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Methods

Gold nanorod synthesis and characterization

Hexadecyl(trimethyl)ammonium bromide (CTAB) and sodium oleate (NAOL)
coated gold nanorods were synthesized following previously described
protocols[1]. The nanorods were cleaned by centrifuging 1.5 mL aliquots twice
at (9000 rpm, 20 min), allowing for one wash after synthesis as this has been
shown to be adequate to maintain cell viability while preventing nanorod
aggregation[2]. Samples were concentrated down to 10 µL to be mixed with
cell samples and diluted to a final volume of 200 µL. Absorption spectra
were recorded using a Cary 5000 UV-vis-NIR spectrometer. Scanning electron
microscopy images were taken using FEI Magellan 400 XHR Scanning Elec-
tron Microscope (SEM). Transmission electron microscopy images were taken
using FEI Tecnai G2 F20 X-TWIN Transmission Electron Microscope (TEM).

Scanning electron microscopy (SEM) of printed samples

For scanning electron microscope (SEM) imaging, printed samples were imaged
after completion of all Raman Spectroscopy. Samples were prepared by evap-
orating a ∼10 nm layer of 60:40 gold to palladium to allow for better
visualization of cells under electron beam illumination. SEM images were taken
using FEI Magellan 400 XHR Scanning Electron Microscope.

Bacteria culturing and preparation

E. coli, ATCC 25922, and S. epidermidis, ATCC 12228, were grown from
frozen stocks on Trypticase Soy Agar 5% Sheep Blood 221239 BD plates. A
single colony was seeded in 10 mL Lysogeny broth (LB) culture medium and
incubated at 37°C shaking at 300 rpm for 15 hrs using Thermo Scientific
MaxQ 4450 incubator. 1.5 mL of culture was washed with water three times
at 6000 rpm for 3 min using a mySPINTM 6 Mini Centrifuge. Samples were
then concentrated down to 100 µL volumes. The cell count was collected using
a Bright-Line Hemacytometer using a 1:5000 dilution of the cell culture stock
solution. Stock solutions contained on average ∼1e10 cells/mL.

Preparation of red blood cell solutions

For data collected with purified mouse red blood cells: CD-1 (1CR) purified
Mouse Red Blood Cells (RBCs) K2EDTA Gender Unspecified Pooled samples
MSE00RBK2-0104095, were purchased from BioIVT in 5mL volumes. RBCs
were diluted in a 1:9 v/v mixture of Invitrogen UltraPure 0.5 M EDTA, Invit-
rogen 15575020, to a final dilution of 1:5000 and cell counts were collected
using a Nexcelom Cellometer X2 cell counter.

For data collected with mouse whole blood: CD-1 (1CR) Mouse Whole
Blood K2EDTA Gender Unspecified Pooled samples MSE00WBK2-0000627,
were purchased from BioIVT in 5mL volumes. The whole blood were diluted in
a 1:9 v/v mixture of Invitrogen UltraPure 0.5 M EDTA, Invitrogen 15575020,
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to a final dilution of 1:5000 and cell counts were collected using a Bright-Line
Hemacytometer. Whole blood contained ∼1e10 cells/mL RBCs.

Preparation of mixtures for printing

Printing was completed using 200 µL of solution. All samples were diluted to
a final volume of 200 µL in a 1:9 v/v mixture of Invitrogen UltraPure 0.5 M
EDTA, Invitrogen 15575020, and Millipore water, unless otherwise noted. For
samples with cells and no nanorods, a single concentrated cell solution or a
mixture of cell solutions was diluted in aqueous EDTA to a final concentration
of 1e9 cells/mL of each cell type in a given mixture. This concentration was
chosen to ensure a majority of printed droplets contained at least 1 cell. For
samples of cells mixed with nanorods, cleaned, concentrated nanorod solution
was first mixed with concentrated cell stock solution, for our final concentration
of 1e9 cells/mL per cell type, and then subsequently diluted with our aqueous
EDTA solution. All solutions are mixed by inverting our microcentrifuge tubes
a minimum of 10 times.

EDTA was chosen as our sample buffer to avoid crystallization upon dry-
ing seen with PBS(Supplementary Fig. 6). On top of that, EDTA provides two
further advantages for our printed samples. When EDTA-containing droplets
dry on a hydrophobic substrate, a central region of aggregated EDTA, cells,
and GNRs dries in a much smaller area than that of a full droplet, forcing
the cells and GNRs into a much smaller volume, ensuring better coverage of
the cells with GNRs (Supplementary Fig. 9). Furthermore, we hypothesize
that the EDTA induces aggregation among the GNRs due to the electro-
static interaction between any residual CTAB on our GNRs and the EDTA[3],
as demonstrated in Supplementary Fig. 7. We hypothesize that this cluster-
ing, when coupled with the addition of cells, allowed for greater quantities
of nanorods to coat the cells, and led to the creation of SERS “hot spots”
amongst the aggregated GNRs, providing strong enhancements[4, 5].

Finally, we show that the addition of the EDTA and nanorods adds
minimal Raman background noise (Supplementary Fig. 8, 9, 14), making it
appropriate for our work in Raman cellular identification. Finally, to fur-
ther minimize coffee-ring effects from nanorods upon droplet drying, we used
vapor deposition to coat our gold-coated slides with a hydrophobic silane layer
(3-Aminopropyl)triethoxysilane (APTMS) which allows for a more close pack-
ing of our GNRs, providing greater and more uniform enhancement on our
cells[6–8].

