Science Advances

Supplementary Materials for

Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium

Christopher J. Gisriel et al.

Corresponding author: Christopher J. Gisriel, christopher.gisriel@yale.edu; Roberta Croce, r.croce@vu.nl; Gary W. Brudvig, gary.brudvig@yale.edu; Donald A. Bryant, dab14@psu.edu

Sci. Adv. **9**, eadg0251 (2023) DOI: 10.1126/sciadv.adg0251

This PDF file includes:

Supplementary Texts S1 and S2 Figs. S1 to S16 Tables S1 and S2 References

Supplementary Text S1

Lack of excitonic interactions among PCBs and retrieval of parameters for modeling FRET in FRL-AP.

The use of Förster theory was deemed to be appropriate for modeling EET dynamics in FRL-AP helices because the absorbance peaks of the α and β -subunits (709 and 621 nm, respectively) are very far apart in energy (~2,000 cm⁻¹) and huge electronic coupling values would then be required in the system to induce any sizeable excitonic effects. For canonical AP trimers, whose nearest distance between α - and β -PCBs is very similar to that of FRL-AP helices, the site-energies of the two PCBs (15,300 and 16,060 cm⁻¹, respectively) and the electronic coupling between them (-163 cm⁻¹) has been determined using spectral modeling (42). In the framework of Frenkel excitons, this implies almost fully (96%) localized excited states. Assuming then that the electronic coupling between α/β -PCB pairs in the FRL-AP is on the same order of magnitude as in canonical AP, and that the gap in site-energies is at least twice as large, we can exclude excitonic effects and assume localized states.

Thus, the FRET rate (in ps⁻¹) can be calculated in the following way:

$$k_{D\to A} = 1.18 \, V^2 \, J$$

The electronic coupling V (in cm⁻¹) is calculated according to the ideal dipole approximation:

$$V_{DA} = 5.04 \frac{\mu_D \mu_A \kappa}{R^3}$$

 μ_D = Transition dipole moment (TDM) of the donor in Debye

 $\mu_A = TDM$ of the acceptor in Debye

R = center-to-center separation between the donor and acceptor in nm

 κ is the orientation factor and can be calculated as follows:

$$\kappa = \hat{\mu}_D \cdot \hat{\mu}_A - 3(\hat{\mu}_D \cdot \hat{R}_{DA})(\hat{\mu}_A \cdot \hat{R}_{DA})$$

 $\hat{\mu}_D$ = Unit vector of the TDM of the donor

 $\hat{\mu}_A$ = Unit vector of the TDM of the acceptor

 \hat{R}_{DA} = Unit vector of the center-to-center separation of the donor and acceptor

J represents the spectral overlap integral for the fluorescence of the donor and the absorption of the acceptor in which both spectra are normalized to an area of 1 on a cm⁻¹ scale:

$$J_{DA} = \int_0^\infty F_D(\nu) A_A(\nu) \, d\nu$$

The orientation of the TDM for the S₁ state of PCB is not as well established in the literature as it is for some other chromophores (e.g., Chl molecules). For the closely related chromophore phycoerythrobilin (PEB), the TDM orientation was calculated using a CIS/3-21g level of theory to be oriented roughly along the CHD to the C4A atom (these refer to the atom names in the coordinate files for PCBs) (40). In another recent work in which the EET dynamics of the cyanobacterial PBS was modeled using Förster theory, the TDM was taken to be oriented along the axis of the conjugated parts of the bilins (11). We have calculated the orientation of the TDM for the α -PCB and β -PCBs in our system using a TD-DFT B3LYP-D3BJ/TZ2P level of theory (43–45) as described in **Materials and Methods**, which produces similar results. The calculated orientations of the S₁ TDM of the α -PCB and β -PCB are shown in **fig. S11**. The calculated TDMs are almost parallel to the axis connecting the NA and the NB atom in the molecules, and this axis was therefore used for the FRET calculations. The center-to-center separation was determined as the axis connecting the CHA atoms of the donor and acceptor molecules. Several values have been reported for the magnitude of the S₁ TDM of bilins. In the EET modeling of a cyanobacterial PBS a value of 15 D was used for AP chromophores (*11*). Quantum mechanical calculations of the S₁ TDM magnitudes of the bilins in the PE545 complex, which includes PEB and 15,16-dihydrobiliverdin, yielded magnitudes in the range of ~10-13.8 D in two different studies (40, 46). In another study, quantum mechanical calculations were performed to retrieve the S₁ TDM magnitudes of the PCB pigments found in C-phycocyanin and magnitudes in the range of 11.1-13.5 D were found (47). Spectral modeling of the C-phycocyanin complex yielded transition dipole moments for the pigments in the range of 5.4-6.5 D. Overall, we therefore assume that the TDM magnitude for the PCBs in FRL-AP are within the range 5.4-15 D (47). We have therefore chosen to use a TDM magnitude that yields results that are closest to the results obtained with the pump-probe experiment, which is 10 D.

Finally, the spectral overlap of the α -PCB and β -PCB is required to calculate FRET rates, for which the emission and absorption spectrum of both are required. For the α -PCB emission spectrum, we used the steady-state emission spectrum of the FRL-AP. This is appropriate because the pump-probe experiment showed that excited-state decay arises only from α -subunits, and because the site-energies of the α - and β -PCBs are at least 1,800 cm⁻¹ apart (~9 k_BT at room temperature). Thus, the steady-state emission spectrum of the FRL-AP contains contributions from only the α -PCB. To obtain the steady-state emission spectrum of the β -PCB, we subtracted the α -PCB emission spectrum (recombinantly expressed and isolated from *Synechococcus* 7002) from the emission spectrum of FRL-AP containing a fraction of free β -subunits (recombinantly expressed and isolated from *E. coli*). The steady-state emission spectrum of the α - and β -subunits are shown in **fig. S12A**.

To obtain the absorption spectra of the α and β PCB chromophores, we have fitted to FRL-AP the absorption spectrum with the reversed emission spectra of the α -PCB and β -PCBs (**fig. S12B**), allowing the peak positions and relative amplitudes to vary. It was found that in the β -PCB absorption region the reversed disconnected β -PCB emission spectrum was not wide enough to correctly fit the data. Therefore, as an additional parameter the width of the β -PCB absorption was allowed to vary. The β -PCB emission spectrum that was used for the spectral overlap calculations was then obtained by reversing the fitted β -PCB absorption spectrum while considering a Stokes shift of 5 nm (which is the same as the determined Stokes shift of the α -PCB). The fitted absorbance spectrum is shown in **fig. S12B**. The area normalized spectra used for the spectral overlap calculations are shown in **fig. S12C**.

Using the above-mentioned parameters, formulas, and the FRL-AP structure, the Förster rates between all the pigments in the system could be calculated. Given the initial distribution of excited state populations for the pigments, the time-evolution of these populations could be calculated by solving the following master equation:

$$\frac{dp_m(t)}{dt} = \sum_{n \neq m} p_n(t) \cdot k_{n \to m} - p_m(t) \cdot \left\{ \left(\sum_{n \neq m} k_{m \to n} \right) + \frac{1}{\tau_d} \right\}$$

 $P_m(t)$ = excited-state population of pigment m as a function of time t τ_d = excited-state lifetime of pigment m

The excited-state lifetime τ_d of each pigment in the FRL-AP system was set to the value as determined by the time-resolved absorption experiment (889 ps, **Fig. 6**).

To simulate the EET dynamics of the time-resolved absorption experiment, the master equation was solved for the initial conditions in which the initial excitation distribution was equally divided over all the β -PCBs as described in the main text. The total simulated time evolution for

the excitation densities on the α - and β -PCBs is shown in **fig. S13A**. Using a TDM magnitude for the PCBs of 10 D, the simulation nicely matches the experimental data. We also calculated the time in which energy is transferred along a 13-protomer nanotube. The calculated time-evolution of the excited-state populations of the α -PCBs in the system upon initial excitation of the W α -PCB is shown in **fig. S13B**.

Supplementary Text S2

EET efficiency in FRL-AP nanotubes.

We have evaluated the overlap integrals for EET from α -PCBs to typical Chls *a* and to PSI red-form Chls (fig. S15). In order to do so, we additionally needed to determine the absorption spectra of Chl a and of the PSI red-form Chls. For the absorption spectrum of Chl a, the determined spectrum of Chl a in an Lhcb environment was taken from Cinque et al. (48) and shifted to 680 nm. The absorption spectrum for a PSI red-form Chl was modeled as a charge-transfer state and was taken from Novoderezhkin et al. (49). The peak of the spectrum was then shifted to 710 nm. Considering the proposed positioning of the FRL-AP with respect to PSI, we imagine that the energy must be extracted near the bottom of a nanotube. To estimate the upper limit of the FRL-AP antenna efficiency, we connected one of the bottom α-PCB chromophores to a perfect trap, i.e., a bottom α -PCB transfers energy with an infinite rate to the trap and there is no back-transfer. For a situation in which a single α -PCB is initially excited, we can calculate the transient population of the trap using our FRET model. The final population of the trap then represents the efficiency of EET for the given initial condition. By averaging over all α-PCB chromophores that can be individually initially excited, we find the total maximal EET efficiency of FRL-AP (fig. S15). We have considered three locations for the trap: E, G or A (the isolated α -PCB). Their calculated total maximal EET efficiencies are 40%, 46% and 32%, respectively. If we consider a FRL-AP nanotube with half the length (only PCBs N-Z are present in the system), and the trap at S, U and O, then we find EET efficiencies of 65%, 65% and 57%, respectively.

Fig. S1. Purification and characterization of FRL-AP. (A) Solution of purified FRL-AP (concentration ~10 mg mL⁻¹). (B) and (C), SDS-PAGE of purified FRL-AP. Lane 1 contains molecular mass standards. Masses in kDa are indicated in (C). Lane 2 contains 10 μ g of FRL-AP stained with Zn²⁺ in (B) or Coomassie Blue in (C). The bands of greatest intensity correspond to His-tagged ApcD4 and ApcB3, respectively, as labeled. The weak bands at ~36-38 kDa correspond to minor populations of dimeric ApcD4-ApcB3 due to incomplete dissociation. (D) Absorbance spectrum of purified helical FRL-AP. (E) 77 K fluorescence emission spectrum of purified FRL-AP. The excitation wavelength was 590 nm. In (D) and (E), peaks are labeled in units of nm. These differ from the absorbance maxima of AP ($\lambda_{max} = \sim 650$ nm and 617 nm); see Fig. 4B or S10C) and AP-B ($\lambda_{max} = \sim 670$ nm and 617 nm; see Fig. 4B or S10C), which have their fluorescence emission maxima at about 660 nm and 680 nm, respectively (4, 7).

Fig. S2. Size exclusion chromatography of FRL-AP. (A) Absorbance spectra before and after size exclusion chromatography. The slightly decreased peak at \sim 620 nm after size exclusion chromatography (SEC) is likely due to the removal of some protomers that are not found in oligomers. Spectra were normalized at 710 nm for improved comparison. (B) Size exclusion chromatography chromatogram. A wide distribution of sizes was observed from which fractions were used for cryo-EM.

Fig. S3. Cryo-EM data processing. (A) Example micrograph collected during data collection. One side view of a short helix and one top view are shown with green boxes. (B) Identical micrograph as (A), but with selected autopicked particles. (C) 2D classes selected after manually picking ~780 particles. (D) Selected 2D classes after autopicking. (E) Selected 3D class. (F) Workflow of data processing in RELION 3.1 (28).

