Virtual excavation and analysis of the early Neanderthal cranium from Altamura (Italy)

Antonio Profico, Costantino Buzi, Fabio Di Vincenzo, Marco Boggioni, Andrea Borsato, Giovanni Boschian, Damiano Marchi, Mario Micheli, Jacopo Moggi Cecchi, Marco Samadelli, Mary Anne Tafuri, Juan Luis Arsuaga & Giorgio Manzi

SUPPLEMENTARY DATA

Suppl. Figures 1-14	 	 	 	 	 pag.	2-15
Suppl. Tables 1-4	 	 	 	 	 pag.	16-24

Supplementary Figure 1. Location map of Altamura within the Murge karstic plateau in South-Eastern Italy, between Apulia and Lucania regions. **a**: The Murge plateau (map center) is an extensive karstic area, characterised by typical karst landforms and numerous caves. The Lamalunga cave, where the Altamura human remains were found, is indicated by a red dot. **b**: Typical Murge Plateau landscape around Lamalunga cave entrance (arrow), showing the "lama", i.e. a shallow valley-shaped landforms, and the layering of limestone strata. Image credits: a) terrain relief sourced from 1-ArcSec Shuttle Radar Topography Mission elevation available from the U.S. Geological Survey (https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-strm-1) and processed with QGIS 3.28 Firenze (https://qgis.org/), graphic elaboration by GB; b) image by GB.

Supplementary Figure 2. Lamalunga cave simplified plan, showing the location of human remains. **a**: the karstic system of Lamalunga is divided into the Southern and Northern branches, with the present-day artificial entrance (Eastern side) located between the two branches. The red rectangle highlights the detail (**b**) of the Northernmost part of the cave and of the "Apse of the Man", with its narrow passages and location of the human remains (amber shading). **c**: the profiles of the northernmost part of the cave (a-b and c-d tracks) show the relatively shallow position of the human remains (amber shading). **d**: the Altamura cranium is cemented among columnar stalactites/stalagmites and covered with coralloid concretions. Several long bones lie in front of the cranium. Image credits: a, b, c) panels simplified and redrawn from Ministero della Cultura, Soprintendenza A.B.A.P. per la c.m. di Bari (Puglia); d) Soprintendenza A.B.A.P. per la c.m. di Bari (Puglia), photo by GB.

Supplementary Figure 3. Some of the activities carried out in the Apse and on the bone assemblage. Clockwise: i) Photographic documentation of speleothems in the Apse; ii) positioning of LED lights for acquisition of images of the bone assemblage by DinoLite digital microscope; iii) exploration of the assemblage by endoscopic probe (photos by AP and CB).

Supplementary Figure 4. Barplot of Euclidean (a) and Procrustes (b) distances between Altamura and each specimen of the comparative sample; barplots of the Procrustes distance calculated separately on FF (c) and BP (d); blue: Middle Pleistocene humans; green: Neanderthals; grey: *Homo sapiens*. SH-5: Sima de los Huesos 5; LaCha: La Chapelle; LaFer: La Ferrassie; Gua: Guattari 1; Scp1: Saccopastore 1; Sha: Shanidar; Amd: Amud; Petr: Petralona

Supplementary Figure 5. Three-quarters left (left) and lateral left views (right) of virtually assembled models of the two separately digitised parts (front and face [FF] and cranial base and cranial vault [BP]) of the Altamura cranium, obtained by applying DTA software. Reference models used: **a**) Saccopastore 1; **b**) consensus shape of EWN sample.

Supplementary Figure 6. Specimen SH-5 from Atapuerca (**a**) was used as reference to estimate cranial capacity in Altamura. The SH-5 endocast (**b**) was warped by using the same landmarks (green) and semilandmark (blue) configuration acquired on Altamura (**c**). The endocast warped on Altamura was used to estimate its cranial capacity (**d**).