Fabrication of silanized, gold-coated glass slides

The gold substrates used in this work were prepared by evaporating a 5
nm adhesion layer of titanium, followed by 200 nm of gold at a rate of
1 Angstrom/second using a KJ LEsker e-beam evaporator onto piranha
cleaned borosilicate glass slides. The gold-coated glass slides were then cleaned
with an oxygen plasma, using a Diener Pico Oxygen Plasma Cleaner, for
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3 min at 100 W power and ∼2 mbar of pressure, and silanized with 3-
(aminopropyl)trimethoxysilane, APTMS, using vapor deposition in order to
make the surface more hydrophobic and allow for greater aggregation of the
gold nanorods on the cells[8–10]. Slides were placed in a 1 liter flask in the
presence of 100 µL of APTMS, Sigma-Aldrich 281778-5ML. The flask was then
placed in a water bath at 40°C and allowed to react for 1 hr, after which
the slides were removed from the flask and placed on a hot plate heated to
40°C for 10 min to allow for the evaporation of loosely bound molecules. We
demonstrate that this APTMS layer also provides minimal Raman background
noise, making it a great candidate for quick and easy substrate modification
for biological Raman analysis (Supplementary Fig. 8).

Acoustic printing

Acoustic printing was completed using our custom-built ultrasonic, immersion
transducer with a center frequency of 147 MHz and a focal distance of 3.5
mm (unless otherwise noted) as determined using a network analyzer, Hewlett
Packard 8751A, and through pulse echo measurements taken on an oscillo-
scope, Keysight InfiniiVision DSOX3054A. The transducer was bound to a
quartz, spherical focusing lens. The transducer was mounted on x,y,z manual
translation stages, facing downwards, held 3.5 mm above a 303 stainless steel
ejection plate with a 1 mm hole. For printing experiments, fluid was pipet-
ted into the gap between the tip of the focusing lens and the ejection plate,
held in place through surface tension. During printing experiments, droplets
were ejected downwards through this 1 mm hole onto our chosen substrates
(Supplementary Fig. 2).

To generate our droplets, our transducer was powered by a waveform gen-
erator, Keysight 33600A Series Trueform Waveform Generator. The waveform
generator was connected to a synthesized RF signal generator, Fluke 6062A,
which in turn is connected to a power amplifier, Minicircuits ZHL-03-5WF+.
Our waveform generator produces a square-wave burst with a repetition fre-
quency of 1 kHz, when operating continuously, at our desired pulse width of
5.5 µs and at a voltage of 1.5 volts, enough to trigger our RF synthesizer. The
RF synthesizer generates a sinusoidal wave at 147 MHz and at our desired volt-
age, which then gets amplified before reaching the transducer. Droplets printed
from deionized water were ejected with 0.096 µJ of energy, droplets printed
from samples of S. epi and E. coli with and without GNRs were printed with
0.139 µJ of energy, and droplets printed with RBCs with and without GNRs
and from mixtures of RBCs, S. epi, E. coli, and GNRs were all printed with
0.386 µJ of energy.

To ensure stable ejection, we monitored ejection using a camera, Allied
Vision Guppy Pro F-125 1/3” CCD Monochrome Camera, coupled with a
20x objective pointed at the bottom of our ejection plate. This camera was
mounted opposite a strobing LED, also triggered by our waveform generator.
We also monitored the acoustic echo using an inline oscilloscope, Keysight
InfiniiVision DSOX3054A. To set up our printer, we pipette in 200 µL of fluid,
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turn on power to our transducer, and ensure that the transducer is in focus by
manually adjusting the focal distance of our transducer until we maximize the
echo as observed on the oscilloscope. We then vary the output voltage of the
RF synthesizer until we stably eject a single droplet without any additional
satellite droplets, as observed through our camera feed. We were then ready
to pattern print arrays of droplets (Supplementary Fig. 3, 4).

Pattern printing

Pattern printing was completed using a custom 3D printed substrate holder
mounted to two perpendicularly stacked Thorlabs DDS100M 100mm brushless
DC linear translation stages controlled by two Thorlabs K-Cube brushless
DC servo drivers. Our substrate is mounted ∼1 mm below our ejection plate
to minimize droplet translation before it reaches the substrate. A MATLAB,
Mathworks, 2018b, script was used to pattern print droplets onto our substrate
by controlling both our motorized stages and our waveform generator to trigger
droplet ejection at specific substrate locations.

Raman spectroscopy

Raman spectra was collected using the Horiba XploRa confocal Raman micro-
scope. The excitation wavelength for all measurements was 785 nm. The
Raman shift from 400 cm-1 to 2000 cm-1 was collected using 600 gr/mm grat-
ing. For baseline Raman spectra shown in Fig. 1, laser light was directed to
and Raman scattered light was collected from the sample using a 100x LWD,
0.6 NA objective with spot size of 0.83 µm, with laser power at the sample
of ∼6.71 mW, and acquisition time of 180 s. For spectra collected from each
entire droplet, laser light was directed to and Raman scattered light was col-
lected from the sample using a 10x, 0.25 NA objective with spot size of 2 µm,
with laser power at the sample of ∼10.6 mW, and acquisition time of 15 s
(Supplementary Fig. 11). Bacterial NR mixtures were measured within ∼2 hr
of sample preparation.