Fig. S4. Cryo-EM data resolution. (A) Map-to-map Fourier shell correlation calculated by RELION 3.1 (28). (B) Local resolution of a central three protomers in the helical map. The three protomers are numbered and the central one is outlined with a dotted line for reference. c, Map-to-model Fourier shell correlation calculated by Phenix (34, 35).

Fig. S5. Comparison of FRL-AP and a PBS core. 12 protomers of a FRL-AP helical nanotube are compared to a PBS core comprising 12 protomers (a stack of four AP trimers and related complexes) from *Synechococcus* sp. PCC 7002 (PDB 7EXT) (10). α -subunits are colored green and β -subunits are colored magenta. The length, diameter, and approximate volumes of each are labeled.

Fig. S6. Secondary structure nomenclature of PBPs used herein. The α -subunit of FRL-AP is shown with helices colored and labeled according to the nomenclature defined previously (23). This nomenclature is maintained throughout the manuscript for all discussions of PBPs.

β-Ash131 β-Lys134 β-Asp154

Fig. S7. Interactions in the FRL-AP structure between helix H of an α -subunit and helix H of the β -subunit in the helical level above it. (A) The interface of interest, showing both subunits in stick representation. The nearest charged or polar uncharged residues that may participate in H-bonding interactions are labeled. (B) Partial sequence alignment of FRL-AP, AP-B, and AP. Residues in bold correspond to the labels in panel (A). Clustal Omega sequence conservation identifiers are shown below the alignment for each position.

Α

α-subunits (D4, D2, D3, D5, D1, and A1)

		11XXXXXXXXXXX111111YYYYYYYYYYYI1AAAAAAAAAA	
ApcD4	Synechococcus sp. A1463 (WP 099812040.1)	MSIVAOVIAOSDAADRFLSSAEIAKLEDFFSKGOVRIRAAOKLAENEOKI	50
ApcD4	Chroococcidiopsis sp. FACHB-1243 (WP 192159074.1)	MSLVAOVIAOSDEADRFLSRTELDKLODFFKTGETRLKVAOILSONEOKI	50
ApcD4	Chroococcidiopsis thermalis PCC 7203 (WP 015156293.1)	MSLVAOVIAOSDEADRELSRTELDKLODEEKTGETRLKVAOILSKNEOKI	50
ApcD4	Gloeocansa sp. PCC 7428 (WP 015190166 1)	MSTVAOVIAOSDDANRELSNTELDKLODEERTGEORLKVAOILTONEOKI	50
ApcD4	Chlorogloeonsis sp. PCC 9212 (WP 016874155 1)	MSIVAOVIAOSDDAARFLSRTELDKLDNFFKSGETRLRVAOILAONEONI	50
ApcD4	Halomicronema bongdechloris (WP 080809693 1)	MSTVAKVTAOSDEANDELSSAELNKLODEEKDGAVDTSAAOKLAANOOKL	50
ApoD4	Loptolunghus on BCC 6406 (WB 008312402 1)		50
ApcD4	Yopococcup on PCC 7305 (WP 006512043 1)		50
ApcD4	Plourocopco cp (CCMIA 161 (WP 106232622 1)		50
ApcD4	Superborecoup on _ PCC 7335 (WP_006454943_1)		50
ApoD4	Demonia energilia (WD 102006454 1)		50
ApcD4	Classing gradies litherhous (WD 071455205 1)		50
APCD4	Gioeomargarita litnophora (WP_0/1455395.1)	MSLVAQVIAQSDAAERFLSSTELNKLAEFFSKGALKVKVAEKLAANEKKI	50
Apcuz	Synechococcus sp. PCC /335 (WP_006455320.1)	MSVISQVIATADREVRILSKGELDAINRFFNNGPQRLRIVSILNSNAEEI	50
ApcD2	Leptolyngbya sp. JSC-1 (IMG: 2022833634)	MSIITNVIATADREARYLNVEELNAVQNFYAAGRDRLRLAATLAANEQRI	50
Apcuz	Chroococcidiopsis thermalis PCC /203 (WP_015153115.1)	MSIITKAIASADREARILSPGELKTIRDFINGGENRLRIATTLIENRKEI	50
ApcD2	Calothrix sp. PCC /50/ (WP_015126588.1	MSIITKSIASADREARYLSPGELNAIRDFYEGGFYRMRIAITLTENEQKI	50
ApcD2	Chlorogloeopsis sp. PCC 9212 (WP_0168/3422.1)	MSIIIKSIVNADREARYLNAGELRAIQEFYENGVSRLNFAVTLTENEKTI	50
Арсыз	Fischerella thermalis PCC /521 (WP_009453/00.1)	MSIIIKSIVNADREARYLNAGELSAIQEFYESGVSRLNLAMTLTENEQKI	50
ApcD3	Leptolyngbya sp. JSC-1 (MBF2050150.1)	MSLVKQVIQNADEELRYPTPGEIRMIQNFCQTGERRIQIAQKLAAAEQDL	50
ApcD3	Calothrix sp. PCC 7507 (WP_015126586.1)	MSLVKQVILNADEELRYPTPAEIRMIQNFCHSGEKRIRIATTLAKNQNRL	50
ApcD3	Chlorogloeopsis sp. PCC 9212 (WP_016873424.1)	MSLVKQVIENADEQMRYPTPGEIRMIQKFCHSGDKRIRIATVLASNQNRL	50
ApcD3	Fischerella thermalis PCC 7521 (WP_009453698.1)	MSLVKQVIENADEQMRYPSPGEIRMIQNFCHSGDKRIRIATTLASNQNRL	50
ApcD3	Synechococcus sp. PCC 7335 (WP_006456515.1)	MSIVKQIISNADEELRYPTPGELEMIRSFCKTGASQIQLAKTLESHAPTI	50
ApcD3	Chroococcidiopsis thermalis PCC 7203 (WP_015153117.1)	MSIVKQMILNADEEVRYLTPGEIHALQNFYRSGTERIRLAKVLAQNEKKI	50
ApcD5	Synechococcus sp. PCC 7335 (WP_006456289.1)	MSLVTELILSADSEARYPAPKELRIFQDFVKTGEQRVRIAKALAANEERI	50
ApcD5	Chroococcidiopsis thermalis PCC 7203 (WP_015153113.1)	MSIVTELILNADSESRYPAPKEIQVYQNFVKTGEQRIRIAKILAENEQRI	50
ApcD5	Leptolyngbya sp. JSC-1 (IMG: 2022833632)	MSVVTELILNADSESRYPVPKEMRIFQDFLRSGEQRIRIAATLAENEQRI	50
ApcD5	Calothrix sp. PCC 7507 (WP_015126590.1)	MSIVTELILNADSESRYPAPKELRVFQEFLKSGDQRIRIAKILSQNEQQI	50
ApcD5	Chlorogloeopsis sp. PCC 9212 (WP_016873420.1)	MSVVTELILNADSESRYPAPKELRIFQDFVKTGDQRIRIAKILSDNEQLI	50
ApcD5	Fischerella thermalis PCC 7521 (WP_009453702.1)	MSVVTELILNADSESRYPAPKELRIFQDFLRTGDQRIRIAKILAENEQLI	50
ApcD1	Synechococcus sp. A1463 (WP_011431562.1)	MSVINQIIETADDQLRYLSVSELQAIKDYMSSGEKRLQIAQVLTENKKRI	50
ApcD1	Synechocystis sp. PCC 6803 (WP_010871516.1)	MSVVSQVILQADDQLRYPTSGELKGIQAFLTTGAQRIRIAETLAENEKKI	50
ApcD1	Synechococcus sp. PCC 7002 (WP_012307741.1)	MSVVSQVILRADDELRYPSSGELSGIKNFLATGAVRIRIAEALADNEKKI	50
ApcD1	Leptolyngbya sp. PCC 7376 (WP_015135290.1)	MSVVSQVILKADDELRYPSSGELTGMESFLATGAIRIRIAEALADSEKKI	50
ApcD1	Synechococcus sp. PCC 6301 (WP 011243585.1)	MTIVSQVILKADDELRYPSGGELKNITDFFKTGEQRLRIAQVLSDSEKKI	50
ApcD1	Thermosynechococcus sp. CL-1 (QEQ1666.1)	MRDVLSGVSNMSVISQVLLKADDELRYPTTGELQTISDFFQTGEQRLRIATTLAENEKRI	60
ApcD1	Arthrospira platensis (GCE93786.1)	MTVVSQVILKADDELRYPTTGELKNISDFLKTGEQRLRIVDTLTENEKKI	50
ApcD1	Synechococcus sp. PCC 7335 (WP 006454063.1)	MSVVSQVILNADDELRYPTSGELKGIENFLKTGDQRMRIAQILADNEKKI	50
ApcD1	Leptolyngbya sp. JSC-1 (WP 036003919.1)	MSVVTQVILNADEELRYPSSGELKSIQNFLQTGSQRMRIAATLADNEKKI	50
ApcD1	Chroococcidiopsis thermalis PCC 7203 (WP 015152396.1)	MSVVSQVILKADDELRYPSAGELENIKNFLQTGIQRMRIAATLAENEKKI	50
ApcD1	Nostoc sp. PCC 7524 (WP 015139163.1)	MTVISQVILQADDELRYPSSGELKSIREFLQTGLQRTRIAGTLAENEKKI	50
ApcD1	Anabaena sp. PCC 7120 (WP 010997797.1)	MTVISQVILQADDELRYPSSGELKSISDFLQTGVQRTRIVATLAENEKKI	50
ApcD1	Calothrix sp. PCC 7507 (WP 015130965.1)	MTVISOVIFKADDELRYPSSGELKSIONFLOTGIORTRIAATLAENEKKI	50
ApcD1	Chlorogloeopsis fritschii PCC 9212 (WP 016878526.1)	MTVISQVILKADDELRYPSSGELKSIKDFLQTGEQRVRIANTLAENEKKI	50
ApcD1	Nostoc sp. PCC 7107 (WP 015113750.1)	MTVISOVILKADDELRYPSSGELKSIKEFLOTGEORTRIAATLAENEKKI	50
ApcA1	Anabaena sp. PCC 7120 (WP 010994626.1)	MSLIIKSILNADAEARYFRPGELAOIKGFNASAASRLRLVOALTENRERI	50
ApcA1	Synechococcus sp. PCC 6301 (WP 011243498.1)	MSIVSKSIVNADAEARYLSPGELERIKTFVVGGDRRLRIAOTIAESRERI	50
ApcA1	Synechococcus sp. PCC 7335 (WP 006456136.1)	MSIVTKSIVNADAEARYLSPGELDRIKGFVTSGERRVRIAOVLTESRERI	50
ApcA1	Synechocystis sp. PCC 6803 (WP 010872503.1)	MSIVTKSIVNADAEARYLSPGELDRIKAFVTGGAARLRIAETLTGSRETI	50
ApcA1	Synechococcus sp. PCC 7002 (WP 012307540.1)	MSIVTKSIVNADAEARYLSPGELDRIKAFVTSGESRIRTAFTLTGSRERT	50
ApcA1	Calothrix sp. PCC 7507 (WP 015126817.1)	MSTVTKATVNADAEARYLSPGELDRTKSFVGSGERRI.RTAOVI.TDNRERI.	50
ApcA1	Thermosynechococcus vestitus BP-1 (WP 011056801.1)	MRDVLSGVSNMSVVTKSIVNADAEARYLSPGELDRIKNFVSTGERRIRTAOTITENRERT	60
ApcA1	Anabaena sp. PCC 7120 (WP 010994198.1)	MSTVTKSTVNADAEARYLSPGELDRTKSFVAGGOORLRTAOALTDNRERL	50
ApcA1	Chlorogloeopsis sp. PCC 9212 (WP 026087462 1)	MSIVTKSIVNADAEARYLSPGELDRIKSFVSGGEKRIRIAOVUTDNRERI	50
ADCA1	Chrococcidionsis thermalis PCC 7203 (WP 015156256 1)	MSTVTKSTVNADAEARYLSPGELDRTKSFVTSGERRIPTAOALTDNPEPT	50
			00

