0.53; 2.21]			
Total (fixed effect)	1.19 [1.15; 1.23]			
Total (random effects)	1.54 [1.32; 1.81]			
Prediction interval	[0.89; 2.69]			
Heterogeneity: $\chi_{15}^2 = 146.11 (P < .001)$, $I^2 = 90\%$				

Source	OR (95% CI)	
Patients between 40-69 ye	ars old	
Emecen et al. 45-54	1.41 [1.16; 1.71]	-
Emecen et al. 55-64	1.34 [1.07; 1.68]	-
GS 45-69	1.10 [0.50; 2.43]	- •
Ioannou et al. 50-69	1.25 [1.19; 1.31]	<u> </u>
Kostev et al. 46-60	2.10 [1.81; 2.44]	-
Subramanian et al. 40-49	0.98 [0.95; 1.01]	
Subramanian et al. 50-59	0.94 [0.91; 0.97]	
Subramanian et al. 60-69	0.91 [0.87; 0.95]	<u> </u>
TwinsUK 45-69	1.76 [0.98; 3.16]	
Usoc 45-69	1.10 [0.56; 2.16]	
Wu 45-64	0.76 [0.27; 2.14]	
Total (Random Effects)	1.20 [1.06; 1.35]	\langle
Prediction interval	[0.81; 1.77]	+ ; -
Heterogeneity: χ_{10}^2 = 233.68 (F	$P < .001$), $I^2 = 96\%$	
Patients 70 years old or o	lder	
Emecen et al. 75	0.90 [0.61; 1.33]	-
GS 70	0.74 [0.19; 2.92]	•
Ioannou et al. 70-74	1.28 [1.22; 1.34]	=
loannou et al. 75-79	1.32 [1.24; 1.41]	
loannou et al. 80-84	1.38 [1.28; 1.49]	
loannou et al. 85-89	1.26 [1.15; 1.38]	
loannou et al. >90	1.21 [1.09; 1.34]	=
Kostev et al. >70	1.54 [1.23; 1.93]	—
Subramanian et al. >70	0.94 [0.89; 0.99]	=
TwinsUK >70	1.05 [0.47; 2.36]	
Usoc >70	2.62 [1.25; 5.51]	-
Wu et al. >65	0.94 [0.26; 3.40]	-
Total (Random Effects)	1.24 [1.10; 1.39]	
Prediction interval	[0.85; 1.80]	+
Heterogeneity: $\chi_{11}^2 = 122.44$ (F	$P < .001$), $I^2 = 91\%$	
Total (Random Effects)	1.22 [1.11; 1.34]	♦
Prediction interval	[0.84; 1.77]	
Heterogeneity: $\chi_{22}^2 = 477.26$ (F	$P < .001$), $I^2 = 95\%$	
		0.2 0.5 1 2 5
		OR of Long COVID by Age (95% CI)

c. Obesity

Source	OR (95% CI)		
Bellan et al.	2.70 [0.81; 9.00]	 	B
Dias et al.	1.03 [1.01; 1.05]		
Fernandez-de-las-Penas et al.	0.85 [0.15; 4.80]		
loannou et al.	1.09 [1.05; 1.14]		
Jones et al.	1.05 [0.80; 1.37]	-	
Kisiel et al.	2.62 [0.67; 10.21]	- •	_
Kostev et al.	1.09 [0.95; 1.26]	#	
Menezes et al.	6.20 [1.13; 34.06]	· ·	
Munblit et al.	1.29 [0.98; 1.70]	-	
Subramanian et al.	1.14 [1.11; 1.17]		
Wu et al.	5.44 [2.12; 13.96]	· · · ·	
Total (Random Effects)	1.11 [1.04; 1.19]	\$	
Prediction interval	[0.93; 1.32]		
Heterogeneity: $\chi_{10}^2 = 59.48 \ (P < .001)$	1), $I^2 = 83\%$		1
			10
		OR of Long COVID by BMI (Obesity)	(95% CI)

d. Smoking

Source	OR (95% CI)	
BCS70	0.75 [0.22; 2.59]	
Blomberg et al.	1.31 [0.79; 2.17]	
Dias et al.	1.42 [0.75; 2.68]	 •
Emecen et al.	1.15 [1.02; 1.29]	:
Fernandez-de-las-Penas et al.	1.35 [0.52; 3.51]	
GS	0.91 [0.24; 3.45]	
Jones et al.	1.43 [0.92; 2.22]	+
Kisiel et al.	1.17 [0.14; 9.47]	
Usoc	1.44 [0.60; 3.44]	
Wu et al.	0.74 [0.28; 1.95]	
Total (Random Effects)	1.17 [1.05; 1.30]	
Prediction interval	[1.04; 1.33]	_
Heterogeneity: $\chi_9^2 = 3.22 \ (P = .95)$,	$I^2 = 0\%$	
		0.2 0.5 1 2 5
	OR	of Long COVID by Smoking Status (95% CI)

