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1 Supplementary Methods

1.1 Overview

Figure 1 in the main article shows an overview of the modelling stages:

¢ Step 1: The simplified AIM model to describe HIV/ART, see Section 1.2.1

¢ Step 2-3: use of this model to generate HIV/ART-related inputs for a simpler
model, Section 1.2.2

¢ Step 4: description of the TB transmission model, Section 1.3

¢ Step 5: description of data, likelihood, and inference, Section 1.4

1.2 Model of demography and HIV/ART
1.2.1 AIM model

The AIM model was developed by Avenir Health as part of the SPECTRUM pack-
age of tools for HIV burden estimation and programme planning, which are used
in collaboration with countries to generate official UNAIDS HIV estimates.[1] The
role of AIM specifically is to take take country-level estimates of HIV incidence and
ART coverage and disaggregate these into more detailed demographic and HIV/ART
states, in order to make projections of resource need and intervention impact. The
model is run at a country level, and most of the data and parameters are country-
specific.

The AIM model state space encompasses (characteristic, with number of cate-
gories in parentheses):

e sexes (2): EM
(female/male)

¢ ages (81): [0,1), [1,2),...,(79,80), [80,Inf)
(single year age groups)

e HIV (8): hiv-ve, >=500, 350-499, 250-349, 200-249, 100-199, 50-99, <50
(CD4+ cell count per mm®)

¢ ART (4): none, [0,6)m, [7,12)m, [12,Inf)m
(time on ART in months)

for a total dimension of 2 x 81 x 8 x 4 = 5184 (although some elements remain zero,
eg those representing ART use among the HIV-negative population). The model is
defined by specifying the dynamics for population count at time ¢, N;(s,a, h,r) in
the compartment with sex s, age a, HIV state h, and ART state r. In the below, we



refer to the states in order for each characteristic above by integers (starting at 0).
The dynamics satisfy a discrete version of the partial differential equation

births background deaths et migration

0 0 — — (1a)
(E + %) Ni(s,a,h, 1) =Dbi(5)0(a) — p;(s,a)N¢(s,a,h, 1)+ my(s,a)
— Xh>0Xr=0 X MRfI(s, a, h) x uH(s, a, h)Ny(s,a, h,r) (1b)
— Xns0Xr>0 X MR (r) x (s, a, h, 1) Ny(s, @, h, 1) (1c)
—H0m[ (5,0, h) [Xn=r=0— Xn>0] (1d)
— A (s,a,h) [Xr=0— xr=1] (le)
—Xr=o[xn>0R™(s,a, W)N;(s,a, h, 1) = xp>1R™ (s,a, h = )Ny (s,a,h—1,1)]  (1f)
—xr>0 [RA()Ni(s,a, b, 1) = RA(r = )Ny (s, a, h, 1 = 1)] (1g)

where y ¢ represents an indicator function for the condition C and é(a) denotes the
Dirac delta function. More detailed explanation follows below for each element of
the right hand side.

Background demography (Eqn 1a): births, migrations and HIV-negative mor-
tality were based on single-year data from the United Nations Population Division
(World Population Prospects 2019 revision; WPP19), with life-tables adjusted to rep-
resent only non-HIV-associated mortality.

HIV mortality (Eqn 1b): applies only to those with HIV infection not on ART.
The excess mortality rate ,uA(s, a, h) depends on sex, age, and CD4 count, but not
calendar time. The mortality ratio M RF (s, a, h) specifies a country-specific time de-
pendence and [1- M R{{ (s,a, h)] is taken to be the coverage of ART among all PLHIV
at each sex/age/CD4 category.

ART mortality (Eqn 1c): applies only to those with HIV infection on ART. The
excess mortality rate u“ (s, a, h) depends on sex, age, CD4 count at ART initiation,
and time-on-ART, but not calendar time. The mortality ratio MR{‘(r) specifies a
country-specific time dependence.

HIV incidence (Eqn 1d): the number of HIV infections at each timestep is cal-
culated with a heuristic pursuit approach developed for this application. H(f) is
adjusted at each time step in the Euler method solver for the dynamics so that the
prevalence of HIV in the total population matches data. In particular, the number of
new HIV infections wadel at timestep ¢ (approximating H(¢) in the Euler scheme)
is taken as

Htmodel = F x maX(th_alm _ H;r_zqdel’o)

where Hf_“f“, Hﬂ‘{del are the number of prevalent HIV infections at the previous

timestep in the target data and model, respectively, and & < 1 is a tuning factor ad-
justed by hand to achieve good fits while remaining stable. Target data were linearly
interpolated between years. See AIMdynInc.R source code in the repository for de-
tails.



The number of HIV infections are distributed according to

n?(s, a, h) < a(s)y(s,a)x(a, h) N¢(s,a,0,0) (2)

with a sex-specific risk ratio (o (s)), a sex-specific set of relative risks by age (y(a, s)),
and new infections flow into an age-dependent distribution of CD4 count categories
(x(a, h)). HIV incidence only occurs in those aged = 15 years; we neglect paediatric
HIV.