ApcAl Fischerella thermalis PCC 7521 (WP 009457007.1) ApcAl Leptolyngbya sp. JSC-1 (WP_036003991.1)

ApcD4 Synechococcus sp. A1463 (WP_099812040.1) ApcD4 Chroococcidiopsis sp. FACHB-1243 (WP_192159074.1) ApcD4 Chroococcidiopsis thermalis PCC 7203 (WP_015156293.1) ApcD4 Chloroqlocopsis sp. PCC 7428 (WP_015190166.1) ApcD4 Lalomicronema hongdechloris (WP_080809693.1) ApcD4 Leptolyngbya sp. PCC 6406 (WP_008312402.1) ApcD4 Leptolyngbya sp. PCC 7035 (WP_006512043.1) ApcD4 Pleurocapsa sp. PCC 7035 (WP_006512043.1) ApcD4 Synechococcus sp. PCC 7335 (WP_006450443.1) ApcD4 Glocomargarita lithophora (WP_071455395.1) ApcD4 Glocomargarita lithophora (WP_071455395.1) ApcD2 Leptolyngbya sp. JSC-1 (IMG: 202283634) ApcD2 Chroococcidiopsis thermalis PCC 7203 (WP_0015153115.1) ApcD2 Chloroqlocopsis sp. PCC 9312 (WP_006873422.1) ApcD2 Chloroglocopsis sp. PCC 9312 (WP_006873422.1) ApcD2 Chloroglocopsis sp. PCC 9312 (WP_0085700.1) ApcD3 Calothrix sp. PCC 7507 (WP_015126586.1) ApcD3 Calothrix sp. PCC 7502 (WP_00873424.1) ApcD3 Fischerella thermalis PCC 7521 (WP_008453424.1) ApcD3 Fischerella thermalis PCC 7203 (WP_005153117.1) ApcD3 Synechococcus sp. PCC 9335 (WP_006456315.1) ApcD3 Synechococcus sp. PCC 7335 (WP_006456315.1) ApcD3 Fischerella thermalis PCC 7203 (WP_015153117.1) ApcD3 Synechococcus sp. PCC 7335 (WP_00645628.1) ApcD3 Synechococcus sp. PCC 7335 (WP_00645628.1) ApcD3 Synechococcus sp. PCC 7335 (WP_00645628.1) ApcD5 Synechococcus sp. PCC 7335 (WP_00645628.1) ApcD5 Synechococcus sp. PCC 7335 (WP_00645628.1) ApcD5 Synechococcus sp. PCC 7355 (WP_00645628.1) ApcD5 Synechococcus sp. PCC 735 (WP_00645628.1) ApcD5 Synechococcus sp. PCC 7355 (WP_00645628.1) ApcD5 Synechocccus sp. PCC 7355 (WP_00645628.1) A ApcD3 Synechococcus sp. PCC 7335 (WP_00645615.1) ApcD3 Synechococcus sp. PCC 7335 (WP_006456515.1) ApcD5 Synechococcus sp. PCC 7355 (WP_00645628.1) ApcD5 Leptolyngbya sp. JSC-1 (IMG: 2022833632) ApcD5 Calothrix sp. PCC 7507 (WP_015126590.1) ApcD5 Chlorogloeopsis sp. PCC 9212 (WP_016873420.1) ApcD5 Sicherella thermalis PCC 7211 (WP_009453702.1) ApcD1 Synechococcus sp. PCC 9212 (WP_016873420.1) ApcD1 Synechococcus sp. PCC 9021 (WP_012307741.1) ApcD1 Synechococcus sp. PCC 7002 (WP_012307741.1) ApcD1 Leptolyngbya sp. PCC 7376 (WP_015135290.1) ApcD1 Pynechococcus sp. PCC 6301 (WP_0123455.1) ApcD1 Pynechococcus sp. PCC 7376 (WP_01687385.1) ApcD1 Pynechococcus sp. PCC 7315 (WP_006454063.1) ApcD1 Synechococcus sp. PCC 7335 (WP_006454063.1) ApcD1 Leptolyngbya sp. JSC-1 (WP_015139163.1) ApcD1 Leptolyngbya sp. JSC-1 (WP_015139163.1) ApcD1 Leptolyngbya sp. JSC-1 (WP_015139163.1) ApcD1 Anabaena sp. PCC 7120 (WP_015139163.1) ApcD1 Chorococcidiopsis thermalis PCC 7203 (WP_016878526.1) ApcD1 Chorogleeopsis fritschii FCC 9212 (WP_016878526.1) ApcD1 Chorogleeopsis Fitschii FCC 9212 (WP_016878526.1) ApcAl Anabaena sp. PCC 7120 (WP_015131963.1) ApcAl Anabaena sp. PCC 7120 (WP_015130965.1) ApcAl Synechococcus sp. PCC 7335 (WP_006456136.1) ApcAl Synechococcus sp. PCC 7032 (WP_01230750.1) ApcAl Synechococcus sp. PCC 7032 (WP_01230750.1) ApcAl Synechococcus sp. PCC 7035 (WP_006456136.1) ApcAl Synechococcus sp. PCC 7032 (WP_01230750.1) ApcAl Synechococcus sp. PCC 7032 (WP_0132053.1) ApcAl Synechococcus sp. PCC 7032 (WP_0132053.1) ApcAl Synechococcus sp. PCC 7032 (WP_01326817.1) ApcAl Thermosynechococcus vestitus BP-1 (WP_01056801.1) ApcAl Calothrix sp. PCC 7507 (WP_U15126817.1) ApcAl Thermosynechococcus vestitus BP-1 (WP_011056801.1) ApcAl Anabaena sp. PCC 7120 (WP_010994198.1) ApcAl Chlorogloeopsis sp. PCC 9212 (WP 026087462.1) ApcAl Chrocococcidiopsis thermalis PCC 7203 (WP_015156256.1) ApcAl Fischerella thermalis PCC 7521 (WP_009457007.1) ApcAl Leptolyngbya sp. JSC-1 (WP_036003991.1)

ApcD4 Synechococcus sp. A1463 (WP_099812040.1) ApcD4 Chroococcidiopsis sp. FACHB-1243 (WP_192159074.1) ApcD4 Chroococcidiopsis thermalis PCC 7203 (WP_015156293.1) ApcD4 Chlorogleeopsis sp. PCC 7428 (WP_015190166.1) ApcD4 Halomicronema hongdechloris (WP_080809693.1) ApcD4 Halomicronema hongdechloris (WP_080809693.1) ApcD4 Helolyngbys sp. PCC 6406 (WP_008312402.1) ApcD4 Xenococcus sp. PCC 7305 (WP_005512043.1) ApcD4 Pleurocapsa sp. CCCALA 161 (WP_006512043.1) ApcD4 Synechococcus sp. PCC 7335 (WP_006454943.1) ApcD4 Romeria gracilis (WP_193906454.1) ApcD4 Romeria to 1thomora (WP_071455395.1) ApcD4 FreeNetBornet Sp. CCAIA F01 (W= 10822622.1) ApcD4 Synechococcus sp. PCC 7335 (W=006454943.1) ApcD4 Romeria gracilis (WP_193906454.1) ApcD4 Romeria gracilis (WP_193906454.1) ApcD2 Synechococcus sp. PCC 7335 (W=006455335.1) ApcD2 Leptolyngbya sp. JSC-1 (IMC: 2022833634) ApcD2 Chorogococidopsis thermalis PCC 7203 (WP_015153115.1) ApcD2 Calothrix sp. PCC 7507 (WP_015126588.1 ApcD2 Calothrix sp. PCC 7507 (WP_015126588.1) ApcD2 Calothrix sp. PCC 7507 (WP_015126588.1) ApcD2 Fischerella thermalis PCC 7521 (WP_006453700.1) ApcD3 Leptolyngbya sp. JSC-1 (MBF2050150.1) ApcD3 Calothrix sp. PCC 7507 (WP_016126586.1) ApcD3 Fischerella thermalis PCC 7521 (WP_006453698.1) ApcD3 Synechococcus sp. PCC 7335 (WP_006456515.1) ApcD3 Synechococcus sp. PCC 7335 (WP_006456515.1) ApcD5 Synechococcus sp. PCC 7335 (WP_006456515.1) ApcD5 Leptolyngbya sp. JSC-1 (IMC: 202283632) ApcD5 Chococccidiopsis thermalis PCC 7203 (WP_015153117.1) ApcD5 Synechococcus sp. PCC 7315 (WP_00645702.1) ApcD5 Synechococcus sp. PCC 7315 (WP_006453698.1) ApcD5 Fischerella thermalis PCC 7203 (WP_015153113.1) ApcD5 Synechococcus sp. PCC 7315 (WP_006453629.1) ApcD5 Synechococcus sp. PCC 7315 (WP_006453702.1) ApcD5 Fischerella thermalis PCC 7203 (WP_015153113.1) ApcD5 Synechococcus sp. PCC 7002 (WP_01313520.1) ApcD5 Synechococcus sp. PCC 7002 (WP_012307741.1) ApcD1 Synechococcus sp. PCC 7002 (WP_012307741.1) ApcD1 Synechococcus sp. PCC 7335 (WP_006454063.1) ApcD1 Arthrospira platensis (GCE93786.1) ApcD1 Arthrospira platensis (GCE93786.1) ApcD1 Leptolyngbya sp. JSC-1 (WP_036003919.1)