Spectral data processing

Python (Jupyter Notebook) was used to process spectral data. For spectra pre-
processing, samples were first thresholded to a minimum intensity of 150 a.u.
to remove any spectra with weak signal that likely were collected on the sub-
strate without the presence of cells. We then transformed our data by taking
log10(y)[11, 12] and smoothed the spectra using wavelet denoising[13, 14]. To
perform our smoothing, we used the denoise wavelet function from the scikit-
image Python library: denoise wavelet(y, method=’BayesShrink’, mode=’soft’,
wavelet levels=1, wavelet=’coif3’, rescale sigma=’True’). We then performed
a baseline removal by using a polynomial fit with degree 10. The specific
package used and code line is: peakutils.baseline(y, deg=10, max it =1000,
tol=0.0001). Note, the need for a higher degree polynomial arises from a typ-
ical instrumental background that is difficult to fit with lower degree fits.
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Following this baseline correction, Spectra were then individually normal-
ized across all wavenumbers by subtracting the spectral mean and dividing
by the standard deviation using the NumPy Python library[15], where y is
the array of intensity values across all wavenumbers for each spectra: (y -
numpy.mean(y))/numpy.std(y) (Supplementary Fig. 31).

For classification of samples, we further pre-process data by reducing
dimensionality of our spectra from 508 to the number of components nec-
essary to account for 90% of our sample variance using the PCA algorithm
from Scikit-learn[16] (Supplementary Fig. 19, 21). Classification was performed
using a Random Forest Classifier. We first tuned our classifier hyperparame-
ters using a cross-validated grid search to generate optimized parameters. To
do this we use Scikit-learn StratifiedShuffleSplit [16] function to randomly split
our sample 20 times into an 80:20 train:test split and created a parameter
grid for our number of estimators: {50, 100, 150, 200, 250, 300}, max features:
{auto, sqrt, log2}, and max depth: {2, 5, 10, 15, 20}. We created our Random
Forest Classifier using Scikit-learn, with a min samples split=2, and then per-
formed our grid search using Scikit-learn GridSearchCV, with refit = True,
n jobs = 3, and verbose = 190. We then perform a stratified K-fold cross val-
idation (Scikit-learn StratifiedKFold [16] with shuffle=True) of our classifier’s
performance across 10 splits using these optimal parameters. Finally, we use
the Scikit-learn confusion matrix [16] function to plot our results. Intermedi-
ate t-SNE projections were plotted using Scikit-learn manifold.TSNE with a
perplexity = 10[16] (Supplementary Fig. 20, 22).

Raman wavenumber importance was performed using Voigt profile pertur-
bation across all spectral wavenumbers. To achieve this, all spectra were first
preprocessed as described above. Our spectra of interest (600 spectra across all
6 cellular classes) were partitioned into an 80:20 train/test split using Scikit-
learn StratifiedShuffleSplit [16] with 10 splits. We reduce the dimensionality of
our training set to 10 components using the PCA algorithm from the Scikit-
learn[16]. We train our Random Forest Classifier on our training spectra using
optimized hyperparameters determined using a cross-validated grid search as
previously described. We iteratively perturb our test set at each wavenumber
to determine the relative importance of each wavenumber to accurate spectra
classification. To do this, we iterate over each wavenumber in each normalized
spectrum in our test set (120 spectra per split). For each wavenumber, we per-
turb our test spectra with a Voigt profile curve[17, 18], varying the intensity
of the Voigt function 5 times at each wavenumber for each spectrum to get a
large sample set. To generate our Voigt profiles, we first take all spectra in our
entire sample set (600 spectra) and shift the intensity at a given wavelength
(w) to guarantee that the intensities are positive. We then randomly shuffle
all intensities and randomly select one to be used to generate our Voigt profile
(voigt intensity). We generate this profile with our half-width at half-maximum
(HWHM) of the Lorentzian profile, γ = 2, and the standard deviation of
the Gaussian profile, σ = α / np.sqrt(2*np.log(2)), where α = 5. From here,
we create our voigt profile = np.real(wofz((x - w + 1j*γ)/σ/np.sqrt(2))) /
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σ/np.sqrt(2*np.pi), where x is the entire range of wavenumbers, and scale this
distribution to range from [0,1]. We utilize the wofz function from the SciPy
Python library to implement the Faddeeva function as the Voigt profile is
related to the real part of the Faddeeva function. We also utilize various math-
ematical functions from the NumPy Python library to generate our profile.
Voigt profile width was chosen to match peak widths seen in our spectra. To
perturb our spectra with this profile, we take each spectra and shift intensi-
ties by the minimum, so that all intensities are positive (pos spectrum). We
then perturb each wavenumber by our Voigt profile to generate a modified
spectrum = pos spectrum*(1-voigt profile) + voigt intensity*voigt profile. We
transform this perturbed spectrum with our established PCA and classify it
using our trained Random Forest Classifier. We then plot a confusion matrix
for each wavenumber using Scikit-learn confusion matrix [16] and generate an
accuracy and f1 score using Scikit-learn classification report [16], across all 6000
trials per wavenumber. Finally, we use our confusion matrix to generate the
per class performance. See Supplementary Fig. 23 for more.