Altamura

La Ferrassie 1

La Chapelle-aux-Saints

Guattari 1

Supplementary Figure 7. 3D contour polylines (blue) traced on the occipital region of Altamura and of selected Middle to Late Pleistocene human fossils.

Supplementary Figure 8. Discrete features in Altamura. **a**: occurrence table of 20 synapomorphic Neanderthal traits on Altamura and on each sample, as defined by Churchill⁴; green: Neanderthal character state; yellow: non-Neanderthal character state; grey: data not available. These data were used to perform two different clustering methods, **b**: "parsimony, strict consensus" and **c**: "neighbour-joining".

Supplementary Figure 9. Morphology of the supraorbital torus in Altamura compared to Middle Pleistocene humans and Neanderthals: a) Kabwe (or Broken Hill 1); b) Petralona; c) Ceprano; d) Arago XXI; e) *Altamura* (orange box); f) Sima de los Huesos 5; g) Saccopastore 2; h) La Ferrassie 1; i) La Chapelle-aux-Saints 1.

Supplementary Figure 10. Boxplot of the angle between the lambda and the two asteria in Altamura and reference sample. MPH: Middle Pleistocene Humans; ERN: early Neanderthals; EWN: European Würmian Neanderthals.

Supplementary Figure 11. Diagnostic anatomical features on the occipital bone of Altamura in posterior view (A, B).

Supplementary Figure 12. Landmark set (yellow), surface semilandmarks (blue) and outline (fuchsia) used to study the occipital squama in Altamura (a). The triangulation of the entire landmark and semilandmark configuration, here reported in posterior (b) and lateral (c) view, has been used as a template to plot the shape variations.

Supplementary Figure 13. Principal Component Analysis of landmarks set on the occipital squama (a: PC1 vs PC2; b: PC1 vs. PC3). Full circles represent fossil specimens; orange: Altamura (Alt); blue: Mid-Pleistocene specimens (SH-4: Sima de los Huesos 4; SH-5: Sima de los Huesos 5; Petr: Petralona; Eya: Eyasi; Swa: Swanscombe); green: *Homo neanderthalensis* (Amd: Amud; Gua: Guattari 1; LaFer: La Ferrassie; Scp1: Saccopastore 1; Sha: Shanidar; Gib: Gibraltar; LaQui: La Quina 5); grey: *Homo sapiens*.

Supplementary Figure 14. Plot of the first two principal component derived from landmarks set on the occipital midsagittal profile (a). Full circles represent fossil specimens; orange: Altamura (Alt); blue: Mid-Pleistocene specimens (SH-4: Sima de los Huesos 4; SH-5: Sima de los Huesos 5; Petr: Petralona; Eya: Eyasi; Swa: Swanscombe); green: *Homo neanderthalensis* (Amd: Amud; Gua: Guattari 1; LaFer: La Ferrassie; Scp1: Saccopastore 1; Sha: Shanidar; Gib: Gibraltar; LaQui: La Quina 5); grey: *Homo sapiens*. In the bottom row, the shape variations of the first two principal components of Altamura (in orange) are compared to *Homo neanderthalensis* (green, b), Mid-Pleistocene humans (blue, c) and modern humans (grey, d).

Supplementary Table 1. List of the specimens used to digitally align (DTA) face and frontal bone (FF) with the base and posterior portions of the Altamura cranium (BP). The same list was also used in the morphometric analysis of the occipital bone (3D OCC GM). Fossil specimens' abbreviations are in brackets.