	50
MSIVTKSIVNADAEARVISDCELDRIKCEVTSCERRIRIAQVBIDIKEKI	50
*:::::::::::::::::::::::::::::::::::::	50
BBBBBBBBB11111111111=EEEEEEEEEEEEEEEEE	
VQEGSKR <mark>F</mark> WAK <mark>C</mark> PN TP S <mark>NK</mark> GNP <mark></mark> Q K TALCQRDQGWYIRLVSY <mark>C</mark> ILAGNDKPLEDIGL <mark>N</mark>	10
VQEGSQRFWKVIPNTPSNSGDPKKTALCQRDQAWYLRLITYAVLAGNMKPLDDIGIN	10
VQEGSQRFWKVIPNTPSNSGDPKKTALCQRDQAWYLRLITYAVLAGNMKPLDDIGIN	10
VQEGSRRFWQVVPNTPSNSGDPQKTALCQRDQSWYLRLISYAVLAGNMKPLEDIGVD	10
VEEGSRRFWKIVPNTPSNSGDPKKTALCQRDQSWYLRLITYAVLAGNTKPLEDIGVD	10
VDEGSKRYWAQCPDAPSNSGDPQKTANCQRDQGWYIRIISYCVLAGNGKPMEDLGIE	10
VDEGSKRFWAQCPNTPSNSGDSQKTMLCQRDQGWYIRLVSYCVLAGNAKPLEDIGLD	10
VEEGSKQFWAQCSNTPSNKGDATKTALCQRDQGWYIRLVSYCVLAGNSKPLEDIGLD	10
VDQGSKQFWSQCSNTPSNSGDSQKTALCQRDQGWYIRLVSYCVLAGNSKPLEDIGLD	10
VDEGSKQFWNQCPNTPSNSGDKQKTALCQRDQGWIIRLVSICILAGNSKPLEDIGLD	10
VEEGSKRFWEQCPNIPSNSGDKQKIALCQRDQGWIIRLVSICLLAGNSKPLEDIGLD	10
VEEGSKRFWARCSNIPSNRGNAQRIALCQRDQGWIIRLVSICVLAGNDRPLDDIGLN	10
VERGARREWQRCPTTPSNSDNQ===QEQASCLRDQAWEIRLISIAVAVGDVDFLEASGVR	10
VEGALGKEWECCDDTDSNSGNPTEGSSCHRDGSWIVKEVIIAIVEGDIEFIEISGVK	10
VERGEBERWEECHDTPENSONR TYRSSCLRDOSWYTRLTYSTVLODTEPLAEIGTT	10
VERASLKEWERCPNTPSNSGNRMYRNSCLRDOSWYTRLTTVALVVGDVEPLAEIGTT	10
VERASLKEWERCPNTPSNSGNRMYRNSCLRDOSWYTRLTTYAVVVGDVEPLAATGTT	10
VOKGSORFWKRCPVTPSNSGNPRKTASCORDOGWYTRLVAYCVLAGSEOPLADIGTV	10
VEKASDKFWKVCPVTPSNSGNMRKTASCORDOGWYIRLVAYCILAGNEOPLEDIGTI	10
VEKASOKFWKRCPTTPSNSGNMRKTASCORDOGWYTRLVAYCVLAGSEOPLTEIGTV	10
VERASOKFWKRCPVTPSNSGNMRKTASCORDOGWYIRLVAYCVLAGNEOPLTEIGTV	10
VERGTRKFWOICPRTPSNSGSPRKTEAAORDMSWYIRLISYCLLAGNDOPLREIGLL	10
VERATOKFWKICPRTPSNSGNARKTEAAMRDIGWYIRLVSYCLLAGNEKPLEEIGLI	10
VONGSOKFWERCPNTPSNSGVDRKTASCORDOGWYVRLIAYSILAGSERPLEDIGTV	10
VONGSARFWERVPNTPSNSGNERKTASCORDOGWYIRLIAYSVLAGSEKPLEEIGTI	10
VQNASAKFWERCPVTPSNSGNPRKTASCQRDQGWYIRLVAYSVLAGSEKPLSEIGTV	10
VQNGSLKFWERCPNTPSNSGNERKTASCQRDQGWYVRLVAYSILAGSEKPLEEIGTI	10
VQRGSQRFWERCPNTPSNSGNERKTASCQRDQGWYVRLVAYSVLAGSEKPLEEIGTV	10
VQRGSQKFWERCPNTPSNSGNERKTASCQRDQGWYVRLVAYSVLAGSEKPLEEIGTV	10
IDQAQKQLFAKRPEYIQPGGNAYGEKRYNQCLRDYDWYLRLVTYGIIAGSKEPIESIGLI	11
VDQAQKQLFKKHPEYRAPGGNAYGQRQYNQCLRDYGWYLRLVTYGVLAGNKEPIETTGLI	11
VDQAQKQLFSIHPEYRTSGGNAATTKQYNQCLRDYGWYLRLVTYGILAGDKDPIERIGLI	11
VDEAQKKLFAIHPEYRAAGGNASTTKRYNQCLRDYGWYLRLVTYGVLAGDKDPIENIGLI	11
VDQASRKLWQRRPDFIAPGGNAYGQRQRAQCLRDYGWYLRLITYGVLAGDKEPIESIGLL	11
VEQASKQLWQKRPDFISPGGNAYGQKQRALCLRDYGWYMRLITYGILAGDKDPIERTGII	13
VDRASAQLWKKRPDFIAPGGNAAGQRERSLCLRDYGWYLRVITYGILSGDKDPIESIGLI	11
VEQASGALWKLRPDFIAKGGNAYGQKQRALCLRDYGWYLRLITYSVLAGDKEPIESIGLI	11
VQEASKELWKKRPDFIAPGGNAYGDKQRALCLRDYGWYLRLISYGVLAGDKEPIEKIGLI	11
VQEASKKLWQKRPDFIAPGGNAYGERQRALCLRDYGWYLRLITYGVLAGDKEPIEKIGLV	11
VQEATKQLWQKRPDFIAPGGNAYGEKQRALCIRDFGWYLRLITYGVLAGDIEPIEKIGII	11
VQEATKQLWQKRPDFIAPGGNAYGERQRALCIRDFGWYLRLITYGVLAGDIEPIEKIGII	11
VQEATKQLWQKRPDFISPGGNAYGERQKSLCIRDFGWYLRLITYGVLAGDKEPIEKIGLI	11
VQEATKQLWQKRPDFIAPGGNAYGERQRALCIRDFGWYLRLITYGVLAGDKEPIEKIGLV	11
VQEAIRQLWQRRPDFIAPGGNAIGERQRALCIRDFGWILRLIIGVLAGDREFIERIGLI	11
VKQSANQLEQKKEDIVSEGGNAIGQDMIAICLKDMDIILKLIIISIVAGDSIEIQEIGVI	11
VKQAGNQLFQKRPDVVSPGGNAIGEDMIAICERDEDIIEEEVIIGVVSGDIIFIEEIGIV	11
VKIAGDQLEQKKEDVVSEGONAVGEEMTATCLEDMDVVLELVTVGVVSGDVTETETGLV	11
TKSAGDALFOKRPDVVSPGGNAYGEEMTATCLRDMDYYLRLTTYGVV3GDVTPTEETGLV	11
VKOAGEOLFOKRPDVVSPGGNAYGOELTATCLRDLDYYLRLVTYGTVAGDVTPTEETGVT	11
VKOAGDOLFOKRPDVVSPGGNAYGEEMTATCLRDLDYYLRLVTYGIVAGDVTPTEFTGLV	11
VKQAGDQLFQKRPDVVSPGGNAYGQEMTATCLRDLDYYLRLVTYGIVAGDVTPIEEIGVI	11
VKOAGDOLFOKRPDVVSPGGNAYGOEMTATCLRDLDYYLRLVTYGVVAGDVTPTEFTGTV	11
VKQAGDQLFQKRPDVVSPGGNAYGQEMTATCLRDLDYYLRLITYGVVAGDVTPIEEIGIV	11
VKQAGDQLFQKRPDVVSPGGNAYGQEMTATCLRDLDYYLRLITYGVVSGDVTPIEEIGVV	11
VKQAGDQLFQKRPDVVSPGGNAYGEEMTATCLRDLDYYLRLITYGVVSGDVTPIEEIGIV	11/
···· · · · · · · · · · · · · · · · · ·	

GMREMYISLGV-PLPHIRVAMSCLKEVAAGILSSEEMALAAPYFDRLIRAF-------GMREMYVSLGV-PVSNIGSCMRSLKEVATGLMSREEADLVKPYFDYLIRAMY-------

GMREMYVSLGV-PVSNIGSCMRSLKEVATGLMSREEADLVKPYFDYLIRAMY	158
GMREMYVSLGV-PVSNIGSCMRSLKEVATGLMSREEADLVKPYFDYLIRAMY	158
GMREMYTSLGV-PVSNIGNCMRCLKEVATNMMSSEEAAIAKPYFDYLIRAMY	158
GMREMYTSLGV-PVSNIGTCMRCLKEVASGMMNREEAAIAGPYFDYLIRAMY	158
GLRESYVSLGVLPLSYHKVAYRCIKEVAMEILTAEEGALVAPYFDQLIRAF	158
GMRDMYLSLGV-PLSNLKLAMKCLKDVAIGLLTAEEGALAAPYFEQLIRAF	157
GMRDMYVSLQV-PLANLKIAMRCIKSVATGLLNSEEAALAAPYFDELIRAF	157
GMRDMYTSLQV-PLANLKLAMRCLKSVAMGLLTSEEAALAGPYFDQLIRAF	157
GMRDMYVSLNV-PLTNLKTAMRCIKQSAMGVLSSEEASLAGPYFDQLIRAF	157
GMRDMYVSLNV-PLANLKLAMRCLKQVATGLLSSEEAALASPYFDQLIRAF	157
GMREMYVSLGV-PLANLRMAMGSLKDVAAGLMSGEEMALAAPYFDRLIRAF	157
GVREMYLSLEV-PLRSVALCMRSLKEVTLAMLSREDAAEVGPYFDYLIAGLMP	159
GAKEMYASLGV-PLTNLVECMRCLKEVALELLALDDAVEVAPYFDYLIQGLKP	159
GVKEMYESLEI-PLRNWVECIRCLKEVTLDLLSREDAAEVTPYFDCLIQGMIP	159
GVQEMYNSLEI-PLANLVIAIRCLKEVSLDLFNLEDAAELAPYFDYLIQELTP	159
GVKEMYDSLEI-PLPNLVEAIRCLKEVSLDLFTLEDAAEVAPYFDYLIQSLMP	159
GVKEMYESLEI-PLPNLVEAIRCLKEVSLDLFTLEDATEIAPYFDYLIQSLMP	159
GMKEMYISLGI-PLANWVEAVQCLKEEAIALLGQPDAAVVAPYFDHIIQTLALPGTPYFV	166
GMKEMYASLGI-PIFNWVEAVRCIKEAAREFLGEEDAAIAIPYFDHIIQTLASPGSPYFM	166
GMQQMYESLGI-PLSNWVEAVRCIKEEAQALLGDEDAAEVTPYFDHIIQTLSFPGAPYFM	166
GMQQMYQSLGI-PLSNWVEAVRCIKEEAQALLGDEDAAEVTPYFDYIIQALSFPGAPYFM	166
GMKELYTNIGI-PLDNILQYLRCLKAEAIALLSEAEAEAIIPYFDQIIQELVRPGPSYFG	166
GMKELYNSVGI-PLENVRQYMLCVKAEVSAMLTPEDAAEVIPYFDLILQVISSPGAPYFQ	166
GIKEMYNNLEI-PIRNIAECMRCLKEEAMAVLSDEDAQEVAAYFDLIIQSLS	158
GIKEMYNNLEI-PLRNIVECMRCLKEEALSLMSEEDALEVSAYFDYVMRSLS	158
GIKEMYNSLEI-PLKNLVEAMRCVKDEAISLMSEDDAVEVAPYFDYIIRALS	158
GIKEMYNNLEI-PLRNIVEAMRCVKEEAISLMSEEDAVEVGPYFDYIIRALS	158
GIKEMYNNLEI-PLRNIVEAMRCIKEEAVSMMSEEDAVEVGPYFDYIIRALS	158
GIKEMYNNLEI-PLRNIVEAMRCIKEEAVSMMSEEDAVEVGPYFDYIIRALS	158
GVREMYNALNV-PIAGMIDAIVFLKEAALSLLDPDSAAEAAPYFDYIINAMS	161
GVKEMYNSLNV-PVPGMVDAVTVLKDAALGLLSAEDANETAPYFDYIIQFMS	161
GVKEMYNALGV-PVPGMVDAIRCLKDAALGVLDSEEARIAAPYFDFITQAMS	161
GVKEMYNALDV-PVTGMIDAIRCLKEAALGVLDLEEASIAAPYFDFITQSMS	161
GAREMYNSLGV-PLPGMAEAIRTLKEASLALLSSADATVAAPYFDFLIQGMETI	163
GVREMYNSLGV-PMTGMAEAMRCLKDASLALLSTEDAEVAAPYFDYIIQEMS	171
GVKEMYNSLGV-PMPGMVEAIRCLKEASLALLDDEDAKEAAPYFDFIIQAMS	161
GVREMYNALDV-PVPGMVEAIRCLKNASLSLMNEEDAAEATPYFDYIIQAMSA	162
GVKEMYNSLGV-PVPGMVESIRCLKNAALALMSDEDATEAAPYFDYIIOTMS	161