Supplementary Note 1: Gold nanorods for
SERS applications

SERS is a phenomenon that provides Raman intensity signal enhancements
of on average of 105-106, with localized hotspots providing enhancements of
108-1010 [19–21]. Commonly, SERS utilizes metallic substrates that, through
their plasmonic and chemical effects (such as charge transfer ability), enhance
both the electric field from the incident light and the Raman scattered light
from the sample, resulting in fourth order enhancement in the local electric
field |E|4 [22–28]. SERS typically relies on metallic substrates to provide these
enhancements. For biosensing applications, it is important for these substrates
to provide large enhancements while being tunable, reproducible, stable, and
inexpensive [29]. As such, colloidal nanoparticles have gained traction as one
of the primary forms of metallic SERS substrates [26, 30–34]. In the realm
of biosensing, gold and silver nanorods have been the primary metals used
for SERS substrate synthesis due to their chemical stability and low toxic-
ity [26, 29, 35–37]. Particularly ideal for biological sensing, nanoparticles with
sharp tips, such as nanocubes, nanostars [38], nanopyramids, and nanorods,
provide large Raman spectral enhancement factors, with nanorods providing
the best balance of stability, reproducibility, tunability, cost, and enhance-
ment [22, 39]. Furthermore, due to their pervasiveness, gold nanorod (GNR)
synthesis and properties are well documented allowing for reproducibility and
easy tunability of optical properties through choice of particle size and shape
[1, 30, 40–43]. Finally, advances in SERS substrates such as nanoparticle-
on-mirror (NPoM) constructs [22, 44], nanogaps and nanoholes [29, 45, 46],
graphene based nanodot arrays [47], and core-shell alloys [48–50] are paving
the way for future Raman-based biosensing applications.
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Supplementary Note 2: Acoustic printing for
handling biological samples

Acoustic printing works by using ultrasonic waves to eject a droplet from a free
surface of fluid. A radio frequency (RF) burst signal is used to excite a trans-
ducer at its resonant frequency, generating ultrasonic waves that exert force
on the fluid surface [51, 52]. When the focus of the transducer is aligned with
the liquid-air interface and the intensity of the acoustic field is high enough,
the generated radiation pressure will overcome the surface tension and the
sound wave gives rise to a mound of fluid from the surface [52, 53]. If the
energy of the incident wave exceeds the threshold energy, a droplet breaks
free from the fluid surface at a velocity of a few meters per second due to
the Rayleigh-Taylor instability [51, 54]. The droplet diameter has been shown
to closely match the diffraction-limited focal width at the liquid-air interface,
and as such, the droplet diameter is inversely proportional to the frequency of
the transducer, with 5 MHz and 300 MHz ultrasonic waves generating droplet
diameters of 300 µm and 5 µm, respectively [52]. (see Fig. 1a). ADE droplet
ejection has been well characterized and has great tunability for handling a
variety of biological samples [55]. Furthermore, the focused ultrasonic waves
completely control the size, speed, and directionality of the ejected droplet
and allow for ADE from an open liquid surface. Given that the dimensions of
this open liquid surface are much larger than the diameter of the focal spot
size, ADE is considered a nozzle-less technology [56]. This holds true for our
downwards setup utilizing an ejection plate, given that our focal spot size is
∼2 orders of magnitude smaller than the 1 mm diameter hole [51, 52]. As a
nozzle-less technology, ADE has unparalleled advantage in biological sample
handling as compared with other commercial piezo or thermal inkjet printers
that rely on physical flow focusing. In particular, ADE eliminates system clog-
ging and compromised cell viability or biomarker structure due to shear forces
generated by nozzles. Additionally, ADE relies on ultrasonic waves to generate
droplets, as such, the transducer never has to contact the ejection medium,
but rather can propagate through a matched coupling medium, eg. through
the bottom of an acoustically “transparent” multiwell plate, with minimal loss
of acoustic energy, mitigating risks of sample contamination and loss of steril-
ity [56]. ADE has also gained traction for versatility in setup and ability for
high-throughput droplet generation. For a single acoustic ejector, the limiting
factor for droplet ejection rate is the dissipation of capillary waves propagat-
ing radially outwards on the fluid surface after ejection [51, 57]. Advances in
ADE have led to improvements in fabrication methods of the focusing lenses
and ejector arrays including: spherical lenses in silicon, spherical PZT shells,
and fresnel acoustic lenses [51, 58]. These advancements have lead to the devel-
opment of high-throughput ejector arrays greater than 1000 print heads and
ejection rates of 25 kHz, allowing for ejection of a 10 mL of fluid in under an
hour [58]. Furthermore, these advances have expanded the utility of ADE for
biological samples handling to include cellular acoustic printing [55, 59, 60],
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biological crystallography [61–63], high-throughput screening (HTS) of biolog-
ical agents [64], and for sample preparation in MALDI [65], highlighting the
vast potential for biological analysis with ADE.
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Supplementary Fig. 1 Photographs of droplets printed with a range of acoustic frequen-
cies. Droplets were printed with 4.8 MHz, 17 MHz, 44.75 MHz, and 147 MHz and had droplet
diameters of 300 µm, 84 µm, 44 µm, and 15 µm respectively, highlighting the tunability of
acoustic droplet ejection. Scale bars are 500 µm, 200 µm, 100 µm, and 25 µm respectively.
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Supplementary Fig. 2 a, Stroboscopic photograph showing a droplet being ejected down-
wards through the 1 mm hole on our ejection plate. Droplet was ejected from a pool of
deionized water using a transducer operating at 147 MHz, Photo was taken with a 12 µs
phase delay after the burst was triggered. Scale bar is 100 µm. b, Stroboscopic images of the
time evolution of downward droplet ejection through the 1 mm hole at an acoustic frequency
of 147 MHz. Droplet shown here is 15 µm in diameter and ∼2 pL in volume. Droplet was
ejected with 0.096 µJ of energy with a pulse width of 5.5 µs, and was ejected downwards at
∼3.5 m/s. Scale bar is 100 µm. All images were captured with an image exposure time of
40 ms and a droplet ejection rate of 1 kHz. As such, each frame is composed of 40 droplet
ejections.

