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Supplementary Information
Supplementary Note 1. Scores per region of interest.

For clarity, we report in Supplementary Figure 1 the
average brain scores, forecast scores and forecast distances for
each region of interest in both the left and right hemispheres.
We also report scores in the less noisy voxels, for the subjects
with the highest brainscore (Supplementary Table 1), their
corresponding p-values computed across subjects (Table
Supplementary 3) and the scores normalized by the noise
ceiling (Supplementary Table 2).

Supplementary Table 1. Brain and forecast scores in language areas. Scores
averaged across all voxels in the brain (Avg), across the ten percent less noisy
voxels (w.r.t the noise ceiling, Top10Vox), for the ten percent subjects with the highest
brainscore (Top10sub), and averaged across voxels in representative language areas
(Heschl, STG, STS and IFG). The last row is the relative improvement of R(X + ÂX)
over R(X).

Avg Top10Vox Top10Sub Heschl STG STS IFG

Brain score, R(X) 0.023 0.084 0.049 0.145 0.072 0.072 0.037
Forecast score, F (8)

(X) 0.005 0.010 0.006 0.008 0.008 0.010 0.008

Relative improvement, F
(8)(X)

R(X) 23% 13% 39% 5% 21% 13% 18%

Supplementary Table 2. Brain and forecast scores in language areas, with
noise ceiling normalization. Same as Table 1, but, for each voxel, scores are
divided by the average noise ceiling.

Avg Top10Vox Top10Sub Heschl STG STS IFG

Brain score R(X) 17% 37% 37% 50% 32% 36% 24%
Forecast score F (8)

(X) 4% 5% 5% 3% 4% 5% 5%

Supplementary Table 3. Brain and forecast scores’ significance. Same as Table
1, but we indicate the p-values computed across subjects, testing whether the scores
(either R(X), R(X + ÂX) or F (X)) are different from zero. We use a two-sided
Wilcoxon test provided by Scipy. The p-values for the Top10Sub columns are higher
because we restrict ourselves to the 10 percent less noisy subjects.

Avg Top10Vox Top10Sub Heschl STG STS IFG

Brain score R(X) 10
≠50

10
≠51

10
≠6

10
≠51

10
≠51

10
≠50

10
≠45

Forecast score F (8)
(X) 10

≠35
10

≠37
10

≠4
10

≠32
10

≠37
10

≠32
10

≠29

Supplementary Note 2. Generalisation to other architectures.

The analyses in the main manuscript focus on one rep-
resentative deep neural network: GPT-2 (2). Here, we
replicate our results with the activations extracted from seven
other transformer architectures. We only analyse causal

models, trained to predict a word from their previous context.
Note that XLNet is trained to predict both left and right con-
text (71), but, here, we only input the model with left context
when extracting the activations. Similarly as with GPT-2,
we use the pretrained models from Huggingface (labeled
‘distilgpt2’, ‘gpt2’, ‘gpt2-medium’, ‘gpt2-large’, ‘gpt2-large’,
‘gpt2-xl’, ‘transfo-xl-wt103’, ‘xlnet-base-cased’, ‘xlnet-large-
cased’), based on GPT-2 (2), XLNet (71) and Transformer-XL
(86) architectures, and focus on one intermediate-to-deep
layer of the model (l = 2

3 ◊ nlayers). For each architecture,
we 1) extract the activations corresponding to the subjects’
stories (Methods C) 2) compute the corresponding brain
scores (Methods D) and forecast scores (Methods F) for
each voxel, subject, and forecast distance. As displayed in
Supplementary Figure 2, the seven architectures accurately
map onto brain activity (Supplementary Figure 2a), and the
mapping is improved when adding information about around
eight words in the future (Supplementary Figure 2b). The
mapping is also improved when adding representations of
words automatically generated by GPT-2 instead of the true
future words (we use sampling methods to generate words,
similarly as in Supplementary Note 4).