Ap	cD1	Chroococcidiopsis thermalis PCC 7203 (WP_015152396.1)	GVREMYNSLGV-PVPGMVESIRC	CLKNASLSLLSAEEAAEAAPYFDYIIQAMS
Ap	CD1	Nostoc sp. PCC 7524 (WP_015139163.1)	GVREMYNSLGV-PVPGMVEAINA	ALKKASLDLLSAEDAAEAAPYFDYIIQAMS
Ac	cD1	Calothrix sp. PCC 7507 (WP 015130965.1)	GVREMINSLGV-PVPGMVEAINS GVREMYNSLGV-PVPGMVEAINS	SLKKASLDLLSSEDAAAAAAPIFDIIIQAMS
Ap	cD1	Chlorogloeopsis fritschii PCC 9212 (WP_016878526.1)	GVREMYNSLGV-PVPGMVEAING	CLKKASLDLLNAEDAAEAAPYFDYIIQAMS
Ap	cD1	Nostoc sp. PCC 7107 (WP_015113750.1)	GVREMYNSLGV-PVPGMVEAINS	SLKKASLDLLSAEDAAAASPYFDYIIQAMS
Ap	CA1	Anabaena sp. PCC 7120 (WP_010994626.1) Synechococcus sp. PCC 6301 (WP_011243498.1)	GVREMYRSLGT-PIEAVAESIRA GVREMYKSLGT-PIEAVAEGVRE	MKYVATSMMSVEDRAEVDTYFDYLIGAMQ
Ap	cA1	Synechococcus sp. PCC 7335 (WP 006456136.1)	GAREMYNSLGT-SIPAMADSIRG	CMKSVAGSMMSGDDALEAASYFDYVIGGLQ
Ap	cA1	Synechocystis sp. PCC 6803 (WP_010872503.1)	GVREMYRSLGT-PIEAVAQSVRE	MKEVASGLMSSDDAAEASAYFDFVIGKMS
Ap	CA1	Synechococcus sp. PCC 7002 (WP_012307540.1)	GVREMYKSLGT-PVDAVAQAVRE	MKAVATGMMSGDDAAEAGAYFDYVIGAME
Ap	cA1	Thermosynechococcus vestitus BP-1 (WP 011056801.1)	GVREMYNSLGT-PIPAVAEGIRA	AMKNVACSLLSAEDASEAGSIFDFUIGAMQ
Ap	ocA1	Anabaena sp. PCC 7120 (WP_010994198.1)	GVREMYKSLGT-PIEAVGEGVRA	ALKNAASTLLSAEDAAEAGSYFDYVVGALQ
Ap	CA1	Chlorogloeopsis sp. PCC 9212 (WP_026087462.1) Chrospecidionsis thermalic PCC 7203 (WP 015156256 1)	GVREMYKSLGT-PIDAVAAGVSA	MKNVAASLLSADDASEAGAYFDYVAGALA
Ap	cA1	Fischerella thermalis PCC 7521 (WP 009457007.1)	GVREMIKSLGI-FILAVAEGVK GVREMYKSLGT-PIDAVAAGVN	MKNVAISHNSGEDAGEAGSIFDILVGAMQ
Ap	ocA1	Leptolyngbya sp. JSC-1 (WP_036003991.1)	GVREMYKSLGT-PIDAVAEGVRA	MKSVATSLLSGDDAAEAGTYFDYVIGAMQ
			* :: * : :	:* .: . **: : :
Ar	cD4	Synechococcus sp. A1463 (WP 099812040.1)		157
Ap	ocD4	Chroococcidiopsis sp. FACHB-1243 (WP_192159074.1)		158
Ap	cD4	Chroococcidiopsis thermalis PCC 7203 (WP_015156293.1)		158
Ap	ocD4	Gloeocapsa sp. PCC 7428 (WP_015190166.1)		158
Ar	CD4	Halomicronema hongdechloris (WP_080809693.1)		158
Ap	cD4	Leptolyngbya sp. PCC 6406 (WP 008312402.1)		157
Ap	cD4	Xenococcus sp. PCC 7305 (WP_006512043.1)		157
Ap	ocD4	Pleurocapsa sp. CCALA 161 (WP_106232622.1)		157
Ap	CD4	Synechococcus sp. PCC /335 (WP_006454943.1) Romeria gracilis (WP 193906454 1)		157
Ap	cD4	Gloeomargarita lithophora (WP 071455395.1)		157
Ap	cD2	Synechococcus sp. PCC 7335 (WP_006455320.1)		159
Ap	CD2	Leptolyngbya sp. JSC-1 (IMG: 2022833634)		159
Ap	DCD2	Chroococcidiopsis thermalis PCC 7203 (WP_015153115.1)		159
Ar	cD2	Chlorogloeopsis sp. PCC 9212 (WP 016873422.1)		159
Ap	DCD2	Fischerella thermalis PCC 7521 (WP_009453700.1)		159
Ap	cD3	Leptolyngbya sp. JSC-1 (MBF2050150.1)	NDGTSEY	173
Ap	ocD3	Calothrix sp. PCC 7507 (WP_015126586.1)	NDGRTDW	173
Ar	cD3	Fischerella thermalis PCC 7521 (WP_0108/3424.1)	NDGREDW	173
Ap	cD3	Synechococcus sp. PCC 7335 (WP_006456515.1)	IKDRSARQSARQAAA	181
Ap	cD3	Chroococcidiopsis thermalis PCC 7203 (WP_015153117.1)	NNGRTDWQR	175
Ap	CD5	Synechococcus sp. PCC 7335 (WP_006456289.1)		158
Ac	cD5	Leptolyngbya sp. JSC-1 (IMG: 2022833632)		158
Ap	cD5	Calothrix sp. PCC 7507 (WP 015126590.1)		158
Ap	cD5	Chlorogloeopsis sp. PCC 9212 (WP_016873420.1)		158
Ap	CD5	Fischerella thermalis PCC 7521 (WP_009453702.1)		158
Ar	CD1	Synechococcus sp. A1403 (WP_011431502.1) Synechocystis sp. PCC 6803 (WP 010871516 1)		161
Ap	cD1	Synechococcus sp. PCC 7002 (WP 012307741.1)		161
Ap	cD1	Leptolyngbya sp. PCC 7376 (WP_015135290.1)		161
Ap	CD1	Synechococcus sp. PCC 6301 (WP_011243585.1)		163
Ar	CD1	Arthrospira platensis NIES46 (GCE93786 1)		161
Ap	cD1	Synechococcus sp. PCC 7335 (WP 006454063.1)		162
Ap	cD1	Leptolyngbya sp. JSC-1 (WP_036003919.1)		161
Ap	CD1	Chroococcidiopsis thermalis PCC 7203 (WP_015152396.1)		161
Ar	CD1	Anahaena sp. PCC 7120 (WP_010139163.1)		161
Ap	cD1	Calothrix sp. PCC 7507 (WP 015130965.1)		161
Ap	cD1	Chlorogloeopsis fritschii PCC 9212 (WP_016878526.1)		161
Ap	cD1	Nostoc sp. PCC 7107 (WP_015113750.1)		161
Ap Ar	CA1	Anabaena sp. PCC /120 (WP_010994626.1) Synechococcus sp. PCC 6301 (WP_011243498 1)		161
Ap	cA1	Synechococcus sp. PCC 7335 (WP 006456136.1)		161
Ap	cA1	Synechocystis sp. PCC 6803 (WP_010872503.1)		161
Ap	CA1	Synechococcus sp. PCC 7002 (WP_012307540.1)		161
Ar Ar	CA1	Thermosynechococcus vestitus BP-1 (WP 011056801 1)		171
Ap	cA1	Anabaena sp. PCC 7120 (WP_010994198.1)		161
Ap	ocA1	Chlorogloeopsis sp. PCC 9212 (WP_026087462.1)		161
Ap	CA1	Chroococcidiopsis thermalis PCC 7203 (WP_015156256.1)		161
Ar	CA1	Leptolyngbya sp. JSC-1 (WP 036003991.1)		161
1				

Β β-subunits (**B3**, **B2**, and **B1**)

	$(\underline{-},\underline{-},\underline{-},\underline{-},\underline{-},\underline{-},\underline{-},\underline{-},$	
		111XXXXXXXXXXX11111YYYYYYYYYYYYIAAAAAAAAAA
АрсВ3	Synechococcus sp. A1463 (WP_099812041.1)	-MKDTITSLINPADEKGSYLDAAALEQLNRYFQSGNMRVKAAKTIS <mark>S</mark> SASSII <mark>S</mark> KTVAKS
АрсВ3	Chlorogloeopsis sp. PCC 9212 (WP_016874154.1)	-MQDTITSLINPADLRGKYLDNTELDKLRKYFQSGELRVKAAATISENAANIVSQAVANS
АрсВ3	Chroococcidiopsis thermalis PCC 7203 (WP_015156292.1)	-MQDTITSVINPADRQGKYLDTPELEKLRKYFQTGELRVKAAATISENASSIVSQAVANS
АрсВ3	Synechococcus sp. PCC 7335 (WP_006453385.1)	-MQDTITSLINPADEKGQYLEGGDLDSLKQYLQSGATRVKAAGQIGDSAASIISKTVERS
АрсВ3	Gloeocapsa sp. PCC 7428 (WP_015190165.1)	-MQDTITSLINPADQRGKYLETEELEKLRRYFQSGELRVKAASAISNNAANIIREAVANS
АрсВ3	Gloeomargarita lithophora D10 (WP 071455396.1)	-MQDTITSLINPADEQGQYLNAAALDQLNKYFQKGAVRVQAASTISDTASSIISKTVAKS
АрсВ3	Halomicronema hongdechloris (WP_080809690.1)	-MQDIITAAINPADERCAYLEDSSLEKLRQYYQSGTLRLKAATQIGNSAASIISDAVRKS
АрсВЗ	Xenococcus sp. PCC 7305 (WP 006512042.1)	-MQDTITSLINPADEKGQYLEGQELDQLKKYFQSGSLRVKAADQIGSAAASIITESVAKS
АрсВ3	Leptolyngbya sp. PCC 6406 (WP_008312401.1)	-MQDTITATINPADEQGIYLEGEQLDALKAYFQSGTLRVKAASQIGDSAASIISETVAKS
ApcB2	Synechococcus sp. PCC 7335 (WP_006454442.1)	-MQDAITTLINTSDAQGKYLDDSSLDTLQEYFRSGDLRAKAAMTISANASTIVTKTVAKS
ApcB2	Leptolyngbya sp. JSC-1 (WP 036011375.1)	-MQDAITALINSSDVQGRYLDNNGLDKLRSYFQSGEMRARAAITISANASSLVTQAVAKS
ApcB2	Chlorogloeopsis sp. PCC_9212 (WP_016873421.1)	-MQDAITSLINSSDVQGKYLDNNSLDKLQHYYHTGDMRARAATAISANAKTIVTQTVAKS
ApcB2	Fischerella thermalis PCC 7521 (WP 009453701.1)	-MQDAITSLINSSDVQGKYLDNNSLEKLQHYYHTGDMRARAATTISANAKTIVTQTVAKS
ApcB2	Chroococcidiopsis thermalis PCC 7203 (WP_015153114.1)	-MQDAITALINSSDVQGRYLDPSSLDKLQNYFQSGDMRAKTAIAVSANAKNIVTKTVAKS
ApcB2	Calothrix sp. PCC 7507 (WP_015126589.1)	-MQDAITALINSSDVQGKYLDSSSLEKLQNYFHSGDVRARAATTVSANAKNIVTKAVAKS
ApcB1	Thermosynechococcus vestitus BP-1 (WP 011056800.1)	-MQDAITAVINASDVQGKYLDTAAMEKLKAYFATGELRVRAASVISANAANIVKEAVAKS
ApcB1	Calothrix sp. PCC 7507 (WP_015126816.1)	MAQDAITAVINSADVQGKYLDTAAIEKLKGYFSSGDLRVRAAGTISANAAVIVKEAVAKS
ApcB1	Chroococcidiopsis thermalis PCC 7203 (WP_015156257.1)	-MQDAITSVINTSDVQGKYLDTAAMEKLKGYFQSGELRVRAATTIAANAAAIVKEAVAKS
ApcB1	Anabaena sp. PCC 7120 (WP_010994199.1)	${\tt MAQDAITAVINSADVQGKYLDTAALEKLKAYFSTGELRVRAATTISANAAAIVKEAVAKS$