ART initiation (Eqn le): the number of ART initiations at each timestep is calcu-
lated with a heuristic pursuit approach (as for HIV; see above), adjusting A(t) so that
the prevalence of ART among people living with HIV matches data on ART coverage
among PLHIV, pre-smoothed as a 3 year moving average. The number of ART initia-
tions are distributed among those not on ART with CD4 count below 500 cells/mm?3
proportional to the mean of HIV mortality and population count, ie

(s, a,h)  xnso (w,uH(s, a,h) +1-w) Ne(s,a,h,0)/2 3)

where w =0.2.

HIV progression (Eqn 1f): applies only to those with HIV infection not on ART
and is not dependent on calendar time. The rate at which CD4 categories advance
into the next category (R (s, a, h)) depends on sex, age and the current CD4 cate-
gory.

ART progression (Eqn 1g): applies only to those with HIV infection on ART and
is not dependent on calendar time. The rates R“(r) are taken as the inverse of the
incremental time on ART associated with state r. We take R4 (3) = 0. Note that the
state i does not advance on ART; for those on ART the value of this state represents
the CD4 category at which ART was initiated. We simplify the full AIM model here
by neglecting ART loss to follow-up.

The simplified AIM model was implemented in the R programming language.[2]
The model is initialized using WPP19 demographic estimates and zero HIV preva-
lence. It is run with a 1/10th of a year time step. Code for this model is part of
the GitHub repository for this project (https://github. com/petedodd/estevez)
and the AIM data required to run the model was extracted from the UNAIDS coun-
try fits available via AIM SPECTRUM web (https://aim.spectrumweb.org/). The
data to run the model for these countries is included in the repository. Example out-
puts from this model are shown in Section 2.1.

1.2.2 Quantities from AIM model & approximations

Quantities calculated

Our simplified model uses 5 year age groups ([0,5), [5,10),...,[75,80), [80,Inf)). We
use output from the AIM model for each country in order to calculate the following
quantities that serve as inputs for our simplified model:

* (s, a) - mean mortality in HIV+/ART-

* [2(s, a) - mean mortality in HIV+/ART+


https://github.com/petedodd/estevez
https://aim.spectrumweb.org/

o ] RRIH (s, a) - mean incidence rate ratio for TB in HIV+/ART-
o ] RRf(s, a) - mean incidence rate ratio for TB in HIV+/ART+
The average mortalities for each 5-year age group are calculated as

Y acansoit’(s, @) +ufl(s,a, W} N (s, a, h,0)
Y weah>0 Nt (s, a,h,0)

iy (s,a) = , @

and

Zu’ea,h>0,r>0{/«t0(5’ a) + IJA(S; a,h, r)}HA(S, a,h,r)N¢(s,a, h,T)
Zu’ea,h>0,r>0 N¢(s,a,h,1) '

iy (s,a) = ®)
The explicit time evolution captures the dynamics of the underlying CD4 cell count
distribution and ART durations in each sex and age-group. Figure 1 shows an exam-
ple snapshot of population CD4 distribution.

Similarly, the mean incidence rate ratios for TB capture the evolution of the av-
erage immuno-competence in each sex and age-group. These are calculated as

Za’ea,h>0 lrr(h! p)N[(Sr a, hro)
Za’ea,h>0 Nt(s! a, h, 0)

IRRY (s, a;p) = ) (6)

and

/ a3irr(h; 0)Ny(s,a, h, 1
IRR?(S, ap, @) = Za €a,h>0,r>0 (h; P) N ( ) . @
Y aean>0,r>0 Ne(s,a,h, )

Here, the quantity irr(p) is the mean incidence rate ratio (IRR) in CD4 category h
modelled as

1 CD4. (h)
irr(h;p) [CD4.U = CDa_ (] /Cm_(h) dA exp [p(1000-A)], (8)
ie the mean over CD4 count decrements A between the upper and lower points
defining category h (CD4.,(h) and CD4_(h), respectively) of and exponentially in-
creasing IRR (ie e”®). This exponential model of IRR is based on previous work.[3, 4]
In Eqn 7, this is multiplied by a’/® to model the protection from TB due to ART.
For established ART (r = 3), the hazard ratio a is based on systematic review, and
the use of a!/3 during the first 6 months on ART and a?/® during months 6-12 on
ART is designed to qualitatively capture the improvement in protection after start-
ing ART.[5, 6]

Approximations

Because parameter p and «a are treated as random variables with uncertainty in our
inference approach, we need a way to approximate the dependence in [ RR{I (s,a;0)
and IRRA(s,a; p,a) on p and a to avoid re-running the full ATIM model at each like-
lihood evaluation in an inference algorithm. For each country, we evaluated the IRR
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Figure 1: Example of population CD4 and ART distributions (Ethiopia in 2010)

time series for a grid of (p, a) parameter values, namely at (p, @) € G ={0.1,0.15,...,0.8} x
{0.1,0.2,...,0.8}. We then used bilinear interpolation for the logarithm of the IRRs:

ar—a
a—a)

0X(s,p1,a1)  €5(s,p1,a2)

NG
0X(s,p2,a1) €5 (s,p2,a2) ©)

T
1 —
log(IRR} (s,a;p))) = 2 [zz_ pﬁ)] [

where the sex s € {M, F}, ART status X € {H, A}, £X(s,p,a) = log(IRRX (s,a; p))), A is
the grid area (ie (a2 — a1) x (p2 — p1)), and (p;, a;) are the corners in G defining the
smallest rectangle containing (a, p).