Supplementary Note 3. Robustness of the forecast effect.

Below, we show that the forecast e�ect holds without
PCA, with di�erent window sizes, when using banded ridge
regression (87, 88) instead of ridge regression, when averaging
instead of summing vectors within each TR, when matching
the TR with the word onset instead of word o�set, when
accounting for low-level speech features and when testing for
significance across windows at the single-subject level.

Replication with banded ridge regression In the main
manuscript, we use ¸2-regularized ridge regression (as
in e.g. (42)) followed by a hierarchical comparison of the
brain scores: i.e. computing the brain score of the two sets
of features (here, X vs. X ü ÂX) and then subtracting the

Supplementary Figure 1. Scores per region of interest. a-c. Brain scores (Figure 2a, Methods D), forecast scores (Figure 2c, Methods F) and forecast distance (Figure 2e
Methods G) for nine regions of interests in both the left (circle) and right (triangle) hemispheres. Scores are averaged across voxels within each region of interest and across
subjects. Error bars are the standard errors of the mean across subjects. Regions are ordered with respect to their average score in the left hemisphere.
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Supplementary Figure 2. Generalisation to other architectures. a. Brain scores
(cf. Figure 1b, Methods D) of eight transformer models, based on XLNet (71),
TransformerXL (86) and GPT-2 (2) architectures. We use the pre-trained models
from Huggingface and proceed similarly as with GPT-2 (Methods C). Brain scores
are averaged across voxels and subjects, error bars are the standard errors of the
mean across subjects (n=304). b. Same as Figure 2d for the eight transformer
architectures.

scores (R[X ü ÂX] ≠ R[X]). To our knowledge, this approach
is most conservative when it comes to assess the explained
variance of the highest level: the explainable variance shared
by two sets of features is by definition fully attributed to
the lower-level feature set (i.e. X). Thus, in the worst case
scenario, our method underestimates the variance specific to
ÂX. This is what happens when the sliding window contains
far o� future words that are no longer relevant for prediction,
and R[X ü ÂX] becomes smaller than R[X].

We replicate our results with banded ridge regression (87,
88) using the Himalaya (https://github.com/gallantlab/himalaya)
package (88). Both X and ÂX models are fitted simultaneously
with a specific penalization term learnt for each submodel.
We then evaluate the unique variance accounted for by each
submodel by zeroing-out either X or ÂX at test time, predicting
Y, and computing Pearson’s correlation between predicted and
actual Y after zeroing out the specific features. We use the
same cross-validation setting as in the paper.

Supplementary Figure 3a below displays the brain scores
obtained with banded ridge when adding the window for each
future word, and Supplementary Figure 3b shows the brains
scores specifically attributed to the contextual words in ÂX after
zero-ing out X. We obtain similar results as in the original
paper, but the forecast e�ect specific to ÂX is higher than the
one in the paper (RÕÕ[ ÂX] peaks at 0.027, while (R[Xü ÂX]≠R[X]
peaks at 0.004).

Replication without PCA In the manuscript, we apply PCA to
the GPT-2 features before applying the FIR and regression

(Figure 8 and 9). We show in Supplementary Figure 3c that
the forecast e�ect holds without applying PCA.

Replication without silent periods and with confounding variables
In the main manuscript, we cut the TRs that do not contain
words at the beginning of the stories, and do not add to the
GPT-2 features confounding variables such as the phoneme
rate and word rate. In Supplementary Figure 3h, we show
that the results hold when the brain and forecast score are
computed:

• When removing the empty TRs both at the beginning
and end of the recordings (we thus cut the recordings
between the first and last word of the story before fitting
the ridge regression)

• When including the Word and Phoneme rates as confound
variables. These are one-dimensional variables indicating
the presence or absence of a word/phoneme.

Replication with different word aggregation in FIR In Supplemen-
tary Figure 3d, we show that results hold when averaging
instead of summing vectors within each TR and when match-
ing the TR with the word onset instead of word o�set.