ApcB1	Chlorogloeopsis sp. PCC 9212 (WP_016874648.1)
ApcB1	Fischerella thermalis PCC 7521 (WP 009457009.1)
ApcB1	Synechococcus sp. PCC 6301 (WP_011243499.1)
ApcB1	Synechococcus sp. PCC 7002 (WP_012307539.1)
ApcB1	Synechococcus sp. PCC 7335 (WP 006456852.1)
ApcB1	Synechocystis sp. PCC 6803 (WP_010872504.1)
ApcB1	Leptolyngbya sp. JSC-1 (MBF2047188.1)

АрсВЗ	Synechococcus sp. A1463 (WP 099812041.1)
АрсВЗ	Chlorogloeopsis sp. PCC 9212 (WP 016874154.1)
АрсВЗ	Chroococcidiopsis thermalis PCC 7203 (WP 015156292.1)
АрсВЗ	Synechococcus sp. PCC 7335 (WP 006453385.1)
АрсВЗ	Gloeocapsa sp. PCC 7428 (WP 015190165.1)
АрсВЗ	Gloeomargarita lithophora D10 (WP 071455396.1)
АрсВЗ	Halomicronema hongdechloris (WP 080809690.1)
АрсВЗ	Xenococcus sp. PCC 7305 (WP 006512042.1)
ApcB3	Leptolyngbya sp. PCC 6406 (WP 008312401.1)
ApcB2	Synechococcus sp. PCC 7335 (WP 006454442.1)
ApcB2	Leptolyngbya sp. JSC-1 (WP_036011375.1)
ApcB2	Chlorogloeopsis sp. PCC_9212 (WP_016873421.1)
ApcB2	Fischerella thermalis PCC 7521 (WP 009453701.1)
ApcB2	Chroococcidiopsis thermalis PCC 7203 (WP 015153114.1)
ApcB2	Calothrix sp. PCC 7507 (WP 015126589.1)
ApcB1	Thermosynechococcus vestitus BP-1 (WP 011056800.1)
ApcB1	Calothrix sp. PCC 7507 (WP_015126816.1)
ApcB1	Chroococcidiopsis thermalis PCC 7203 (WP_015156257.1)
ApcB1	Anabaena sp. PCC 7120 (WP_010994199.1)
ApcB1	Chlorogloeopsis sp. PCC 9212 (WP_016874648.1)
ApcB1	Fischerella thermalis PCC 7521 (WP_009457009.1)
ApcB1	Synechococcus sp. PCC 6301 (WP_011243499.1)
ApcB1	Synechococcus sp. PCC 7002 (WP_012307539.1)
ApcB1	Synechococcus sp. PCC 7335 (WP_006456852.1)
ApcB1	Synechocystis sp. PCC 6803 (WP_010872504.1)
ApcB1	Leptolyngbya sp. JSC-1 (MBF2047188.1)

```
ApcB3 Synechococcus sp. A1463 (WP_099812041.1)

ApcB3 Chlorogloeopsis sp. PCC 9212 (WP_016874154.1)

ApcB3 Chroococcidiopsis thermalis PCC 7203 (WP_015156292.1)

ApcB3 Synechococcus sp. PCC 7335 (WP_006453385.1)

ApcB3 Gloeomargarita lithophora DIO (WP_071455396.1)

ApcB3 Halomicronema hongdechloris (WP_080809690.1)

ApcB3 Leptolyngbya sp. PCC 6406 (WP_00812401.1)

ApcB2 Synechococcus sp. PCC 7335 (WP_006454442.1)

ApcB2 Exptolyngbya sp. SPCC 6406 (WP_00812401.1)

ApcB2 Chlorogloeopsis sp. PCC 9212 (WP_016873421.1)

ApcB2 Chlorogloeopsis sp. PCC 7203 (WP_015153114.1)

ApcB2 Chlorogloeopsis sp. PCC 7203 (WP_015153114.1)

ApcB2 Chlorococcidiopsis thermalis PCC 7203 (WP_0151553114.1)

ApcB1 Chrococccidiopsis thermalis PCC 7203 (WP_015156257.1)

ApcB1 Clorococcidiopsis thermalis PC 7203 (WP_015156257.1)

ApcB1 Chlorogloeopsis sp. PCC 9212 (WP_016874648.1)

ApcB1 Chlorogloeopsis sp. PCC 9212 (WP_01687609.1)

ApcB1 Chlorogloeopsis sp. PCC 7521 (WP_0054500.1)

ApcB1 Chlorogloeopsis sp. PCC 7521 (WP_016874648.1)

ApcB1 Synechococcus sp. PCC 7355 (WP_012307539.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_012307539.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_01207539.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_0045204.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_001207539.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_0045204.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_0045204.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_0045204.1)

ApcB1 Synechococcus sp. PCC 7335 (WP_00457204.1)

ApcB1 Leptolyngbya sp. JSC-1 (MBP2047188.1)
```

-MODATIAVINSSDVQGKILDIAALEKEKGIFSIGELKVKAATIIAANAAATVKEAVAKS	55
-MQDAITAVINSSDVQGKYLDTAALEKLKSYFSTGELRVRAATTIAANAAAIVKEAVAKS	59
-MQDAITAVINASDVQGKYLDSSALDRLKSYFQSGELRVRAAATISANSALIVKEAVAKS	59
-MQDAITSVINSADVQGKYLDGSAMDKLKAYFTTGALRVRAASTISANAAAIVKEAVAKS	59
-MQDAITAVINASDVQGKYLDSSSMDKLKAYFQTGELRVRAATSISANAAEIVKEAVAKS	59
-MQDAITAVINSADVQGKYLDGAAMDKLKSYFASGELRVRAASVISANAATIVKEAVAKS	59
-MQDAITSVINSADVQGKYLDSTAMDKLKSYFSSGELRVRAATAISANAAAIVKEAVAKS	59
:* **: ** :* : **: :: *. * .* * ::* :. : :: .:* .*	
111111111111111EEEEEEEEEEEEEEEEEEEEEEE	
LLY <mark>G</mark> DIT <mark>L</mark> PGGNMY <mark>P</mark> TRRYAACLRDL <mark>T</mark> YFLRYATYAMLA <mark>A</mark> DPSILDERVLQGLKETYITL	11
LLYGDITCPGGNMYPTRRYAACLRDLTLFLRYATYAMLADDASVLDERVLDGLKETYNSL	11
LLYGDITCPGGNMYPTRRYAACIRDLTLFLRYATYAMLADDPSIIEERVLFGLKETFSTL	11
LLYGDITLPGGNMYPTRRYAACLQDLTYFLRYATYAMLADDASIIDERILNGLKDTYSSL	11
LLYGDITCPGGNMYPTRRYAACIRDLTLFLRYATYAMLAADPSILDERVLDGLKETYNSL	11
LLYGDITLPGGNMYPTRRYAACLRDLNYFLRYATYAMLAADASILDERVLNGLKETYAAL	11
LLYGTITEPGGNMYPWRRYAACLRDLNYFLRYATYAMLAADASIIDERVLNGLRETYLSL	11
LLYGDITLPGGNMYPTRRYAACLRDLTYFLRYAVYAMLADDPSILDERVLNGLKDTYLSL	11
LLYGDITCPGGNMYPTRRYAACLRDLTYFLRYATYAMLAADASILDERVLNGLKETYSSL	11
LLYTDITGPGGNMYTCRRYAACIRDMDFFLRYGTYAMLAGDASILDERVLNGLKETYNSL	11
LMYTDITAPGGNMYTCRRYAACIRDLDYFLRYATYAMLAGDPSILDERILNGLRETYNSL	11
LLYTDITA PGGNMYTCRRYA ACVRDLDYFLRYATYAMLAGDPSTLDERTLNGLRETYNSI.	11

LLYTDITAPGGNMYTCRRYAACVRDLDYFLRYATYAMLAGDPSILDERILNGLRETYNSL	119
LLYTDITAPGGNMYTCRRYAACVRDLDYFLRYATYAMLAGDTSILDERILNGLRETYNSL	119
LLYTDITGPGGNMYTCRRYAACIRDLDYFLRYATYAMLAGDPSILDERILNGLRETYNSL	119
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDPSILDERVLNGLKETYNSL	119
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDASILDERVLNGLKETYNSL	120
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYSTYAMLAGDPSILDERVLNGLKETYNSL	119
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDPSILDERVLNGLKETYNSL	120
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDPSILDERVLNGLKETYNSL	119
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDPSILDERVLNGLKETYNSL	119
LLYSDITRPGGNMYTTRRYAACIRDLEYYLRYATYAMLAGDTSILDERVLNGLKETYNSL	119
LLYSDVTRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDPSILDERVLNGLKETYNSL	119
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYSTYAMLAGDPSILDERVLNGLKETYNSL	119
LLYSDVTRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDASILDERVLNGLKETYNSL	119
LLYSDITRPGGNMYTTRRYAACIRDLDYYLRYATYAMLAGDPSILDERVLNGLKETYNSL	119
: :* ****** ******::*: :******** * *:::**:* **::*: :*	