Specimen	Species/taxon	Analysis
Petralona (Petr)	Middle Pleistocene Humans	DTA, 3D OCC GM
Dali	Middle Pleistocene Humans	3D OCC GM
Eyasi (Eya)	Middle Pleistocene Humans	3D OCC GM
Sima de los Huesos 5 (SH-5)	Middle Pleistocene Humans	DTA, 3D OCC GM
Sima de los Huesos 4 (SH-4)	Middle Pleistocene Humans	3D OCC GM
Swanscombe (Swa)	Middle Pleistocene Humans	3D OCC
Amud 1 (Amd)	Homo neanderthalensis	DTA, 3D OCC GM
Saccopastore 1 (Scp1)	Homo neanderthalensis	DTA, 3D OCC GM
Guattari 1 (Gua)	Homo neanderthalensis	DTA, 3D OCC GM
La Chapelle aux Saints 1 (LaCha)	Homo neanderthalensis	DTA
La Ferrassie 1 (LaFer)	Homo neanderthalensis	DTA, 3D OCC GM
La Quina 5 (LaQui)	Homo neanderthalensis	3D OCC GM
Gibraltar 1 (Gib)	Homo neanderthalensis	3D OCC GM
Shanidar 1 (Sha)	Homo neanderthalensis	DTA, 3D OCC GM
OL 0794	Homo sapiens	DTA, 3D OCC GM
OL 0869	Homo sapiens	DTA, 3D OCC GM
OL 0886	Homo sapiens	3D OCC GM
OL 1068	Homo sapiens	DTA, 3D OCC GM
OL 1112	Homo sapiens	DTA, 3D OCC GM
OL 1193	Homo sapiens	3D OCC GM

OL 1197	Homo sapiens	DTA, 3D OCC GM
OL 1199	Homo sapiens	DTA, 3D OCC GM
OL 1282	Homo sapiens	3D OCC GM
OL 1214	Homo sapiens	3D OCC GM
OL 1282	Homo sapiens	3D OCC GM
OL 1428	Homo sapiens	3D OCC GM
ULAC 012	Homo sapiens	DTA
ULAC 013	Homo sapiens	DTA
ULAC 016	Homo sapiens	DTA
ULAC 019	Homo sapiens	DTA
ULAC 033	Homo sapiens	DTA
ULAC 039	Homo sapiens	DTA
ULAC 057	Homo sapiens	DTA
ULAC 060	Homo sapiens	DTA
ULAC 066	Homo sapiens	DTA
ULAC 904	Homo sapiens	DTA
ULAC 909	Homo sapiens	DTA
ULAC 920	Homo sapiens	DTA
ULAC 953	Homo sapiens	DTA
ULAC 954	Homo sapiens	DTA
ULAC 955	Homo sapiens	DTA
VA-004	Homo sapiens	3D OCC GM
VA-005	Homo sapiens	3D OCC GM
VA-011	Homo sapiens	3D OCC GM

VA-012	Homo sapiens	DTA
VA-013	Homo sapiens	3D OCC GM
VA-014	Homo sapiens	3D OCC GM
VA-017	Homo sapiens	3D OCC GM
VA-018	Homo sapiens	3D OCC GM
VA-019	Homo sapiens	3D OCC GM
VA-020	Homo sapiens	3D OCC GM
VA-021	Homo sapiens	DTA, 3D OCC GM
VA-022	Homo sapiens	3D OCC GM
VA-023	Homo sapiens	3D OCC GM
VA-024	Homo sapiens	3D OCC GM
VA-027	Homo sapiens	3D OCC GM
VA-029	Homo sapiens	DTA
VA-030	Homo sapiens	DTA, 3D OCC GM
VA-031	Homo sapiens	DTA
VA-032	Homo sapiens	DTA, 3D OCC GM
VA-033	Homo sapiens	DTA, 3D OCC GM

Supplementary Table 2. List of landmarks used in digitally aligning the two cranial portions of Altamura (DTA), as well as in the morphometric analysis of the occipital bone (3D OCC GM). *Legend:* "Pairing" indicates the position of the landmarks; MS: mid-sagittal plane; BL: bilateral (both sides); "Portion" indicates the separately acquired part of the cranium where the landmark is located; FF: face and frontal bone; BP: base and posterior portions of the cranium.