Testing for significance at the single-subject level In the main
manuscript, we compare R(X + X

(i)) to R(X) within each
subject and then test the significance across subjects (H0 :
R(X +X

(d)) < R(X)). We show the results hold when testing
for significance with a bootstrap test across windows, at the
single-subject level (H0 : R(X + X

(d)) < R(X + X
(i)), i ”= d).

Precisely, for each subject and each distance d, we compute
R(X + X

(i)), i ”= d, with X
(i) a sliding window randomly

sampled from the stories. We repeat the procedure 1000
times and then estimate the probability of sampling X

(i), such
that R(X + X

(d)) < R(X + X
(i)). This results in a p-value

for each subject and distance d, assessing the significance of
R(X + X

(d)) being greater than R(X + X
(i)), i ”= d.

In Supplementary Figure 3f-g, we show that testing for sig-
nificance at the single-subject level yields to similar conclusions
as across subjects.

Effect of window size In the main manuscript, we use a fixed
window size of seven words because it led to the best brain
score when varying the length of the window (Supplementary
Note 4). To further assess the impact of the window length on
the forecast e�ect, we compute the forecast scores for di�erent
window sizes (from a size of 5 to 27 words). In Supplementary
Figure 3e, we find that window length slightly but significantly
a�ects the results. The distances maximizing the forecast
scores are on average concentrated between 6 and 12 words,
and brain scores are highest for a window of 7-9-11 words.
The peak varies with the window length. This phenomenon
is partly expected: words that are close to the current word
likely carry relevant information (e.g. word n+1). Thus, for
short window sizes, not including the closest words is expected
to decrease the brain score. This confirms that the forecast
result can be found regardless of the window size, and further
suggests that forecasts are likely to be slightly longer-term
than 8 words.

Supplementary Note 4. Controls with a growing window anal-
ysis.
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Testing different window sizes In the previous paragraphs, we
use a sliding forecast window with a fixed number of words
in order to compare the brain scores of representations with
the same dimensionality. Here, we test di�erent window sizes
by implementing a growing window analysis. Precisely, we
build the forecast window X̃

(d) by concatenating the d words
succeeding the current word. The size of the window thus
varies and d corresponds to both the number of words in the
window, and the distance between the last word and the current
word. We proceed similarly as in the main manuscript, build
forecast window for di�erent distances d and the corresponding
forecast scores. As displayed in Supplementary Figure 4, the
forecast score is maximal for a window of 8 future words
(dú = 7.9 ± 0.5 on average across subjects), which is consistent
with the previous results (Figure 2c, where d

ú = 8).

Using random forecast representations We use the same grow-
ing window framework and check that adding a forecast win-
dow composed of random words does not improve the brain
score (Supplementary Figure 4). Precisely, we randomly pick
words out of all stories, concatenate the GPT-2 activations of
random words to build the forecast windows X̃

(d), and com-
pute the corresponding forecast scores for di�erent distances d.
Supplementary Figure 4 shows that random forecast windows
do not improve our ability to predict brain activity.

Using GPT-2 generations as forecast representations To what ex-
tent are the improvements in brain score due to (1) additional
information about future words and/or (2) a di�erent way
to represent past words? To address this question, we re-
peat the same analysis with a forecast window input, not
of the true future words, but with the words generated by
GPT-2. Specifically, for each word wk, we 1) input GPT-
2 with its past context w0, . . . wk, 2) generate future words
w

Õ
k+1, . . . w

Õ
k+n using di�erent decoding methods (greedy and

sampling schemes), 3) extract the corresponding activations
X

Õ
k+1, . . . X

Õ
k+n, 4) build the growing windows from these acti-

vations and 5) compute their forecast scores. Thus, the brain
signals, the current activations Xk and the activations of gen-
erated words X

Õ
k+n . . . X

Õ
k+n are all distinct transformations of

the same past words w0, . . . wk. Note that for step 2), we use
Huggingface’s sampling scheme with topk=50 and topp=0.95,
do_sample=True, max_length=100. For the greedy scheme,
we simply set do_sample to False, topp and topk to 1. (13)).
The results show that a window made of generated words im-
proves the brain score, although less so than a window made
of the true words of the stories (Supplementary Figure 4),
confirming that GPT-2 is an imperfect forecaster.