The performance of this approximation is shown in Figure 2. Figure 2a shows
the approximation vs exact calcualtion for a single parameter set, by time and age
group. Figure 2b shows an exploration across different parameter values. A latin
hypercube sample of 50 parameter values was sampled across the parameter ranges
for p and a. Exact and approximate IRRs were computer across ages, sexes and ART
status. Only time periods with non-zero HIV or ART were retained. Over this sample
of 77,000 comparisons, the mean absolute error for IRR was a maximum for Malawi
at 1.1% and below 1% in all other countries.

Simplified model demography & HIV/ART

In order to simplify the description of the approach to demography & HIV/ART we
present this without the TB model structure. The age, sex, and HIV/CD4 & ART
structure for AIM described above in Section 1.2.1 is reduced to a structure with
both sexes, 5-year age groups, and 3 HIV/ART strata:

e sexes (2): EM
(female/male)
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e ages (17): [0,5), [5,10),...,[75,80), [80,Inf)
(5 year age groups)

e HIV (2): hiv-ve, hiv+ve
(HIV uninfected/HIV infected)

e ART (2): art-ve, art+ve
(no ART/on ART)

for a total dimension of 2 x 17 x 3 = 102 (although the element representing ART use
among the HIV-negative population remain zero). This is approximately a factor of
500x smaller than the full AIM model. As above, we will sometimes refer to each
state by index in order (starting at 0). At time #, age a, and for sex s, define X;(s, a) to
be the number of people without HIV infection, H;(s, a) the number of PLHIV not
on ART, and A;(s, a) the number of PLHIV on ART.

%Xt(s, a) =b(s) — @2 (s, @) X (s, @) (10a)
—hy(s,a)X((s,a) (10b)
+Xasor Xi(s,a—1) —1rX.(s,a) (10c)

%HI(S, a)=- ﬁ?(s, a)H(s,a) - [L?(s, a)H, (s, a) (10d)
+ hy(s, )X (s,a) — ¢4 (s, a) Hy (s, a) (10e)
+ Xa>orHi(s,a—1) —rH(s,a) (109

%At(s, a) =— (s, @) As(s,a) — 1} (s, @) As (s, @) (10g)
+c¢¢(s,a)Hy (s, a) (10h)
+Xas0T Ar(s,a—1) =1 A(s,a) (10i)

Ageing (Eqns 10c, 10f, 10i) Ageing from one 5-year age group to the next is mod-
elled (conventionally) as occurring with a rate r = 1/5 per year.

HIV/ART incidence (Eqns 10b, 10e, 10h) The number of HIV infections and ART
initiations is derived by aggregating that calculated by the pursuit heuristics in our
AIM model to fit HIV prevalence and ART coverage data.

Mortality/births (Eqns 10a, 10d, 10g)

Mortality rates were calculated based on WPP19 timeseries of population sizes
and births.

For ODE population dynamics, with birth rate B(¢), age categories a =0,..., and
ageing rate r

0:N(t,a)=B(t)0,+1r.N(t,a—1)—w.(a).N(t,a),
we can rewrite to define
wia)= ri{N(,a-1)/N(t,a)} —0:log(N(t, a))
wi@® r.o(t,a-1)-6(t a), (1



i.e. defining 6(¢t,a) = 0;log(N(t,a)) & p(t,a) = N(t,a)/N(t,a+ 1) for a > 0 and
p(t,0) = B(#)/ N(t,0). We calculate the derivative 6 (¢, a) from a smoothing spline fit
to the log-population, for men and women separately. With this notation,w includes
both ageing and mortality as w(a) = u;(a) +r.

To adapt these results to Eqns 10a-10i, we recalculate the background mortality
% accounting for HIV/ART mortality derived for example from Eqns 4&5, to give the
correct total mortality from Eqn 11

(0t s, @) = (u(t, s, @)N(t,s,@) - @ (t,s, @) H(t,s,a) - i (£, 5, ) A(t, 5, @) I N(t, 5, @).