Landmark name/description	Pairing	Portion	Analysis
Supra-glabellar depression (medial point)	MS	FF	DTA
Nasion	MS	FF	DTA
Nasospinale	MS	FF	DTA
Prosthion	MS	FF	DTA
Supraorbital notch	BL	FF	DTA
Frontomalare orbitale	BL	FF	DTA
Zygoorbitale	BL	FF	DTA
Lacrimale	BL	FF	DTA
Alare	BL	FF	DTA
Infraorbital foramen	BL	FF	DTA
Lambda	MS	BP	DTA, 3D OCC GM
Inion	MS	BP	DTA, 3D OCC GM
Inferior nuchal lines (middle point)	MS	BP	3D OCC GM
Basion	MS	BP	DTA
Hormion	MS	BP	DTA
Posterior margin of the palatine foramen	MS	BP	DTA
Orale	MS	BP	DTA
Asterion	BL	BP	DTA, 3D OCC GM
Mastoidale	BL	BP	DTA
Posteriormost point of the maxillary dental arch	BL	BP	DTA

VIRTUAL EXCAVATION AND ANALYSIS OF THE EARLY NEANDERTHAL CRANIUM FROM ALTAMURA (ITALY) **Supplementary Table 3.** Comparative cranial capacity in selected Pleistocene fossil humans. Values in bold were calculated on original specimens by the authors, while those in regular font are reported from literature^{17,18,45-47}, including some estimates for partial specimens.

Species/group	Specimen	Endocranial capacity (cm ³)
MPH (Africa)	Broken Hill	128045
MPH (Africa)	Bodo	1250 ⁴⁵
MPH (Africa)	Jebel Irhoud 1	1305 ¹⁸
MPH (Africa)	Laetoli 18	1367 ¹⁸
MPH (Africa)	Ndutu	110045
MPH (Africa)	Omo-Kibish 2	1435 ¹⁸
MPH (Africa)	Saldanha	120045
MPH (Europe)	Ceprano	1150
MPH (Europe)	Petralona	1230 ¹⁸
MPH (Europe)	SH cranium 4	1390 ¹⁸
MPH (Europe)	SH cranium 5	1125 ¹⁸
MPH (Europe)	SH cranium 6	114045
MPH (Europe)	Swanscombe	1325 ¹⁸
MPH (Europe)	Steinheim	1200 ¹⁸
MPH (Europe)	Arago XXI	1166 ⁴⁵
MPH (Europe)	Biache	120045
MPH (Europe)	Ehringsdorf	145045
MPH (Europe)	Reilingen	143045
Homo neanderthalensis	Apidima 2	1290 ¹⁷
Homo neanderthalensis	Ganovce	132045
Homo neanderthalensis	Krapina 1	141947

Homo neanderthalensis	Krapina 2	128647
Homo neanderthalensis	Krapina 3	127247
Homo neanderthalensis	Krapina 5	139747
Homo neanderthalensis	Krapina 6	115845
Homo neanderthalensis	Saccopastore 1	1103
Homo neanderthalensis	Saccopastore 2	130045
Homo neanderthalensis	Tabun 1	1271 ¹⁸
Homo neanderthalensis	Amud	1740 ¹⁸
Homo neanderthalensis	Feldhofer	1525 ⁴⁵
Homo neanderthalensis	Gibraltar 1	1270 ⁴⁵
Homo neanderthalensis	Guattari 1	1380
Homo neanderthalensis	La Chapelle-aux-Saints	1625 ¹⁸
Homo neanderthalensis	La Ferrassie 1	1640 ¹⁸
Homo neanderthalensis	La Quina 5	1172 ¹⁸
Homo neanderthalensis	La Quina 18	1200 ¹⁸
Homo neanderthalensis	Le Moustier 1	1564 ⁴⁵
Homo neanderthalensis	Shanidar 1	1600 ⁴⁵
Homo neanderthalensis	Shanidar 5	1550 ⁴⁵
Homo neanderthalensis	Spy 1	1305 ¹⁸
Homo neanderthalensis	Spy 2	152747
Homo neanderthalensis	Theshik Tash 1	1550 ⁴⁵
Homo sapiens	Skhul 5	1520 ¹⁸
Homo sapiens	Mladeč 1	1540 ¹⁸
Homo sapiens	CT-CSIC OL794	1280