Supplementary Note 5. Contribution of each future word in
the forecast effect.

In Figure 2b, we show that adding a sliding window
containing future words improves our ability to predict
brain activity. To interpret the impact of each word in this
improvement, we launch a zero-out analysis. Precisely, we
proceed as follows:

• At train time, we proceed similarly as in the main analysis
(Figure 2b) and fit the regression using the current word
embedding, concatenated to the sliding window.

• At test time, we zero out the features corresponding to
all words after word k (i.e. we replace their embeddings

by zeros).

• Finally, we report the Pearson correlation between pre-
dicted and actual brain data, when zeroing out words
after word k.

This evaluates the importance of the words after word k in the
prediction. We repeat the procedure for k = 1 to k = 17. Note
that if the words-to-TR transform had been linear, this analysis
would have been identical to an analysis of the coe�cients.

We find that zeroing out future words triggers a clear drop
in performance (Supplementary Figure 5). This demonstrates
that each future word significantly contributes to the prediction
in the ridge regression.

To further address this issue, we compute the brain scores
when concatenating di�erent continuations to the current word
embedding. Specifically, we run the exact same analysis as
Figure 2b, but replacing future words by either zeros or ran-
dom continuations. These continuations are sensible phrases,
of the same length as the true continuations, but randomly
sampled from all stories. Supplementary Figure 6 below con-
firms that adding random continuations does not improve the
brain scores.

Overall, Supplementary Figure 5 and 6 show that each
future word up to ¥ 10 plays a significant role in the ridge
regression.
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Supplementary Figure 3. Robustness of the forecast effect. a. Replication with banded regression. Brain scores computed with ridge regression (left, same as 2 and
banded ridge regression (right) (87, 88). b. Forecast scores computed with ridge regression followed by subtraction (left, same as Figure 2d) and banded ridge regression
followed by zero-out (right) (87, 88). In a banded ridge regression, a model is fitted using both X and ÂX as input with regularization parameters specific to X and ÂX. We then
evaluate the brain score accounted for by the context window ÂX specifically by zero-ing out X at test time (and the present word in the window). c. Forecast scores without
PCA. Brain scores when adding the sliding forecast window (Same as Figure 2b), but without applying PCA before fitting the ridge regression. c. Impact of pre-processing
parameters. Brain scores when adding the sliding window for different distances d (same as Figure 2) (black), but averaging words within TR instead of summing them (blue)
and matching the word offset with the TR boundary instead of the word onset (orange). d. Effect of window size. Brain scores when adding the forecast window (same as Figure
2b) computed with a sliding window of size 5 to 27 words. Average peaks across subjects are indicated with a dot. f-g. Significance of the forecast effect. In f., the percentage of
subjects with a significant bootstrap test for each distance d (p < 0.05). For each subject and each distance d, we compute R(X + X(i)), i ”= d, with X(i) a sliding window
randomly sampled from the stories. We repeat the procedure 1000 times and then estimate the probability of sampling X(i) such that R(X + X(d)) < R(X + X(i)),
for each subject and distance d. In g., the p-value computed with a one-sided Wilcoxon test across subjects, testing whether the sliding window improves the brain score
(R(X + X(d)) > R(X)). The red bar indicates the significance threshold (p = 0.05). h. Forecast scores with confounds and without silent periods. Forecast scores
averaged across subjects and voxels (same as 2b) when (1) including two confounding variables (the word and phone rates) and (2) removing periods without words at the
beginning and end of the recordings. The word and phone rates are one-dimensional variables indicating the absence/presence of a word and phoneme. i. Word rate gain.
Gain in brain score when adding the word rate to the features of GPT-2, averaged across subjects (R[GPT2 ü WordRate] - R[GPT2]). The WordRate is a one dimensional
variable equal to one when there is a word, zero elsewhere. Only significant voxels are displayed (p<0.01 with a two-sided Wilcoxon test after FDR correction for multiple
comparison). No PCA was performed.
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Supplementary Figure 4. Controls with a growing window analysis. Forecast
scores for different types of forecast representations ÂX. Here, we use a growing
window analysis: ÂX(d) is the concatenation of the activations of |d| future (d > 0) or
past (d < 0) words; the size of the window thus varies with the distance. The forecast
score is the gain in brain score when concatenating the forecast window (cf. Eq. (3)).
In blue, ÂX is built out of the true words of the story. In red, ÂX is built out of randomly
picked words from all stories. In green and orange, ÂX is built out of words generated
by GPT-2. Precisely, GPT-2 is input with the current word and its previous context,
and we use greedy (green) and sampling (orange) decoding schemes to generate a
sequence of expected words. For simplicity, when d < 0, ÂX is the concatenation of
d the true past words. When d > 0, ÂX is the concatenation of d future words (either
true, generated or random words).