e. Asthma

OR (95% CI)					
1.32 [1.26; 1.38]			-		
1.21 [0.51; 2.87]		8	-		_
1.06 [0.77; 1.46]		_	-		
1.38 [1.19; 1.60]			-	-	
1.17 [1.14; 1.21]			+		
1.30 [0.48; 3.53]		1)	-		
1.01 [0.49; 2.08]		8	+ :		
0.96 [0.26; 3.58]			+ :		
1.25 [1.14; 1.36]			\limits		
[1.01; 1.54]				<u> </u>	
$= .002$), $I^2 = 70\%$			Ĩ	1	
		0.5	1	2	
	1.32 [1.26; 1.38] 1.21 [0.51; 2.87] 1.06 [0.77; 1.46] 1.38 [1.19; 1.60] 1.17 [1.14; 1.21] 1.30 [0.48; 3.53] 1.01 [0.49; 2.08] 0.96 [0.26; 3.58] 1.25 [1.14; 1.36]	1.32 [1.26; 1.38] 1.21 [0.51; 2.87] 1.06 [0.77; 1.46] 1.38 [1.19; 1.60] 1.17 [1.14; 1.21] 1.30 [0.48; 3.53] 1.01 [0.49; 2.08] 0.96 [0.26; 3.58] 1.25 [1.14; 1.36] [1.01; 1.54] = .002), I ² = 70%	1.32 [1.26; 1.38] 1.21 [0.51; 2.87] 1.06 [0.77; 1.46] 1.38 [1.19; 1.60] 1.17 [1.14; 1.21] 1.30 [0.48; 3.53] 1.01 [0.49; 2.08] 0.96 [0.26; 3.58] 1.25 [1.14; 1.36] [1.01; 1.54] = .002), I ² = 70% 0.5	1.32 [1.26; 1.38] 1.21 [0.51; 2.87] 1.06 [0.77; 1.46] 1.38 [1.19; 1.60] 1.17 [1.14; 1.21] 1.30 [0.48; 3.53] 1.01 [0.49; 2.08] 0.96 [0.26; 3.58] 1.25 [1.14; 1.36] [1.01; 1.54] = .002), I ² = 70%	1.32 [1.26; 1.38] 1.21 [0.51; 2.87] 1.06 [0.77; 1.46] 1.38 [1.19; 1.60] 1.17 [1.14; 1.21] 1.30 [0.48; 3.53] 1.01 [0.49; 2.08] 0.96 [0.26; 3.58] 1.25 [1.14; 1.36] [1.01; 1.54] = .002), I ² = 70% 0.5 1 2

OR of Long COVID by Asthma Status (95% CI)

f. COPD

Source	OR (95% CI)					
Bellan et al.	12.70 [1.41; 114.62]			L		
loannou et al.	1.42 [1.38; 1.47]			+		
Jones et al.	1.53 [0.85; 2.75]			-		
Kostev et al.	0.89 [0.76; 1.04]			=		
Munblit et al.	1.32 [0.88; 1.98]			-		
Wu et al.	3.05 [0.38; 24.77]					
Total (Random Effects)	1.31 [0.95; 1.82]			\Diamond		
Prediction interval	[0.51; 3.37]			_		
Heterogeneity: $\chi_5^2 = 37.34$ (P	$< .001$), $I^2 = 87\%$		J	I	Ţ	
		0.01	0.1	1	10	100
		OR of Lo	ng COV	ID by COPD	Status (9	95% CI)

g. Diabetes

Source	OR (95% CI)			
			.,	
Bellan et al.	0.95 [0.35; 2.59]			
Blomberg et al.	1.49 [0.41; 5.47]		-	-8
Dias et al.	1.04 [0.78; 1.39]		-	
Fernandez-de-las-Penas et al.	1.07 [0.71; 1.62]			
GS	3.04 [0.49; 18.92]			
Ioannou et al.	1.07 [1.04; 1.11]		•	
Jones et al.	1.07 [0.78; 1.46]		-	
Kostev et al.	0.85 [0.73; 0.99]		-	
Munblit et al.	1.12 [0.81; 1.54]			
TwinsUK	1.28 [0.25; 6.54]			
Usoc	1.25 [0.44; 3.56]			
Wu et al.	1.03 [0.36; 2.96]			
Total (Random Effects)	1.06 [1.03; 1.09]		ó	
Prediction interval	[1.02; 1.10]		-	
Heterogeneity: $\chi_{11}^2 = 10.26 (P = .51)$), $I^2 = 0\%$			J.
1000 No 1005 1 M		0.1	0.5 1 2	10

OR of Long COVID by Diabetes Status (95% CI)

h. CKD

Source	OR (95% CI)				
Bellan et al., 2021	5.90 [0.69; 50.40]		+	•	-
Dias	0.89 [0.60; 1.33]				
Ioannou	1.22 [1.18; 1.27]		+		
Jones	1.22 [0.59; 2.54]				
Kostev	0.94 [0.74; 1.19]		#		
Munblit et al., 2021	1.14 [0.68; 1.90]		-		
Wu	1.28 [0.19; 8.65]				
Total (Random Effects) Prediction interval	1.11 [0.94; 1.30] [0.77; 1.59]		*		
Heterogeneity: χ_6^2 = 8.93 (P =	= .18), <i>I</i> ² = 33%	J	1 1 1	1	
		0.1	0.5 1 2	10	
		OR of Long (COVID by CKD S	Status (95% 0	CI)

i. IHD

Source	OR (95% CI)					
Bellan et al.	1.72 [0.55; 5.36]		To Comment	+ +	+	
loannou et al.	1.28 [1.18; 1.38]					
Jones et al.	1.26 [0.76; 2.08]			- +		
Munblit et al.	1.32 [0.88; 1.98]			+		
Total (Random Effects)	1.28 [1.19; 1.38]			♦		
Prediction interval	[1.09; 1.51]				_	
Heterogeneity: $\chi_3^2 = 0.28$ (P =	$= .96$), $I^2 = 0\%$		I	l,	Į,	
ACTO 00/2/ 07-100 8		0.2	0.5	1	2	5
		OR of I	ong COVIE	by CA	D Status ((95% CI)

j. Hospitalisation

OR of Long COVID by Hospitalization Status (95% CI)

k. ICU admission

I. vaccination status