Supplementary Fig. 3 Photo a, and rendering b, showing acoustic printing setup,
including camera with 20x objective, baseplate with 1 mm diameter hole, strobing LED,
gold-coated glass slide mounted onto a motorized XY stage, acoustic transducer, and print-
ing fluid (teal).
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Supplementary Fig. 4 Schematic showing the acoustic droplet ejection setup. The print-
ing fluid (teal) rests between the focused acoustic transducer and the ejection plate with the
1 mm hole, held in place through surface tension. The droplets are ejected downwards onto a
gold-coated glass slide mounted onto a motorized XY stage (stacked single axis stages). The
burst signals to the transducer are generated from a function generator, routed through an
RF synthesizer, and finally through a power amplifier before reaching the transducer. Ejec-
tion and movement of the mounted slide are controlled synchronously using MATLAB code.
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Supplementary Fig. 5 Absorption spectra of GNRs used for Raman spectroscopy. Inset
shows TEM of GNRs. Scale bar is 50 nm.
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Supplementary Fig. 6 Bacterial interrogation across multiple nanorod syntheses and
resonance frequencies. We synthesized 4 different batches of GNRs and evaluated bacterial
droplets with each batch. a, UV-Vis measurements of the 4 rods showing a range of resonance
frequencies between 770 nm and 960 nm. Our chosen nanorods are those listed as NR4. b,
Average spectral intensities and standard deviations collected from droplets printed with
each of our four GNR batches mixed with S. epi bacteria diluted to a final concentration of
1e9 cells/mL in a 1:9 mixture v/v of Invitrogen UltraPure 0.5M EDTA, Invitrogen 15575020,
and Mili-Q purified water onto a silanized, gold-coated glass slide. Spectra were collected with
a 10x objective lens with a 0.25 NA and ∼10.6 mW power. Each droplet was interrogated
with a time study of 5 time points, with each exposure lasting 15 seconds. 10 droplets were
analyzed from each GNR batch for a total of 50 data points across each group. The data
shows the primary S. epi peaks around 731 and 1317 cm-1, with varying max intensities,
highlighting both the robustness of our system for spectral collection as well as the potential
for improvements through tuning of GNR aspect ratio.
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Supplementary Fig. 7 Crystallization of saline upon drying in acoustically printed
droplets printed at 147 MHz. Droplets a, and b, were printed from a 10% v:v phosphate
buffered saline (PBS) solution. Droplet c, was printed with a mixture of mouse RBCs sus-
pended in 10% v:v PBS solution. Scale bars are 10, 10, 5 µm, respectively.

Supplementary Fig. 8 Studying the effect of the EDTA on the nanorod dispersion in
fluid. a, Photograph showing colorimetric comparison of gold nanorods (GNR) in (left) a 1:9
mixture of Invitrogen UltraPure 0.5 M EDTA, Invitrogen 155750, and Milli-Q purified water
and (right) Milli-Q purified water only. b, Photograph showing colorimetric comparison of
GNRs mixed with S. epi bacteria at a concentration of 1e9 cells/mL. The image shows the
gold nanorods and bacteria in (left) Milli-Q purified water only and (right) in a 1:9 ratio v/v
of EDTA solution and Milli-Q purified water. c, Photograph showing the settling of solution
of GNRs, S. epi at a concentration of 1e9 cells/mL, and a 1:9 ratio v/v of EDTA solution to
Milli-Q purified water. Photograph was taken 5 min after the solution was mixed together.
We note that these images highlight that, as expected, the EDTA appears to aggregate
the GNRs into clusters. As the S. epi bacteria seem to cause clustering regardless of the
presence of the EDTA due to their surface charge, the difference between the sample with
and without the EDTA is less noticeable than in the samples of only GNRs.
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Supplementary Fig. 9 Raman of background signals. a, Spectra were collected of a gold-
coated glass slide, a gold-coated glass slide with an APTMS silane layer, and of a droplet
printed onto a gold-coated glass slide with APTMS. Droplets were printed from Invitrogen
UltraPure 0.5M EDTA, Invitrogen 15575020, mixed in a 1:9 ratio v/v with Mili-Q purified
water. The spectra show that most of the background signal comes from the gold substrate
with little additional background from our APTMS deposition and the additional EDTA
used in our cell solutions. b, Identical spectra to that shown in a overlaid with a spectrum
taken of S. epi bacteria and GNRs suspended in EDTA solution at a concentration of 1e9
cells/mL. The plot highlights that the spectral signal intensity from our bacteria is much
higher than that of the background. All spectra were collected with a 10x objective lens
with a 0.25 NA and ∼10.6 mW power for 15 s.
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Supplementary Fig. 10 Droplets were printed from cellular dilution mixture without any
cells. Droplets were printed from Invitrogen UltraPure 0.5 M EDTA, Invitrogen 15575020,
mixed in a 1:9 ratio v/v with Mili-Q purified water onto a silanized, gold-coated glass slide.
Spectra were collected with a 10x objective lens with a 0.25 NA and ∼10.6 mW power for 15
s. The SEM clearly shows minimal spread of the EDTA solution onto the gold-coated slide.
The spectra show minimal, and consistent background signals from the EDTA solution.
Scale bar is 5 µm.
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Supplementary Fig. 11 SEMs of grids printed with cell and GNR mixtures. SEMs show
16 droplets imaged out of a grid of over 400 droplets. Mixtures were printed from cells
with and without GNRs diluted in a 1:9 mixture of EDTA solution and Milli-Q water to a
final concentration of 1e9 cells/mL. All grids were acoustically printed using a transducer
operating at 147 MHz with a 5.5 µs pulse width burst signal. SEMs show a, S. epi b, S.
epi mixed with GNRs both ejected with 0.096 µJ of acoustic energy and c, mouse RBCs d,
mouse RBCs mixed with GNRs e, 1:1 mixture of S. epi and mouse RBCs f, 1:1 mixture of
S. epi and mouse RBCs with GNRs all printed with 0.139 µJ of acoustic energy. The lighter
and darker circles in each photo highlight the outer edge of the droplet as well as the smaller
volume formed from the dried EDTA mixture containing our cells and GNRs in the center
of the droplet. Scale bar is 50 µm.
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Supplementary Fig. 12 Raman focal spot size. Images show screen shots from Horiba
XploRA Raman confocal microscope UI. The image on the left shows an array of droplets
printed onto an APTMS silanized, gold-coated slide. Droplets were printed from a solution
of gold nanorods and S.epi bacteria at a concentration of 1e9 cells/mL, suspended in a
solution of Invitrogen UltraPure 0.5 M EDTA, Invitrogen 15575020, mixed in a 1:9 ratio
v/v with Milli-Q water. The image on the right shows the same array of droplets, with the
10x objective with the 785 nm laser turned on, operating at 25% laser power or ∼10.6 mW
of power. This laser spot size is ∼2 µm.
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Supplementary Fig. 13 Intensity study of single droplet with S. epi bacteria and GNRs
taken at 1, 15, 30, 60, and 90 seconds. Droplets were printed from a mixture of GNRs and
S. epi bacteria at a final concentration of 1e9 cells/mL diluted in a 1:9 v/v of Invitrogen
UltraPure 0.5 M EDTA, Invitrogen 15575020, and Mili-Q purified water onto a silanized,
gold-coated glass slide. Spectra were collected with a 10x objective lens with a 0.25 NA and
∼10.6 mW power. The spectra show increasing signal intensity and signal complexity with
each longer exposure time. This highlights that our time selection of 15 s is well below the
time at which our sample gets damaged by the laser power. This analysis guided our choice
of a 15 s acquisition time to balance gathering clear, distinct spectra with choosing a fast
enough acquisition time to show potential for clinical translation.
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Supplementary Fig. 14 Time study of single droplet with S. epi bacteria and GNRs
across multiple time points. Droplets were printed from a mixture of GNRs and S. epi
bacteria at a final concentration of 1e9 cells/mL diluted in a 1:9 v/v of Invitrogen UltraPure
0.5 M EDTA, Invitrogen 15575020, and Mili-Q purified water onto a silanized, gold-coated
glass slide. Spectra were collected with a 10x objective lens with a 0.25 NA and ∼10.6 mW
power. Each spectrum was collected for 15 s in a time series lasting a total of 75 seconds.
The SEM clearly shows a cluster of bacteria coated in GNRs. The spectra show minimal
variation over the 75 second duration, showing that our acquisition time of 15 seconds does
not damage the cells. Scale bar is 5 µm.