1.3 TB model & priors
1.3.1 Model structure
The model includes 6 TB strata:
¢ S - uninfected by M. tuberculosis,
¢ E - infected, with ‘fast’ progression rate applied,
¢ [ -infected, with ‘slow’ progression rate applied,
o ] - prevalent & infectious TB disease,
e T - patients receiving anti-TB treatment (assumed uninfectious),

* R - previously treated patients at additional risk of relapsing to TB disease.

fast progression

€
infection stabilization slow progresiion v detection completion
Uninfected Early infection Late infection v IActive disease On treatment Recovered
S 7 E 7 L self I 7 T 7 R
cure
<
A 1 K bl 1 J T
reinfection relapse
YA w

Figure 3: TB transmission model structure. Not shown: HIV/ART structure; age/sex
structure; reinfection from Recovered; birth and background mortality.
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1.3.2 Model equations

Using a superscript i € {X, H, A} to index the HIV/ART stratum of each state, the
ODEs for the TB transmission model are

dst ) ) ) . o . .
T b'+1-0)tT — (' +A)S' =) k'S —r[S'(s,@) — xa0S'(s,a—1)]
J

(12a)
dE’ i, i iy i ij o i i
o =AS"+y' AL — (' +x +€)E' =) hYE! —r[E'(s,@) — Yas0E'(s,a—1)]

j

(12b)
dr’ i, i d iy ijri i i
E:KE +y = +vt +ytA)L —Zh]L]—r[L (s,@) — Ya>oL'(s,a—1)]

J

(12¢)
d—ﬂ—siEi+viLi+a)iRi—( "y 80 =Y R —r(I'(s,@) = Yasol'(s,a—1)]
dt - ,U IJTB '}/ ] ) Xa>0 )

(12d)
dr’ iri iy i ijj i i
Ezﬁ I'-(@+p)T —Zh T/ —r(T(s,a) = xa>0T (s,a-1)] (12e)

j

dRr? . ) o L ) )
P 0tT' — (' + u")R! —Zh”RJ —r[R'(s,a) — xasoR'(s,a—1)]. (12

]

Here, we have suppressed the time- and sex/age-dependence of S‘;(s, a) etc for clar-
ity, except in the ageing terms [shown in square brackets].

The 6 TB states, 2 sexes, 17 ages and 3 HIV/ART strata make for a total of 6 x 2 x
17 x 3 = 612 states and corresponding dynamical equations. The model was imple-
mented using the odin package in R,[7] with the dynamics being compiled via C for
speed and solved with default routines provided by the deSolve package.[8]

1.3.3 Mixing and force-of-infection
Writing

Za(0) =) [Si(s,a) + Ey(s,a) + L (s, @) + I1(s,a) + Ti (s, @) + Ry (s, a)] (13)
N
for the total population in each group, we define the force-of-infection in the above
equations by
Ii(s,a)

e =Y Myuea . (14)
a j;;’ a,a'e Z.(1)

where A are the adult age categories that exclude [0,5), [5,10), and [10, 15) since we
assume children <15 years are not infectious.

11



Mixing matrix for each country based on the results of the hierarchical modelling
of social contact studies presented in Prem et al [9]. We used the total contacts, and
rescaled so that the maximum contact rate for any age group was 1.

1.3.4 Initial state

We use a single parameter (Ap) to define a heuristic model initial state in 1970, de-
signed to minimize transient dynamics but allow for different initial intensities of
TB epidemic. In particular, we take

fo=(+v+yAg)/x
fr(a) =1-exp(—ax Ag)
dy =2vDX(1-K).

Then, with Z(s, a) the total population in 1970 by sex s and age a, we take

SX(s,a) = Z(s,a)[1 - fi(a@)]

EX(s,a) = Z(s,a) f1(a) fol2

LX(s,a) = Z(s,a) fr(@)[1 — fo/2 —4dy/3]
1% (s,a) = Z(s, a)dy f1(a)

TX(s,a) = Z(s,a)dy f1(a) /3

RX(s,a) = Z(s,a) fr(a) fo/2.

All states corresponding to PLHIV were initially set to zero.

1.3.5 HIV/ART incidence & mortality
HIV/ART incidence The matrix of HIV/ART incidence is defined by

X H A
i X (—hisa) 0 0

hy(s,a)= H | hi(s,a) -ais,a) 0 (15)
A 0 a:(s,a) 0

where h;(s,a) and a;(s, a) derived from the AIM model.

Mortality The time/sex/age-dependent mortality rates for PLHIV (u & u?) are
determined from the AIM model; the background mortality in HIV-negative indi-
viduals is determined to match total mortality from Eqn 11 once HIV/ART and TB
mortality are accounted for.

12



1.3.6 Progression

The two-compartment model of progression from infection to disease and associ-
ated parameters are based on that preferred by Ragonnet et al.[10], except for chil-
dren under 5 years of age, where fast progression is based on Martinez et al.[11]
Influence of HIV The hazards determining the three routes to TB incidence (¢, v,
and w) are each multipltied by the corresponding incidence rate ratios from Eqns 6&7

g'(t,s,a) = IRR!(s,a) x €
vi(t,s,a) = IRRL(s,a) x v

w'(t,s,a) = IRRi(s, a) X w,

forie {H, A}.

1.3.7 Durations, CFRs, self-cure

The timescale for untreated TB is set by duration parameters (D’) based on a re-
view of the pre-chemotherapy literature,[12] and modifications for PLHIV (see be-
low). For children under 15 years of age, an arbitrary duration of 6 months is used.
Prevalence in this age group is essentially irrelevant since they are assumed not to
be infectious and there is no prevalence data. Correspondingly, there is no child-
specific evidence on the duration of untreated TB, but TB in young children is felt to
be more rapid in clinical progression than in adults.