111GGGGGGGGGGGGGGGGGG1111HHHHHHHHHHHHH	
GVPIDRVIQALNAMKEVLTESLDTEASQEMAVYLDHIIAGLS-	161
GVPVDRTIQAVQAMKEVITROVGAEAGEOVGRHLDHICNGLS-	161
GVPIQPTVQAIQALKEVTTRLVGAEAGQEVGTHLDHICSGLSQ	162
GVPVEPTIQAIEAMKDVVSERVGTEAGQEVGKYLDHIIAGLR-	161
GVPIOPTIOAIOAMKEVTTRLVGAEAGGEIGMYFDHICNGLS-	161
GVPIDRVVEALNAMKEVLHGAVGAEAGQELGVYLDHITAGLA-	161
GVPIEPTIOAIOAMKEVVTORVGADAGOEMDVYLDHIISGLS-	161
GVPIEPTIQAVQAMKEVVTQRVGAEAGQEMDVYLDHIIAGLG-	161
GVPVEATIOAVOAMKEVVTHRVGADAGOEMDVYLDHIIAGLS-	161
GVPVGATIRAVQAMKEVVNDMLGAEAGKEVGYYFDHICSGLS-	161
GVPIGATIRSVQAMKEATTDLVGAEAGKEMGVYFDYICAGLS-	161
GVPIGATIRAVQAMKEVTNSIVGAEAGKEMGVYFDYIASGLS-	161
GVPIGATIRAVQAMKEVTNSMIGADAGKEMGVYFDYIASGLS-	161
GVPIGATIRSVQAMKEVVTSLVGADAGREMGVYFDHIAAGLS-	161
GVPVGATIRSVQALKEVSTSIVGADAGKELGVYFDYIASGLS-	161
GVPIAATVQAIQAMKEVTASLVGADAGKEMGIYFDYICSGLS-	161
GVPVGATVQAIQAIKEVTAGLVGSDAGREIGVYLDYISSGLS-	162
GVPVGATVQAIQAMKEVTASLTGPDAGKEMGVYFDYICSGLS-	161
GVPVGATVQAIQAIKEVTASLVGADAGKEMGIYLDYISSGLS-	162
GVPIGATVQAIQAMKEVTASLVGPDAGKEMGVYFDYISSGLS-	161
GVPIGATVQAIQAMKEVTASLVGPDAGKEMGVYLDYICSGLS-	161
GVPIGATVQAIQAIKEVTASLVGPDAGREMGVYLDYISSGLS-	161
GVPVGSTVQAIQAMKEVTAGLVGADAGREMGVYFDYICSGLS-	161
GVPVGATVQAIQAIKEVTASLVGADAGKEMGVYLDYICSGLS-	161
GVPISSTVQAIQAIKEVTASLVGADAGKEMGVYLDYICSGLS-	161
GVPIAATVQAIQAIKEVTASLVGADAGKEMGVYLDYICSGLS-	161
***: .:.::*:*:* :*. :: ::*:* **	

Fig. S8. Sequence alignments of α - and β -subunits for AP family members. All sequence alignments were performed using Clustal Omega (50). (A) Sequence alignments for various α -subunits. (B) Sequence alignments for various β -subunits. For (A) and (B), sequences are shown and colored by their gene product name (e.g., ApcD4 is shown in red font). Sequences corresponding to the FRL-AP structure (i.e., ApcD4 and ApcB3 from *Synechococcus* sp. A1463)

are shown as the top sequence. Residues in ApcD4 or ApcB3 that appear distinct from other AP sequences are highlighted in cyan. Residues that appear distinct to all FRL-AP sequences are highlighted yellow in the ApcD4 or ApcB3 sequence. Above the alignments shown in (A) and (B), letters correspond to either looping regions, labeled "*l*", or helical regions according to the nomenclature shown in **fig. S7** (e.g., "A" = helix A). Below the alignments, the Clustal Omega sequence conservation identifiers are shown. (C) ApcD4- and ApcB3-specific residues based on sequence alignments. The α - and β -subunits of FRL-AP are shown with the corresponding subunits from the structures of AP and AP-B. The PCB in shown with a red background. Residue positions that appear specific to ApcD4 sequences and ApcB3 sequences are shown as spheres and highlighted in cyan. Note that these correspond to the cyan highlights in panels (A) and (B).

Fig. S9. Specific interactions that are implicated in FRL-AP helical nanotube formation. (A) The α -subunits of the FRL-AP, AP-B, and AP structures are superimposed using all atoms. The Ser-Glu H-bond important for XY-domain positioning is shown with a black dashed line. H-bonding interactions present in the AP-B and AP structures that are lacking in the FRL-AP structure are shown with red dashed lines. (B) The β -subunits of the FRL-AP, AP-B, and AP structures are superimposed using all atoms. The Thr-Ala H-bond important for XY-domain positioning is shown with a black dashed line. The Pro residue that causes a bend in helix X in the FRL-AP structure relative to the AP-B and AP structures is additionally labeled. (C) The β -subunits of the FRL-AP, AP-B, and AP structures are superimposed using atoms in the XY domain only, which allows for the visualization of the β -Tyr18 orientations differences. The H-bonding interaction found in the AP-B structures is shown with a red dashed line.

Fig. S10. Absorbance spectra of AP, AP-B, and FRL-AP and their α - and β -subunits. (A) Absorbance spectra for ApcA1 from *Synechocystis* sp. PCC 6803 (black line) and ApcD1 (red line) and ApcD4 (blue line) from the thermophilic cyanobacterium *Synechococcus* sp. A1463. (B) Absorbance spectra for representative AP beta subunits, including ApcB1 (black line) and ApcB3 (blue line) from the thermophilic cyanobacterium *Synechococcus* sp. A1463 and ApcB3 (blue line) from *Leptolyngbya* sp. JSC-1. (C) Repeat of the absorbance spectra for ApcB1; black line) from *Leptolyngbya* sp. JSC-1 and for AP-B (ApcD1-ApcB1; black line) from *Leptolyngbya* sp. JSC-1 and for AP-B (ApcD1-ApcB; red line) and FRL-AP (ApcD4-ApcB3; blue line) from the thermophilic cyanobacterium *Synechococcus* sp. A1463.

Fig. S11. Calculated orientation of the TDM for the two PCB chromophores found in FRL-AP. The left panel shows the α -PCB and the right panel shows the β -PCB. The grey arrow shows the calculated TDM. The names of the atoms that were used for the FRET calculations based on the FRL-AP cryo-EM structural coordinates are also indicated.

Fig. S12. Steady-state emission and absorption spectra for FRET calculations. (A) Emission spectra. The green line shows the room temperature emission spectrum of the α -subunit and the magenta line shows the emission spectrum of the β -subunit. (B) Absorption spectrum of FRL-AP (black) and the fitted spectra of the absorption of α -PCB (green), β -PCB (magenta) and of $\alpha + \beta$ -PCB (red). (C) Spectra used for determining the overlap integral value J (see Materials and Methods).

Fig. S13. Modeled EET dynamics. (A) Simulated time-evolution of the excited-state populations of the α - and β -PCBs given that all β -PCBs were initially evenly excited. (B) The simulated decay of the excited-state populations of the β -PCBs (magenta), given that all β -PCBs were initially evenly excited, and the fitted tri-exponential curve $(0.910e^{-\frac{t}{488}fs} + 0.076e^{-\frac{t}{39.7}ps} + 0.014e^{-\frac{t}{889}ps})$ (black dashed). (C) Time-evolution of excited-state populations of α -PCBs after excitation of the terminal α -PCB (W). This was calculated from a model containing 26 PCBs, sequentially labeled A-Z.

Α

IsiX IsiA	MNAKKMHPSGYPWWLGNARLMNLSNTFIVAHVAHAALIMAWAGGFTLFELAKFSPERPMY MQTYNNPEVTYDWWAG <mark>N</mark> ARFANLSGLFIAA <mark>H</mark> VAQAALIMFWAGAFTLY <mark>B</mark> ISWLTADQSMG *::: * ** ****: ***. **.***************	60 60
<mark>IsiX</mark> IsiA	EQGLILLPHLATLGWGVGPGGQIVNTFPYVAIASIHLVAAGVLAGGAYFHQTQLPPSLDM EQGLILLPHLATLGLGVGDGGQVTDTYPLFVVGAV <mark>H</mark> LIASAVLGAGALF <mark>H</mark> TFRAPSDLAA *************** *** ***:::*:*::*::*::*:*:*:**	120 120
<mark>IsiX</mark> IsiA	EFGRAAKFHFTWDDAKTLGVILGHHLLILGLGSLLLVAKAMVFGGLYDANTGQVRLVTAP ASGAAKRFHFDWNDPKQLGLILG <mark>HH</mark> LLFLGVGALLLVAKATTWGGLYDAASQTVRLVTEP * * :*** *:* * **:********************	180 180
<mark>IsiX</mark> IsiA	TLDFATLWNYRTHLFDVNNLEDLVGGHIYVGALLLLGGVWHILVPPFEWVKARFLFSADG TLNPAVIYGY THFASIDNLEDLVGG WYVGVMLIAGGIW ILVPPFQWTKKVLIYSGEA **: *.: **:	240 240
<mark>IsiX</mark> IsiA	ILSYSLFGIALAGFAASYYCGFNSLAYPVEFYGPTLELKSAFTPYYFDPNQTGAWNYSSR ILSY <mark>S</mark> LGGIALAGFVAAYFCAVNTLAYPVEFYGAPLEIKLG <mark>V</mark> TPYFADTVQLPFGAHTPR ****** ******************************	300 300
<mark>IsiX</mark> IsiA	VWLANAHFYLAFFFLQGSLWHFQRAMGFDVGKMLQLWQQSRQEMTSQSVYQVQFQCRPQP AWLSNAHFFLAFFCLQGHLWHALRAMGFDFRRVEKALSSVEA	360 342
<mark>IsiX</mark> IsiA	DFATFYEPPFAGPEPLSVSPEDIYWYQPPKAPSSRSLSLINGVRQTLYEVNYTLRRWIFY	420 342

ISIX EPAREKIAFNRSDLKADYGSRKSRADFSKFARSLPKVFYEPSRVQA 466 IsiA ----- 342

Fig. S14. IsiX comparison with IsiA and structural prediction. (A) Residues in IsiA involved in providing axial ligation to Chl molecules (PDB 6KIG, (25)) are highlighted in yellow. Clustal

Omega sequence conservation identifiers are shown below the alignment. The C-terminal extension of IsiX is highlighted in orange. (**B**) AlphaFold (51) model prediction (blue) superimposed onto the structure if IsiA (PDB 6KIG). The structure corresponding to the C-terminal extension of IsiX is highlighted in orange. (**C**) Sequence coverage output from AlphaFold. (**D**) IDDT score (52) output from AlphaFold.

Fig. S15. Absorption spectrum of typical Chl *a* and of a CT-state centered at 710 nm and of the emission spectrum of α -PCBs. The far greater overlap between the emission spectrum of α -PCBs and the absorption spectrum of the 710 nm CT state than between α -PCBs emission and the typical Chl *a* absorption makes it likely that the FRL-AP emission is close to the absorption of PSI red-form Chls.

Fig. S16. EET efficiency of FRL-AP. (A) Model used for efficiency calculations. Only α -PCBs are shown. (B) Average efficiency of energy transfer using a 26-pigment model with traps connected to the α -PCB of E, G, and A. (C) Average efficiency of energy transfer using a 13-pigment model with traps connected to the α -PCB of S, U, and O.

Table S1.

Identification of protein subunits the FRL-AP protein purification by tryptic peptide fingerprinting and MS/MS mass spectrometry. Only the top 10 most prevalent proteins are shown. The two most prevalent proteins are shaded in orange.

Description	Coverage (%)	# Peptides
A1463 ApcB3	63	18
A1463_His_ApcD4	49	14
Elongation factor Tu OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	13	9
Elongation factor tufA (Fragment) OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	19	7
S-layer like protein probable porin OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	17	9
1,4-alpha-glucan branching enzyme GlgB OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	14	9
Glutamine synthetase I beta OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	8	6
Ribulose bisphosphate carboxylase large chain OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	9	4
Outer membrane protein, OMP85 family OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	7	4
Pentapeptide repeats protein OS=Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	4	1

Table S2.