Supplementary Fig. 15 Background signal from gold nanorods (GNR). Droplets were
printed from a sample containing GNRs suspended without any cells in a 1:9 v/v mixture of
Invitrogen UltraPure 0.5 M EDTA, Invitrogen 15575020, and Mili-Q purified water onto a
silanized, gold-coated glass slide. Spectra were collected of each droplet with a 10x objective
lens with a 0.25 NA and ∼10.6 mW power for 15 s. The SEM shows a droplet containing a
few clusters of GNRs clearly distinguishable, highlighting both the presence of the GNRs and
the absence of a coffee-ring of nanorods. The plot shows the mean and standard deviation
of 100 droplets printed from a sample of S. epi bacteria with GNRs in EDTA solution (in
blue, identical to that from Fig. 3), and the mean and standard deviation of 20 droplets
printed from the GNR solution without cells. The spectra show that while the GNRs have
a background signal, hypothesized to be from any remaining CTAB present in the solution
after rinsing the rods, the cells have a clearly distinguishable signal separate from that of
the GNRs, similar to our baseline S. epi spectra. Scale bar is 5 µm.
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Supplementary Fig. 16 Spectra were collected from a sample of droplets printed from
GNRs mixed with mouse RBCs at a final concentration of 1e9 cells/mL diluted in a 1:9
ratio v/v of Invitrogen UltraPure 0.5 M EDTA, Invitrogen 15575020, and Mili-Q purified
water onto a silanized, gold-coated glass slide. Spectra were collected with a 10x objective
lens with a 0.25 NA and ∼10.6 mW power for 15 s. The first spectra is taken while the focal
spot is centered on the droplet while the other is taken when on the silanized gold substrate
to the side of the droplet highlighting that our signal is coming directly from the droplet
and not from any background material on the slide.
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Supplementary Fig. 17 Plot showing the mean and standard deviation of SERS spectra
taken from droplets printed from three cell lines (S. epi, E. coli, and RBCs) with and without
GNRs. Spectra were collected from 100 and 15 droplets, respectively. The plots highlight
both the enhancements generated with the presence of GNRs as well as the variations
in peak spectra intensity due to the variations in surface charge density on each cell line
and subsequently the cells’ varying attraction to the positive surface charge of the GNRs,
resulting from the CTAB surfactant on their surface [2].
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Supplementary Fig. 18 Data from droplets print from mouse whole blood mixed in with
GNRs. Mouse whole blood was purchased with the addition K2EDTA as an anti-coagulating
agent for processing and shipment. Blood was then diluted 1:9 with our EDTA solution (1:9
ratio v/v of Invitrogen UltraPure 0.5 M EDTA, Invitrogen 15575020 in DI water) for a final
RBC count of 1.1 e9 cells/mL, closely approximating the RBC count of samples printed
with RBC mixtures. GNRs at a concentration matching that all other cellular samples was
added to the solution and then samples were printed onto a gold-coated slide and Raman
spectra were collected. a, SEMs showing stable printing of solutions from diluted mouse
whole blood mixed with GNRs. Top image shows a 6x6 grid of droplets as a subset of
the hundreds printed. The remaining two SEMs show two representative droplets from the
sample with 1 and 7 RBC, respectively. Scale bars are 50 µm and 5 µm. b, Mean spectra
standard deviation of 100 spectra collected from samples printed from mouse RBCs and
mouse whole blood, both diluted in aqueous EDTA to a final RBC count of 1e9 cells/mL
mixed with GNRs. Spectra are shown after baseline correction c, Normalized mean spectra
from data shown in b. Normalized means show that while the whole blood exhibits similar
peaks to that of the RBCs, there are many more minor peaks in the spectrum, highlighting
expected sample complexity from the whole blood sample.
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Supplementary Fig. 19 Plot of the percentage of variance attributed to each principal
component and the cumulative explained variance over 50 components. The green line indi-
cates the number of PCA components necessary to capture 90% of all explained variance
in our samples. For all 300 spectra from our single cell-line droplets, we demonstrate that
we can account for at least 90% of all variance with 24 components generated from all 508
wavenumber features in our spectra.