Durations and case-fatality ratios (®’) without treatment are used to define self-
cure rates via

1-@!
D},

Y = , (16)

with TB-related hazards of mortality then being /.ziT 5= i/ Dé.

1.3.8 Prevalence, detection, mortality

Prevalence The prevalence of bacteriologically-positive TB in adults (age 15+ years)
using the model states I in the numerator, and relevant population sums (Z) in the
denominator.

Extra-pulmonary TB To account for the fact that not all TB is pulmonary, we
assume a fixed factor n = 0.83 of incidence and notifications (and associated mor-
tality) is pulmonary, based on an analysis of global notification data.[13] Incidence,
notifications, and mortality reported divide model outputs by this factor to inflate
for extra-pulmonary TB, which is not considered explicitly (and therefore not con-
sidered infectious) in the TB transmission model.

Detection We define a dynamic probability of TB detection via a linear trend in
logit space:

13



logit(%) =logit(K) + c(t — tp),

where £y = 1970 the start time for the model. This probability is capped at 0.9 both
for realism, and because higher values can imply extreme rates resulting in numeri-
cal instability in the ODE solver.

This probability p(#) is used to define the rates of detection for each age group
as

p_ 1
1-p(t) D
The odds ratios for detection are 1 for adult age categories (= 15), and take values
ORy4 and ORs)4 for a in the corresponding age ranges.

Notifications All this means that notifications in each group are outputted from
the model as

Ni@ =Y 6,0Ii(s,am™. 17
N

51(t) = OR, x

Mortality Mortality from TB, mi(s, a), is defined as the sum of deaths on treat-
ment and those without treatment

. , .Ii(s,a
mi(s,a)=20T" (s, + @' fD—l_)n—l,
a

the factor of 2 reflecting a 0.5 year treatment duration.

1.3.9 Proportion recent

TB incidence derivces from 3 routes: from the fast-progressing latent infection state
(E); from the slow-progressing latent infection state (L); from the recovered state
(R). The proportion of incidence due to (re)infection within a certain timeframe, T
(usually taken as 2 years) is not just the proportion of incidence from the fast state,
as all 3 routes will contribute recent incidence to varying degrees. This is further
complicated by the influence of HIV, which implies that substantial contributions to
recent incidence may be made by the slow-progressing latent infection state due to
the high IRRs. We describe here how to calculate the proportion of incidence due to
recent infection for an ODE model such as that used in this work.
Let 7 be the time-since-(re)infection and let

Yu(t,a,1)

be all the model states, with index b denoting sex and TB/HIV state. The dynamics
are of the form

ageing Y —transitions
0o 0 —_——
(—+—)Yb(t,a,‘r)=r.Yh(t,a—1,T)+ZMbCYC(t,a,T) (18)
ot ot =
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with the boundary condition

Yy(t,a,0) = yu(t,a) (19)

representing inflows due to (re)infection. The coefficients M, depend on ¢ and a,
but not 7, and we take them to be those from eqns 12a-12f except with zero force-
of-infection. We consider the inflow boundary condition to be zero except during
the interval [t — T, t,] when we set it to the (re)infection flows in the ODEs from the
main model. We take the initial conditions to be zero (Y3(0, a, 1) = 0).

Define

T
vit,a)= f dr Y, (t,a,1) (20)
0
to be the population in state Y, that has been (re)infected within time T. To calcu-

late Ylf (¢, a) at some reference time ¢,, Then because of the 7-independence of the
coefficients, and using eqns 18 & 20 the Yf (¢, a) satisfy ODEs

LYA(,0) = [ dr Lellan

dr*b ot
= fo dr 22D 4 yR(r a 1)+ ¥ My YE (2, @)
LyRt,a) = yp(t, @)+ r.Y (1, a— 1)+ X My YE (2, a) 1)

where the last equality uses the boundary condition eqn 19 and the fact that Y, (¢,a,T) =
0 for t € [t, — T, t;] because 7 and ¢ move together (ie the characteristics have speed

1) and the inflow was zero until time ¢ = ¢, — T, implying no density has reached this
point yet.

In summary, we can calculate the proportion of incidence that is recent by du-
plicating the main model ODEs (eqns 12a-12f) except that the (re)infection flows
are those in the main model multiplied by an indicator function that is zero except
for the T years before the reference time (y(¢ € [t —T, ¢,1)), and the initial conditions
are zero. These ‘cloned’ equations (eqns 21) are thus only populated via (re)infection
within period T, and so the incidence calculated from them is that due to transmis-
sion within this period.
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1.3.10 Priors for parameters

Table 1: Priors and sources for model parameters.

Units:y~! = per year,y = year.

Abbreviations: LTBI=latent TB infection; IRR=incidence rate ratio; CDR=case detec-
tion ratio; OR=0dds ratio; CFR=case fatality ratio.

§: scaled to (0,0.9).

t: on a scale set by the maximum yearly notification in a country.

1: the WHO age/sex disaggregation uses a paediatric-specific prior based on [14]
and consistency with data.