Data collection and processing	
Magnification	×105,000
Voltage (kV)	300
Electron exposure (e ⁻ Å ⁻²)	59.8
Defocus range (µm)	-0.8 to -2.0
Pixel size (Å)	0.413
Symmetry imposed	helical
Initial particle images (no.)	601,552
Final particle images (no.)	74,095
Helical rise (Å)	10.37
Helical twist (°)	101.57
Map resolution (Å)	2.89
FSC threshold	0.143
Refinement	
nitial model used (PDB code)	4PO5
Model resolution (Å)	2.9
FSC threshold	0.5
Map resolution range (Å)	2.5 to 3.3
Map-sharpening <i>B</i> factor (Ų)	-93.8
Model composition	
Non-hydrogen atoms	7,968
Protein residues	954
Ligands	9
B factors (Å ²)	
Protein	28.3
Ligands	14.6
R.m.s. deviations	
Bond lengths (Å)	0.011
Bond angles (°)	1.772
Validation	
MolProbity	2.19
Clashscore	6.05
Rotamer outliers (%)	4.58
Ramachandran plot	
Favored (%)	94.86
Allowed (%)	5.14
Disallowed (%)	0

Cryo-EM data collection, refinement, and validation statistics for helical FRL-AP.

REFERENCES AND NOTES

- 1. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Scientific, 2021).
- M. F. Hohmann-Marriot, R. E. Blankenship, Evolution of photosynthesis. *Annu. Rev. Plant Biol.* 62, 515–548 (2011).
- 3. C. J. Gisriel, C. Azai, T. Cardona, Recent advances in the structural diversity of reaction centers. *Photosynth. Res.* **149**, 329–343 (2021).
- D. A. Bryant, D. P. Canniffe, How nature designs light-harvesting antenna systems: Design principles and functional realization in chlorophototrophic prokaryotes. *J. Phys. B At. Mol. Opt. Phys.* 51, 033001 (2018).
- 5. R. Croce, H. van Amerongen, Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. *Science* **369**, eaay2058 (2020).
- 6. D. A. Bryant, The molecular biology of cyanobacteria, in *Advances in Photosynthesis and Respiration, Vol. 1* (Springer, 1994).
- W. A. Sidler, Phycobilisome and phycobiliprotein structures, in *Advances in Photosynthesis* and Respiration, Vol. 1, The Molecular Biology of Cyanobacteria, Ed. D. A. Bryant (Springer, 1994), pp. 139–216.
- H. Liu, H. Zhang, D. M. Niedzwiedzki, M. Prado, G. He, M. L. Gross, R. E. Blankenship, Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. *Science* 342, 1104–1107 (2013).
- 9. D. A. Bryant, G. Guglielmi, N. T. de Marsac, A.-M. Castets, G. Cohen-Bazire, The structure of cyanobacterial phycobilisomes: A model. *Arch. Microbiol.* **123**, 113–127 (1979).
- L. Zheng, Z. Zheng, X. Li, G. Wang, K. Zhang, P. Wei, J. Zhao, N. Gao, Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. *Nat. Commun.* 12, 5497 (2021).

- M. A. Domínguez-Martín, P. V. Sauer, H. Kirst, M. Sutter, D. Bína, B. J. Greber, E. Nogales, T. Polívka, C. A. Kerfeld, Structures of a phycobilisome in light-harvesting and photoprotected states. *Nature* 609, 835–845 (2022).
- 12. M.-Y. Ho, N. T. Soulier, D. P. Canniffe, G. Shen, D. A. Bryant, Light regulation of pigment and photosystem biosynthesis in cyanobacteria. *Curr. Opin. Plant Biol.* **37**, 24–33 (2017).
- 13. F. Wang, M. Chen, Chromatic acclimation processes and their relationships with phycobiliprotein complexes. *Microorganisms* **10**, 1562 (2022)
- M. Watanabe, D. A. Semchonok, M. T. Webber-Birungi, S. Ehira, K. Kondo, R. Narikawa, M. Ohmori, E. J. Boekema, M. Ikeuchi, Attachment of phycobilisomes in an antenna—
 Photosystem I supercomplex of cyanobacteria. *Proc. Natl. Acad. Sci. U.S.A.* 111, 2512–2517 (2014).
- 15. Y. Li, Y. Lin, C. J. Garvey, D. Birch, R. W. Corkery, P. C. Loughlin, H. Scheer, R. D. Willows, M. Chen, Characterization of red-shifted phycobilisomes isolated from the chlorophyll *f*-containing cyanobacterium *Halomicronema hongdechloris*. *Biochim. Biophys. Acta Bioenerg.* **1857**, 107–114 (2016).
- M.-Y. Ho, F. Gan, G. Shen, D. A. Bryant, Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light. *Photosynth. Res.* 131, 187–202 (2017).
- 17. N. Soulier, T. N. Laremore, D. A. Bryant, Characterization of cyanobacterial allophycocyanins absorbing far-red light. *Photosynth. Res.* **145**, 189–207 (2020).
- N. Soulier, K. Walters, T. N. Laremore, G. Shen, J. H. Golbeck, D. A. Bryant, Acclimation of the photosynthetic apparatus to low light in a thermophilic *Synechococcus* sp. strain. *Photosynth. Res.* 153, 21–42 (2022).
- F. Gan, S. Zhang, N. C. Rockwell, S. S. Martin, J. C. Lagarias, D. A. Bryant, Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. *Science* 345, 1312– 1317 (2014).

- F. Gan, D. A. Bryant, Adaptive and acclimative responses of cyanobacteria to far-red light. *Environ. Microbiol.* 17 3450–3465 (2015).
- 21. N. Soulier, D. A. Bryant, The structural basis of far-red light absorbance by allophycocyanins. *Photosynth. Res.* **147**, 11–26 (2021).
- 22. G. Shen, H. S. Leonard, W. M. Schluchter, D. A. Bryant, CpcM post-translationally methylates asparagine-71/72 of phycobiliprotein beta subunits in *Synechococcus* sp. PCC 7002 and *Synechocystis* sp. PCC 6803. *J. Bacteriol.* **190**, 4808–4817 (2008).
- T. Schirmer, R. Huber, M. Schneider, W. Bode, M. Miller, M. L. Hackert, Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium *Agmenellum quadruplicatum*: The molecular model and its implications for light-harvesting. *J. Mol. Biol.* 188, 651–676 (1986).
- P.-P. Peng, L. L. Dong, Y. F. Sun, X. L. Zeng, W. L. Ding, H. Scheer, X. Yang, K. H. Zhao, The structure of allophycocyanin B from *Synechocystis* PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. *Acta Crystallogr. Sect. D* 70, 2558–2569 (2014).
- P. Cao, D. Cao, L. Si, X. Su, L. Tian, W. Chang, Z. Liu, X. Zhang, M. Li, Structural basis for energy and electron transfer of the photosystem I–IsiA–Flavodoxin supercomplex. *Nat. Plants* 6, 167–176 (2020).
- 26. N. V. Karapetyan, Y. V. Bolychevtseva, N. P. Yurina, I. V. Terekhova, V. V. Shubin, M. Brecht, Long-wavelength chlorophylls in photosystem I of cyanobacteria: Origin, localization, and functions. *Biochemistry (Moscow)* **79**, 213–220 (2014).
- 27. V. Mascoli, L. Bersanini, R. Croce, Far-red absorption and light-use efficiency trade-offs in chlorophyll *f* photosynthesis. *Nat. Plants* **6**, 1044–1053 (2020).
- J. Zivanov, T. Nakane, B. O. Forsberg, D. Kimanius, W. J. H. Hagen, E. Lindahl, S. H. W. Scheres, New tools for automated high-resolution cryo-EM structure determination in RELION-3. *eLife* 7, e42166 (2018).

- 29. S. Q. Zheng, E. Palovcak, J. P. Armache, K. A. Verba, Y. Cheng, D. A. Agard, MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat. Methods* 14, 331–332 (2017).
- A. Rohou, N. Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
- P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 66, 486–501 (2010).
- 32. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis. *J. Comput. Chem.* 25, 1605–1612 (2004).
- N. Guex, M. C. Peitsch, T. Schwede, Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. *Electrophoresis* 30, S162–S173 (2009).
- 34. P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, PHENIX: A comprehensive python-based system for macromolecular structure solution. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 66, 213–221 (2010).
- P. V. Afonine, B. K. Poon, R. J. Read, O. V. Sobolev, T. C. Terwilliger, A. Urzhumtsev, P. D. Adams, Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta Crystallogr. Sect. D* 74, 531–544 (2018).
- 36. J. J. Snellenburg, S. Laptenok, R. Seger, K. M. Mullen, I. H. M. van Stokkum, Glotaran: A Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 49, 1–22 (2012).
- 37. A. V. Digris, E. G. Novikov, V. V. Skakun, V. V. Apanasovich, "Global a nalysis of t ime-r esolved f luorescence data," in *Fluorescence Spectroscopy and Microscopy: Methods and Protocols*, Y. Engelborghs, A. J. W. G. Visser, Eds. (Humana Press, 2014), pp. 257–277.

- S. J. A. van Gisbergen, J. G. Snijders, E. J. Baerends, Implementation of time-dependent density functional response equations. *Comput. Phys. Commun.* 118, 119–138 (1999).
- 39. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).
- 40. A. B. Doust, C. N. J. Marai, S. J. Harrop, K. E. Wilk, P. M. G. Curmi, G. D. Scholes, Developing a structure–function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. *J. Mol. Biol.* **344**, 135–153 (2004).
- 41. R. R. Sonani, G. D. Gupta, D. Madamwar, V. Kumar, Crystal structure of allophycocyanin from marine cyanobacterium *Phormidium* sp. A09DM. *PLOS ONE* **10**, e0124580 (2015).
- J. M. Womick, A. M. Moran, Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. *J. Phys. Chem. B* 113, 15747–15759 (2009).
- 43. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **98**, 5648–5652 (1993).
- 44. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **37**, 785–789 (1988).
- 45. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* **98**, 11623–11627 (1994).
- 46. C. Curutchet, V. I. Novoderezhkin, J. Kongsted, A. Muñoz-Losa, R. van Grondelle, G. D. Scholes, B. Mennucci, Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation. *J. Phys. Chem. B* **117**, 4263–4273 (2013).
- 47. Y. Ren, B. Chi, O. Melhem, K. Wei, L. Feng, Y. Li, X. Han, D. Li, Y. Zhang, J. Wan, X. Xu, M. Yang, Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacteria phycocyanin within the framework of Förster theory. *J. Comput. Chem.* **34**, 1005–1012 (2013).

- 48. G. Cinque, R. Croce, R. Bassi, Absorption spectra of chlorophyll *a* and *b* in Lhcb protein environment. *Photosynth. Res.* **64**, 233–242 (2000).
- V. I. Novoderezhkin, R. Croce, M. Wahadoszamen, I. Polukhina, E. Romero, R. van Grondelle, Mixing of exciton and charge-transfer states in light-harvesting complex Lhca4. *Phys. Chem. Chem. Phys.* 18, 19368–19377 (2016).
- 50. F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. M. William, M. Remmert, J. Söding, J. D. Thompson, D. G. Higgins, Fast, scalable generation of high quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* 7, 1–6 (2011).
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein structure prediction with AlphaFold. *Nature* 596, 583–589 (2021).
- V. Mariani, M. Biasini, A. Barbato, T. Schwede, IDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. *Bioinformatics* 29, 2722–2728 (2013).