Supplementary Fig. 20 Plots showing a 2-component, t-distributed stochastic neighbor
embedding projection (t-SNE) with perplexity = 10 across our 3 single cell-line classes. Data
is plotted a, with data inclusive of all wavenumber features and b, after performing a 24-
component PCA for dimensionality reduction. Plots show relative clustering of our classes
and minimal variation to clustering after dimensionality reduction.
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Supplementary Fig. 21 Plot of the percentage of variance attributed to each principal
component and the cumulative explained variance over 50 components. The green line indi-
cates the number of PCA components necessary to capture 90% of all explained variance
in our samples. For all 600 spectra from our 3 single cell-line droplet classes and our 3 cell
mixture classes, we demonstrate that we can account for at least 90% of all variance with
30 components generated from all 508 wavenumber features in our spectra.

Supplementary Fig. 22 Plots showing a 2-component, t-distributed stochastic neighbor
embedding projection (t-SNE) with perplexity = 10 across all 6 of our classes. Data is plotted
a, with data inclusive of all wavenumber features and b, after performing a 30-component
PCA for dimensionality reduction. Plots show relative clustering of our classes and minimal
variation to clustering after dimensionality reduction.
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Supplementary Fig. 23 Feature Validation. We perform feature validation on our spectra
to determine which wavenumbers and spectral bands are most important for our classifier.
We take our 600 spectra across all 6 cellular classes and split the samples using a stratified
shuffle split into an 80:20 train/test split. For each spectrum in our training set, we iter-
atively perturb the spectrum at each wavenumber. After each perturbation, we calculate
the classification accuracy and compare with our baseline accuracy. Every wavenumber of
each spectrum in the test set is perturbed 5 times and all results are averaged for our final
feature extraction. Spectra were perturbed with a normalized Voigt profile. Line width cho-
sen to roughly match peak widths seen in our spectra. a, plot showing an example Voight
curve (blue), unperturbed example spectrum from our dataset (red), and perturbed spec-
trum (green). b, Voigt profile intensities were chosen through random sampling of all spectra
in our training set. Plot shows an example of a spectrum from our sample set with 100
different perturbations. c, Heatmap highlighting feature validation performed to determine
relative weight of spectral wavenumbers in our Random Forest classification. Heatmap is
overlaid with a plot of mean and standard deviation of the perturbed classification accu-
racy (red) and f1 score (blue) calculated across all trials. Mean accuracy is plotted in green.
Wavenumbers with lower accuracies are shown to be critical features, as random perturba-
tions in these regions are highly correlated with decreases in classification accuracy. d, Plot
of the mean classification accuracy broken down into accuracies across each of our cellular
and mixture classes.