Parameter Meaning Distribution Source
Transmission

B Effective contact rate, y’1 LogNormal(log(10),0.75) assumption
14 Partial infection protection with LTBI ~ Beta(20.7,77.9) Andrews([15]
Ao Initial condition parameter, y'1 LogNormal(log(3e-2),0.75) assumption
Progression

K Stabilization rate, y T LogNormal(0.62, 0.068) Ragonnet[10]
€ Fast progression rate, y’1 LogNormal(-2.837,0.32) Ragonnet[10]
£04 Progression children <5 years, y’1 Beta(5.153,21.967) Martinez[11]
v Slow progression rate, y’1 LogNormal(-6.89,0.58) Ragonnet[10]
w Relapse rate, y’1 LogNormal(-3.95,0.27) Crampin[16]
HIVIART IRRs

o CD4 IRR parameter LogNormal(-1.02,0.219) Ellis[3]
a ART protection LogNormal(-1.05,0.115) Suthar[17]
Detection

K Case detection ratio (initial) LogitNormal(0,0.3) assumption:
c Log rate of CDR change, y~! Gamma(k=0.5,0=4e-2) assumption
ORg4 OR for detecction children <5 years LogNormal(-0.100,0.626) WHO estimates'
ORs514 OR for detecction children 5-14 years LogNormal(-0.567,0.458) WHO estimates'
Transmission

DX Duration of untreated TB, y LogNormal(1.1,0.2) log(3) & assumed SD [12]
DH Duration of untreated TB (HIV+), y Gamma(7.374,0.065) Ku[18]
Case fatality ratios

0 CFR on TB treatment Beta(87.55,2.71) synthesis in WHO appendix(13]
X CEFR for untreated TB (HIV-) Beta(25.48,33.78) synthesis in WHO appendix[13]
o CFR for untreated TB (HIV+/ART-) Beta(23.68,6.68) synthesis in WHO appendix(13]
A CFR for untreated TB (HIV+/ART+) Beta(11.88,12.37) synthesis in WHO appendix(13]

Notification noise

o

Notification noise term

InvGamma(a=5,$=0.1%)

assumption®
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1.3.11 IRR heatmap
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Figure 4: Heatmap showing the incidence rate ratio (IRR) for TB implied by the pa-
rameters a (rows) and p (y-axis) in each CD4 cell-count category (x-axis) and ART
category (columns) of the AIM model.
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1.4 Inference
1.4.1 TB data & likelihood
The total log-likelihood is the sum of the data log-likelihood and the log-prior:
LL = LLgata + LLprior. (22)

For the countries we consider, there is no mortality data that can be used in a
straightforward way: only South Africa has vital registration data, and deaths coded
to TB in this data are thought to overestimate TB deaths by a substantial amount.
For this work, we therefore make use of notification and prevalence data, so that the
data log-likelihood decomposes as:

LLgata = LLnotifications + LLprevalence- (23)

1.4.2 Prevalence likelihood
For the prevalence log-likelihood, we use

(P —Pp)* 5 (PRa PRy

(24)

LLprevalence ==

In the first term, P; is the prevalence of bacteriologically-positive TB in those
aged = 15 years from the prevalence survey, and P, the corresponding model pre-
diction in that year. The parameter op is derived from the precision reported for
the prevalence estimate (ie from the reported confidence interval, which takes into
account the prevalence survey design).

The second term takes into account the age pattern in the prevalence survey if
reported. To avoid double-counting information on the level of prevalence, we work
with the prevalence ratios with respect to the reference age group of 15-24 years.
We calculate prevalence ratios for age groups 25-34 years, 35-44 years, 45-54 years,
55-64 years, and 65+ years, and corresponding variances o, from the TB prevalence
survey age-stratified point estimates and confidence intervals. PR, is the model-
predicted prevalence ratio in age group a.

1.4.3 Notifications: hierarchical likelihood & marginalization

We first break the notification log-likelihood into two parts
LLnotifications = LLn + LLp, (25)

where LL, is a log-likelihood capturing the level of notifications (and pattern by
age), and LLj, is a log-likelihood capturing the pattern of notifications with respect
to HIV.
Considering first total notifications at each time, Ny, the relevant log-likelihood
is taken to be
732
Lly=-% % - glog(a), (26)
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where N, is the model prediction of the number of notifications in a given year from
eqn 17, n is the number of years with data, and o is the noise level that captures a
range of unobserved processes that cause notifications vary from year to year.

We model the noise with a prior so that the data inform this parameter. In fact,
to facilitate inference across different countries, we assume that notifications have
a noise which scales with peak notifications in a country, F, and therefore that the
likelihood is

Ly=][#WN;-N;,0oF) = L ex [ E] 27
n= ; ! b T @rolF2)ni2 P P
where
EoY (N = Np)?
7 2F?