Supplementary Figure 5. Contribution of future words in the ridge regression.
We proceed similarly as in Figure 2b and fit a ridge regression to predict the fMRI
given X and the sliding window ÂX(d). Yet, at test time, we set to zero (or “zero-
out”) the dimensions corresponding to all words after word k. We then evaluate the
prediction given the zeroed-out input (Pearson’s correlation between predicted and
true fMRI). On the x-axis, the last word that is not zeroed-out (k, i.e. all words > k are
zeroed-out). On the y-axis, the corresponding Pearson correlation.

Supplementary Figure 6. Brain scores when adding different continuations.
Same as Figure 2b, but true continuations (black) are replaced by zeros embed-
dings (blue) and random continuations sampled from all stories (orange). Random
continuations are sensible phrases.
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Supplementary Figure 7. Gain in brain scores when fine-tuning GPT-2 with a mixture of Language Modeling (LM) and High-Level prediction (HL). Gain in brain
scores when adding the HL loss, compared to LM only as a function of the weight –HL (Eq. (8)). Regions are grouped with respect to their gain, from negative or null
improvement (a.) to high improvement (c). In black, the corresponding regions in the brain. Error bars are SEM across subjects. Brain scores were computed at the voxel-level
and then averaged across voxels within 75 regions of interest using Destrieux’s parcellation (82). We only display the 60 regions with highly significant brain scores (p < 10≠15

using a two-sided Wilcoxon test after FDR correction for multiple comparison across regions).

Supplementary Figure 8. Data pipeline without sliding window. Processing
steps applied to the raw data of each subject before fitting the ridge regression. The
ridge regression is then trained to predict the fMRI target (on the right) given the
features (on the left) using a 5-folds cross-validation setting. D is the dimensionality
of the language model, here D = 768. Words refers to the number of words in the
audio recordings the subject listened to while being scanned. If the subject listened to
more than one story, the audio recordings are concatenated and Words is the sum of
the words of each story. TR is the number of the corresponding fMRI scans. DÕ is
the dimensionality after PCA reduction, here DÕ=20. 6 is the number of delays used
in the FIR.

Supplementary Figure 9. Data pipeline with sliding window. Same as Figure 8,
but we concatenate the sliding window to the current word (in orange and light grey).
The sliding window contains the GPT-2 embeddings of past and/or future words. K is
the number of words in the sliding window, here K = 7.
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Supplementary Figure 10. Noise ceiling. Noise ceiling estimates averaged across
subjects, for each voxels of the left hemisphere (Methods M).
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