27



Supplementary Fig. 24 Classification using spectral feature bands of interest evaluated
across 600 spectra collected from single cell-line droplets of S. epi, E. coli, and mouse RBCs
mixed with GNRs, and our 3 cell mixtures. a, Heatmap presented in Supplementary Fig.
22, highlighting feature importance calculations performed to determine relative weight of
spectral wavenumbers in our random forest classification. Heatmap is overlaid with 3 bands
representing key spectral bands used by our classifier. We further demonstrate that these
bands are primarily responsible for our classification accuracies by preprocessing our spectra
by removing spectral features outside these bands (420-522 cm-1, 700-775 cm-1, 1200-1454
cm-1). We then reduced the dimensionality of our remaining features using an 8-component
PCA as previously reported. b, Plot of the percentage of variance attributed to each prin-
cipal component and the cumulative explained variance over 50 components. The green line
indicates the number of PCA components necessary to capture 90% of all explained vari-
ance in our samples. For this sample set taking only specific wavenumber bands from our
spectra, we demonstrate that we can account for at least 90% of all variance with only 8
components generated from all 508 wavenumber features in our spectra. c, Finally, we use
our previously described random forest classifier on our samples and perform a stratified K-
fold cross validation of our classifier’s performance across 10 splits. Results are plotted on a
normalized confusion matrix. We show that we achieve ≥ 81% classification accuracy across
all samples as compared with the ≥ 87% classification accuracy achieved when evaluating
the entire spectra window from 400-1700 cm-1. These results further validate our feature
recognition model. Furthermore, they pave the way for future development of low cost POC
systems by demonstrating that the use of low-cost spectrometers with limited spectral win-
dows may be possible for such diagnostic work.
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Supplementary Fig. 25 Plot showing the mean and standard deviation of SERS spectra
taken from droplets printed from our 6 droplet classes: three single-cell line classes (S. epi, E.
coli, and RBCs) and three mixture classes (equal mixtures of S. epi and RBCs, E. coli and
RBCs, and S. Epi, E. coli, and RBCs) all diluted to a final concentration of 1e9 cells/mL of
each cell type in our aqueous EDTA solution and mixed with GNRs. Spectra were collected
from 100 droplets for each class.
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Supplementary Fig. 26 Heatmap highlighting feature extraction performed to determine
relative weight of spectral wavenumbers in our random forest classification. Heatmap is
overlaid with the mean SERS spectra of 100 measurements each, taken from single droplets
printed from three cell lines (S. epi, E. coli, and RBCs) and three mixtures (S. epi and
RBCs, E. coli and RBCs, and S. epi, E. coli, and RBCs) mixed with GNRs. Wavenumbers
representative of biological peaks of dried and liquid SERS of a, S. epi, b, E. coli, and c,
RBCs previously reported in the literature are plotted as vertical lines [2, 66–76].
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Supplementary Fig. 27 We further analyze samples printed from mixtures of S. epi
bacteria, RBCs, and GNRs to understand how our ML algorithms would handle droplets
printed with a greater number of RBCs as compared to S. epi. For the 100 droplets analyzed
in Figure 4 from the main text, we count the number of S. epi bacteria and RBCs and a, plot
ratio of S. epi :RBCs in each of the droplets. Of note, 8 droplets had 0 RBCs and therefore
are not included on the plot. b, There were 10 droplets with a greater number of RBCs
than S. epi in each droplet. For these droplets, we train our ML algorithm on the remaining
590 spectra in our 6 cellular classes. We then test it on these 10 spectra. The pre-processed
spectra are plotted above, with the color indicating the classifier prediction. We got a 90%
classification accuracy, with 1 spectra falsely classified as containing both S. epi and E. coli
bacteria along with RBCs. c, We show two representative SEMs from these 10 droplets,
with the RBCs and S. epi false colored in red and blue, respectively. The scale bar is 5 µm.
These results are indicative of what we might see in a more clinically relevant sample with
a greater concentration of RBCs than bacteria. We see that even in our limited dataset, we
get comparable classification accuracies to samples with greater bacterial numbers, showing
promise for our platform’s ability to detect lower bacterial concentrations.
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Supplementary Fig. 28 Raman mapping of droplets printed from S. epi, E. coli, and
GNR mixtures with a focal spot size of 0.7 µm chose to allow for single cell interrogation. a,
SEM of a single droplet with an overlay showing the 29 XY coordinates of spectra collection
points. Scale bar is 2 µm. b, Waterfall plot showing the Raman spectra collected at each
XY location. Spectra were preprocessed with a baseline fit. c, Waterfall plot showing the
12 remaining spectra after further preprocessing. First, spectra below an intensity count of
150 were removed to eliminate spectra taken from the substrate in locations without cells.
Subsequently, remaining spectra were normalized to a zero mean and unit variance using the
Scikit-learn python library Standard Scaler function [16]. d, Processed spectra were then
evaluated using a SVM, Scikit-learn,[16] optimized and trained on our known sample set of
300 droplets (Figure 3c). The plot shows the prediction probabilities across each of our 3
cell types, predicted for each processed spectrum.
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Supplementary Fig. 29 Raman mapping of droplets printed from S. epi, RBCs, and
GNR mixtures with a focal spot size of 0.7 µm chose to allow for single cell interrogation. a,
SEM of a single droplet with an overlay showing the 29 XY coordinates of spectra collection
points. Scale bar is 2 µm. b, Waterfall plot showing the Raman spectra collected at each
XY location. Spectra were preprocessed with a baseline fit. c, Waterfall plot showing the
14 remaining spectra after further preprocessing. First, spectra below an intensity count of
150 were removed to eliminate spectra taken from the substrate in locations without cells.
Subsequently, remaining spectra were normalized to a zero mean and unit variance using
the Scikit-learn python library Standard Scaler function [16].d, Processed spectra were then
evaluated using a SVM, Scikit-learn,[16] optimized and trained on our known sample set of
300 droplets (Figure 3c). The plot shows the prediction probabilities across each of our 3
cell types, predicted for each processed spectrum.
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Supplementary Fig. 30 Future vision for Raman hyperspectral imaging. a, Calculated
plot of the classification accuracy for each independent sample class, highlighting wavenum-
ber importance for each individual class. Wavenumbers with lower accuracies are shown to
be critical features as random perturbations are highly correlated with decreases in classi-
fication accuracy. b,Calculated plot of the mean classification accuracy across all 6 sample
classes, calculated across all perturbation trials. Plot is shown as a rainbow spectrum to
correspond with simulated hyperspectral images shown in c. Plot is identical to that shown
in the main text Fig. 4d. c, Simulated image showing a grid array of 25 droplet SEM. 23
droplets contain only RBCs and GNRs while 2 droplets contain a mix of S. epi bacteria,
RBCs, and GNRS. The image on the left shows the droplets containing only RBCs lighting
up when interrogated with 816 nm light, while the image on the right shows droplets con-
taining a mixture of bacteria and RBCs lighting up when interrogated with light at 833 nm.
Chosen wavelengths correspond to accuracy dips associated with each droplet class. Scale
bar is 10 µm.

41



Supplementary Fig. 31 Spectral Preprocessing. Plot showing a sample spectra taken
from our dataset of spectra collected from droplets printed with E. coli bacteria and GNRs.
Plot shows (from top to bottom) the raw spectrum, the spectrum after a log10 transforma-
tion, spectrum after smoothing using a wavelet denoising, spectrum with baseline correction,
and finally the normalized spectrum.
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