For o we use an inverse-gamma prior:

Py(0h) = L (1/6%)%*exp (-Bla?). (28)

I'la)
This enables us to marginalize the notification likelihood for o'
00 B* 1 R _ (E+PB)
M= d P L — d 2(a+1+n/2) [_
fo 7 Pl = 1oy Garpy fo 77 i

por(a+157)
 T(@)(2nF2)M2 x 2(E + B)a+1+n)2

(o0}
—A-Bix?_ 1 A-1
fo dx xe _gB(A—l)/zr( 2

where the Gamma function is defined by

using

(9]
I'(s)= f dr ¥ e™h.
0
All this means the logarithm of the notification likelihood with ¢ integrated out
is
log(M) = —[a + (n+1)/2] xlog(E + ) + constant (29)

To deal with the fact that some notification data is stratified by age, we con-
sider notifications in different age categories: N, where a € K U {unknown} where
K ={0-4,5-14,15—-24,25-34,35-44,45-54,55-64,65+}. The category N unknown
is made up as the difference between the total notifications N; = }_, N; , and those
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with known age categories in each year, N; xnown- We assume no bias in which no-
tifications are age stratified. We also want to model the error in each terms so they
aggregate to the correct total

var(Npa—Nea) = veas Y Via=ve v =0"F>
a

We therefore take vy unknown = V¢ * Nrunknown/ Nt and vy g = v X (Npknown/ Ne) /K]
for a e K.
We can then use Equation 29 with

= Z (Nt,a— ft,known x Nt,a)z + Z (Nt,unknown - ft,unknown X Nt)z

t,ack 2Via t 2Vt unknown

where f; unknown = Nt,unknown/ Nt, ftknown = N¢known/ Nt.

HIV

The log-likelihood component capturing patterns with respect to HIV used esti-
mates of the prevalence of HIV within TB notifications to avoid double-counting
information on the overall level of notifications. For countries reporting on HIV
within TB notifications, we conducted a random-effects meta-analysis to estimate
the mean (G) and variance (7) of the logit-proportion of TB notifications with HIV.
The log-likelihood was then

where G is the model-predicted logit of the average proportion of TB notifications
with HIV over the years with data.
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1.5 Sensitivity analyses

We explored the impact of different assumptions by refitting and recomputing key
results. The same methods were used to calibrate the model to data under these
alternate assumptions, and to compute results. These results are reported in Sec-
tion 2.5 in Figures 22, 23 and 24.

Proportion of TB that is extrapulmonary

The original choice was based on an analysis of notification data and matched
the value used in the WHO estimation process (just under 20% EPTB). Unfortu-
nately, routine data to inform the proportion of recorded TB that is EPTB are ex-
tremely variable: this variability likely reflects differences in coding and report prac-
tice as much as it does any underlying epidemiological variation, and by an un-
known extent.

For our sensitivity analysis, we re-ran our whole analysis assuming either 30% or
10% for the fraction of TB that is EPTB. We calculated the incidence and mortality
estimates for each country in 2019 (Figure 22) and also the impact of these assump-
tions on the proportion of TB incidence in 2019 due to (re)infection (Figure 23).

Infectiousness of 10-14 year olds

Our basecase assumption is that 10-14 year olds with TB are not infectious.

To inform an alternative assumption, we reviewed literature relevant to rates of
bacteriological test positivity in children, since bacteriological test positivity is well-
established to correlate with infectiousness. Kunkel et al’s[19] systematic review and
meta-analysis reported of smear-positivity in different age groups reported 0.5% (0-
1.9) for 0-4 year olds; 14.0% (8.9-19.4) for 5-14 year olds; and 52% (40-64) for 15+ year
olds. Unfortunately, the 10-14 year old category was not reported separately. Du
Preez et al.[20] report on bacteriological confirmation among notified TB in South
Africa 2004-2916 in 5 year age groups. They report bacteriological-confirmation
rates of 3.1% in 0-4 year olds; 9.8% of 5-9 year olds; 37.2% of 10-14 year olds; and
59% of 15-19 year olds. Combining Du Preez et al’s results across 5-9 year olds and
10-14 year olds gives 20% bacteriological confirmation in the 5-14 year old category
for comparison with Kunkel et al.

The results of Du Preez et al suggest 63% as much bacteriological confirmation
in 10-14 year olds as 15-19 year olds; comparison with Kunkel et al aggregated to
matching age categories suggests perhaps a lower fraction of 10-14 year olds who are
bacteriologically positive are smear-positive, consistent with expectations of a more
paucibacillary spectrum of disease. Furthermore, it has been observed in other data
(e.g. Vynnycky et al.[21]) that smear positivity rates show a slight gradient in adults,
so that bacteriological positivity among 10-14 year olds may be lower compared with
average adult TB than TB in 10-19 year olds.

Given this information, we refitted our model and generated results under the
assumption that 10-14 year olds are 50% as infectious per unit time as adults. We
made the assumption that the duration of untreated TB disease in this group was
the same as adults with the same HIV/ART status, which is likely to be higher than
reality, exaggerating the prevalence and importance of this group for transmission.

Unfortunately, there is scant data to quantify disease duration in children. There
is very little data on the prevalence of TB in children <15 years in the general popu-
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lation, as children are routinely excluded from TB prevalence surveys on grounds of
practicality, expense, and ethics. Data from household contacts (Martinez et al[11])
support a more rapid disease in young children than adults, but are indirect and
have fewer older children. For this reason, we have not reported on the prevalence
of TB in children - it lacks empirical data to compare against, and is not relevant for
transmission in the basecase analysis. Our default assumption of 6 months (which
we also use in this sensitivity analysis) only means that mortality in children is less
lagged with respect to incidence than in adults.