Homo sapiens	CT-CSIC OL866	1433
Homo sapiens	CT-CSIC OL869	1445
Homo sapiens	CT-CSIC OL886	1276
Homo sapiens	CT-CSIC OL1068	1248
Homo sapiens	CT-CSIC OL112	1397
Homo sapiens	CT-CSIC OL1187	1621
Homo sapiens	CT-CSIC OL1192	1442
Homo sapiens	CT-CSIC OL1193	1296
Homo sapiens	CT-CSIC OL1197	1337
Homo sapiens	CT-CSIC OL1199	1191
Homo sapiens	CT-CSIC OL1214	1235
Homo sapiens	CT-CSIC OL1282	1548
Homo sapiens	CT-CSIC OL1428	1192

Supplementary Table 4. List of non-metric traits used in the phenetic analysis (from Churchill⁴). *Legend*: 0 = absence; 1 = presence, NA = not detectable. EWN = European Würmian Neanderthals, PET = Petralona, SH = Sima de los Huesos sample, SAC = Saccopastore sample, ALT = Altamura.

Definition	EWN	PET	SH	SAC	ALT
1 - Double-arched supraorbital torus that is arcuately continuous across glabella and that thins laterally.	1	0	0	1	0
2 - No separation between the arcus superciliaris and arcus supraorbitalis.	1	0	1	1	0
3 - High, rounded orbits	1	0	0	1	1
4 - Mid-facial prognathism characterised by low nasiofrontal and subspinal angles and a large difference between M1 alveolus and zygomaxillare radii.	1	0	1	1	1
5 - Flat or convex infraorbital plates (no canine fossa) enclosing large maxillary sinuses and receding obliquely in alignment with the anterolaterally flattened surface of the zygomatic.	1	1	1	1	1
6 - Posterior rooting of the facial (zygomatico-alveolar) crest.	1	1	1	1	1
7 - Platycephalic cranial vault with a large endocranial capacity	1	1	0	1	1
8 - Cranial vault shape "en bombe" in norma occipitalis.	1	0	0	1	0
9 - Maximum cranial breadth situated low on the parietals and indistinct parietal bosses	1	0	0	1	0
10 - Horizontal occipital torus of uniform vertical thickness, limited to the central portion of the occipital	1	0	1	1	1
11 – Depression instead of external occipital protuberance.	1	0	0	1	1
12 – Bipartite occipital torus with its median portion weakly developed and marked bilateral extension.	1	0	0	1	1
13 - Well developed, horizontally extended suprainiac fossa, triangular in outline with the apex in the midline and the base in contact with the occipital torus, and	1	0	1	1	1

generally demarked by an uplifted area of bone surrounding the depression.					
14 - Convex occipital squama (planum occipitale).	1	0	1	1	1
15 - Occipitomastoid crest usually larger than the mastoid process, often straddling the occipitomastoid suture, separated from surrounding bone by distinct sulci medially and laterally.	1	0	0	0	0
16 - Laterally flattened and inferiorly tapering mastoid process with medially inclined apex.	1	NA	0	1	1
17 - External auditory meatus situated on the same horizontal plane as the temporal zygomatic process	1	0	0	0	1
18 - Mandibular (glenoid) fossa that are large, shallow and poorly delimited	1	0	1	1	1
19 - Anteroposteriorly long, mediolaterally narrow foramen magnum.	1	0	0	0	1
20 - Nasal (piriform) aperture that is tall and wide both inferiorly and superiorly (reflected in antero-inferiorly broad nasal bones).	1	1	1	1	1