In addition to the effect of this assumption on incidence, mortality and the pro-
portion of TB incidence due to ‘recent’ transmission (Figures 22 and 23), we also
calculated the proportion of all TB transmission in 2019 coming from 10-14 year
olds (Figure 24).
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2 Supplementary Results

2.1 AIM HIV fits:
red lines are simplified AIM model fits from pursuit algorithm;
black points are data associated with the full AIM model
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2.2 Inference outputs

Figure 5 allows an assessment of which parameters have been most informed by
the data under inference, i.e. which have shifted most in order to achieve fit, and
whether these are similar across different countries. For the parameters that are
weakly informed by data, this figure provides a check that the uncertainty has been
thoroughly sampled (e.g. the case fatality parameters in the bottom row).

The corner plots in Section 2.3 show bivariate posteriors and give a sense of the
adequacy of inference in having sufficient sample size to produce smooth 2D den-
sity plots (and the easier 1D density plots) as well as the capacity to detect mean-
ingful correlations between parameters. E.g. the detection level parameter (K) and
the detection rate of change parameter (c) are often negatively correlated, indicating
high values of ¢ can compensate for low initial detection in achieving fits. Similarly,
the transmission parameter () and the slow progression parameter (v) are often
negatively correlated, indicating that higher transmission can compensate for lower
progression in achieving fits.

Fg ]
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Figure 5: Posteriors vs priors. Red lines show prior medians (solid lines) and up-
per/lower quartiles (dashed lines) for each model parameter (panels). The box and
whisker plots show posterior medians (mid-lines) and upper/lower quartiles (box
upper/lower edges) as inferred for each country (ISO3 code on x-axis). Whiskers ex-
tend to the largest/smallest data point within 1.5 x interquartile range of the median.
This shows which parameters adjust most to achieve fit and that non-influential pa-
rameters have their uncertainty fully represented. Based on n=50,000 Markov chain
Monte Carlo samples from the posterior.
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2.3

Corner plots
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Figure 6: Corner plot for ETH showing bivariate posteriors and marginals.
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Figure 7: Corner plot for KEN showing bivariate posteriors and marginals.
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Figure 13: Corner plot for TZA showing bivariate posteriors and marginals.

36



- e
e
e e
S 000
Teeelse
il b e ele
: e/e/e|elelels
e elelajeeh &
leelelaleles &6
ieleelslelsr sles
‘eseleesh slees
 seoeeeer 6000l
s noeeeeer eoeop O
- o oele/lele s elvelee oo
- loelele/elorlomeele o ale
3 NN AInnnn
tlelaesseh ololahlelololslels
e eele ees e aa’:‘geco:‘%@
» leoeleleer @oeee e eesesh o\

&

B K v K o e Ao

DH v ® Eoa ]

o oH o ) ¢ ORy ORg

SRR FEPIFNARRR® TR AR RERIERARVIRRAS HRIRRTAP SRR AR RIREESIREee » ©

D¢

Figure 14: Corner plot for UGA showing bivariate posteriors and marginals.
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Figure 15: Corner plot for ZAF showing bivariate posteriors and marginals.
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Figure 16: Corner plot for ZMB showing bivariate posteriors and marginals.
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2.4 Epidemiological plots with uncertainty
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Figure 18: The proportion of incident TB that is TB/HIV for 1980-2019, rib-
bon=95%CrI, line=median.
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Figure 21: Proportion of all TB incidence in 2019 due to (re)infection within 2 years
for each age group, ribbon=95%CrI, point/line=median.



2.5 Sensitivity analysis results

sensitivity analysis ¢ basecase 4 70%PTB 4 90%PTB - infectious children 10-14 years
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Figure 22: Impact of sensitivity analyses on calibrated estimates of TB incidence and
mortality in 2019. Points show medians and uncertainty intervals show the 2.5% and
97.5% quantiles based on runs using n=300 random samples from the posterior.
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sensitivity analysis ¢ basecase 4 70%PTB M 90%PTB - infectious children 10-14 years
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Figure 23: Impact of sensitivity analyses on estimates of the proportion of TB in-
cidence in 2019 due to (re)infection within 2 years. Points show medians and un-
certainty intervals show the 2.5% and 97.5% quantiles based on runs using n=300
random samples from the posterior.

46



Eswatini @

Ethiopia

Kenya 1

Lesotho A

Malawi —

Mozambique 1

Country

Nigeria 4 —
South Africa {
Uganda 1 —_—

United Republic of Tanzaniaq

Zambia @

Zimbabwe

3% 6% 9% 12%
Proportion of transmission from children 10-14 years 2019

Figure 24: Proportion of all TB transmission from 10-14 year olds when assuming
they are 50% as infectious as adults. Points show medians and uncertainty inter-
vals show the 2.5% and 97.5% quantiles based on runs using n=300 random samples
from the posterior.
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